Data dissemination problem in wireless networks

Ivo Kubjas, Vitaly Skachek

University of Tartu Tartu, Estonia

October 1, 2015

Motivation

Motivation

Index coding

Let \mathcal{P}_{ℓ} be the set of indices of possessed bits by node ℓ . Transmitter wants to transmit linear combination of bits x_1, \ldots, x_n such that each node ℓ recovers bit x_{ℓ} .

Index coding

Let \mathcal{P}_{ℓ} be the set of indices of possessed bits by node ℓ . Transmitter wants to transmit linear combination of bits x_1, \ldots, x_n such that each node ℓ recovers bit x_{ℓ} .

Solution (Bar-Yossef, Birk, Jayram, Kol '06)

Side information graph $\mathcal H$ is a graph with an edge from ℓ to j iff $j \in \mathcal P_\ell$. Then the optimum number of transmitted bits is minrank₂($\mathcal H$).

minrank₂

Definition

Let \mathcal{H} be a directed graph of n vertices without self-loops. We say that a 0-1 matrix $\mathbf{A}=(a_{ii})$ fits \mathcal{H} if for all i and j:

- $a_{ii} = 1$,
- $a_{ij} = 0$ whenever (i, j) is not an edge of \mathcal{H} .

minrank₂

Definition

Let \mathcal{H} be a directed graph of n vertices without self-loops. We say that a 0-1 matrix $\mathbf{A}=(a_{ii})$ fits \mathcal{H} if for all i and j:

- $a_{ii} = 1$,
- $a_{ij} = 0$ whenever (i, j) is not an edge of \mathcal{H} .

Definition

 $\mathsf{minrank}_2(\mathcal{H}) := \mathsf{min}\left\{\mathsf{rank}_2(\boldsymbol{A}): \boldsymbol{A} \text{ fits } \mathcal{H}\right\}.$

Side information graph

Example

The side information graph for graph ${\mathcal H}$ from the previous example is

Matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

fits \mathcal{H} and rank₂(\mathbf{A}) = 3. Thus, the transmitter needs at least 3 transmissions. The transmissions are $x_1 + x_2$, $x_2 + x_3$ and $x_3 + x_4$.

Data Exchange Protocol

The indices of the bits possessed by the node ℓ are given by \mathcal{P}_{ℓ} . Every node wishes to recover all other bits.

Data Exchange Protocol

The indices of the bits possessed by the node ℓ are given by \mathcal{P}_{ℓ} . Every node wishes to recover all other bits.

Solution (El Rouayheb, Sprintson, Sadeghi '10)

Let $\mathbb A$ be a family of matrices corresponding to the bits the nodes have and $\mathbf P_\ell$ be a matrix denoting the bits the node ℓ has. Then the number of transmissions is $\tau = \min_{\mathbf A \in \mathbb A} \operatorname{rank}(\mathbf A)$ such that $\operatorname{rank}\left(\left\lceil \frac{\mathbf A}{\mathbf P_\ell}\right\rceil\right) = n$, $\forall \ell \in \mathcal V$.

Definition

For each node ℓ , the possession matrix \mathbb{A}_{ℓ} is a $n \times n$ matrix over $\mathbb{F} \cup \{'\star'\}$, where ' \star ' is a symbol which can take any value in \mathbb{F} . It is defined as

$$(\mathbb{A}_\ell)_{i,j} = \left\{ egin{array}{ll} `\star` & ext{if } j \in \mathcal{P}_\ell \ 0 & ext{otherwise} \end{array}
ight..$$

Definition

For each node ℓ , the possession matrix \mathbb{A}_{ℓ} is a $n \times n$ matrix over $\mathbb{F} \cup \{'\star'\}$, where $'\star'$ is a symbol which can take any value in \mathbb{F} . It is defined as

$$(\mathbb{A}_\ell)_{i,j} = \left\{ egin{array}{ll} `\star` & ext{if } j \in \mathcal{P}_\ell \ 0 & ext{otherwise} \end{array}
ight..$$

The possession matrix of the graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$, $k=|\mathcal{V}|$, is the $(kn\times n)$ -dimensional matrix

$$\mathbb{A} = \begin{bmatrix} \frac{\mathbb{A}_1}{\mathbb{A}_2} \\ \vdots \\ \mathbb{A}_k \end{bmatrix},$$

where \mathbb{A}_{ℓ} is the possession matrix family corresponding to the node ℓ , $\ell \in \mathcal{V}$.

Given $\mathbf{A} \in \mathbb{A}$, the j-th $n \times n$ sub-matrix of \mathbf{A} will be denoted as \mathbf{A}_j .

• For each $\ell \in \mathcal{V}$, the $n \times n$ information matrix $\mathbf{P}_{\ell} = (\mathbf{P}_{\ell})_{i \in [n], i \in [n]}$ is

$$(m{P}_\ell)_{i,j} = \left\{ egin{array}{ll} 1 & ext{if } i=j ext{ and } i \in \mathcal{P}_\ell \ 0 & ext{otherwise} \end{array}
ight. .$$

• For each $\ell \in \mathcal{V}$, the $n \times n$ information matrix $\mathbf{P}_{\ell} = (\mathbf{P}_{\ell})_{i \in [n], i \in [n]}$ is

$$(m{P}_\ell)_{i,j} = \left\{ egin{array}{ll} 1 & ext{if } i=j ext{ and } i \in \mathcal{P}_\ell \ 0 & ext{otherwise} \end{array}
ight. .$$

• Let \mathcal{T}_{ℓ} be the set of indices of information bits requested by node ℓ . For each $\ell \in \mathcal{V}$, the $n \times n$ query matrix $\mathbf{T}_{\ell} = (\mathbf{T}_{\ell})_{i \in [n], i \in [n]}$ is

$$(m{\mathcal{T}}_\ell)_{i,j} = \left\{ egin{array}{ll} 1 & ext{if } i=j ext{ and } i \in \mathcal{T}_\ell \ 0 & ext{otherwise} \end{array}
ight..$$

• The set of in-neighbours for node ℓ is $\mathcal{N}_{in}(\ell)$ and

$$oldsymbol{A}_{\mathcal{N}_{in}(\ell)} = egin{bmatrix} oldsymbol{A}_{i_1} \ oldsymbol{A}_{i_2} \ oldsymbol{\vdots} \ oldsymbol{A}_{i_d} \end{bmatrix} \; ,$$

where $\mathcal{N}_{in}(\ell) = \{i_1, i_2, \cdots, i_d\}$, and d is an in-degree of ℓ in \mathcal{G} .

Data dissemination problem

Protocol

$$\begin{array}{ll} \textit{for every round } i = 1 \text{ to } r \text{ do} \\ \textit{for every node } \ell \in \mathcal{V} \text{ do} \\ \textit{for } j = 1 \text{ to } \tau_{i,\ell} \text{ do} & \rhd \text{ transmitting phase} \\ \textit{broadcast } z_{i,\ell,j} = \sum_{x \in \mathcal{Q}_{\ell}^{(i-1)}} \mu_{x,i,\ell,j} \cdot x \\ \text{set } \mathcal{Q}_{\ell}^{(i)} = \mathcal{Q}_{\ell}^{(i-1)} \cup \{z_{i,v,j}\}_{v \in \mathcal{N}_{in}(\ell), \ j=1,2,\cdots,\tau_{i,v}} & \rhd \text{ receiving phase} \\ \textit{for each node } \ell \in \mathcal{V} \text{ do} & \rhd \text{ recovery phase} \\ \textit{compute } x_j = \sum_{x \in \mathcal{Q}_{\epsilon}^{(r)}} \mu_{x,\ell,j} \cdot x \text{ for all } j \in \mathcal{T}_{\ell} \end{array}$$

Data dissemination problem

Protocol

$$\begin{array}{ll} \textit{for every round } i = 1 \ \textit{to r do} \\ \textit{for every node } \ell \in \mathcal{V} \ \textit{do} \\ \textit{for } j = 1 \ \textit{to } \tau_{i,\ell} \ \textit{do} \\ \textit{broadcast } z_{i,\ell,j} = \sum_{x \in \mathcal{Q}_{\ell}^{(i-1)}} \mu_{x,i,\ell,j} \cdot x \\ \text{set } \mathcal{Q}_{\ell}^{(i)} = \mathcal{Q}_{\ell}^{(i-1)} \cup \{z_{i,v,j}\}_{v \in \mathcal{N}_{in}(\ell), \ j=1,2,\cdots,\tau_{i,v}} \\ \textit{for each node } \ell \in \mathcal{V} \ \textit{do} \\ \textit{compute } x_j = \sum_{x \in \mathcal{Q}_{\ell}^{(r)}} \mu_{x,\ell,j} \cdot x \ \textit{for all } j \in \mathcal{T}_{\ell} \end{array} \right. \\ \Rightarrow recovery \ \textit{phase} \\ \text{compute } x_j = \sum_{x \in \mathcal{Q}_{\ell}^{(r)}} \mu_{x,\ell,j} \cdot x \ \textit{for all } j \in \mathcal{T}_{\ell} \end{array}$$

Definition

The network based on the graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is said to be r-solvable, $r\in\mathbb{N}$, if it is strongly connected and for any feasible assignment of the sets \mathcal{P}_ℓ and \mathcal{T}_ℓ , $\ell\in\mathcal{V}$, r communications rounds are sufficient for the protocol to satisfy all the node requests, but r-1 rounds are not sufficient. If the network is not r-solvable for any $r\in\mathbb{N}$, then we say that it is *not solvable*.

Theorem

Consider a wireless network defined by the graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$. The minimal number of transmissions needed to satisfy the demands of all nodes **in one round** of communications is

$$au = \min_{m{A} \in \mathbb{A}} \left\{ \sum_{\ell \in \mathcal{V}} \operatorname{rank}\left(m{A}_{\ell}
ight)
ight\} \; ,$$

where for all $\ell \in \mathcal{V}$

$$\mathsf{rowspace}\left(\left\lceil\frac{{\color{red}{\boldsymbol{A}_{\mathcal{N}_{in}(\ell)}}}}{{\color{red}{\boldsymbol{P}_{\ell}}}}\right\rceil\right) \supseteq \mathsf{rowspace}({\color{red}{\boldsymbol{\mathcal{T}}_{\ell}}})\;.$$

If the above matrix $\mathbf{A} \in \mathbb{A}$ as above does not exist then there is no algorithm that satisfies all requests in one round.

Graph-theoretic bounds for bipartite networks

- The network is defined by the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $\mathcal{V} = \mathcal{A} \cup \mathcal{B}$, $\mathcal{A} \cap \mathcal{B} = \emptyset$ and $\mathcal{E} \subseteq \mathcal{A} \times \mathcal{B}$.
- Nodes in $\mathcal A$ are transmitters, i.e. $\mathcal P_\ell = [n]$ and $\mathcal T_\ell = \varnothing$ for all $\ell \in \mathcal A$.
- Nodes in $\mathcal B$ are receivers. Assume w.l.o.g. that $\mathcal B = [n]$ and $\mathcal T_\ell = \{\ell\}$ for all $\ell \in \mathcal B$.
- Side information graph $\mathcal H$ is a graph with a vertex set $\mathcal B$. There is an edge from ℓ to j iff $j \in \mathcal P_\ell$.

Graph-theoretic lower bound

Proposition

The optimal number of transmissions for a bipartite data dissemination problem is at least minrank₂ (\mathcal{H}) , which is in turn bounded from below by $\Theta(\mathcal{H})$ and by $\alpha(\mathcal{H})$, where $\Theta(\mathcal{H})$ is the Shannon capacity and $\alpha(\mathcal{H})$ is the independence number of the graph.

Graph-theoretic lower bound

Proposition

The optimal number of transmissions for a bipartite data dissemination problem is at least minrank₂ (\mathcal{H}), which is in turn bounded from below by $\Theta(\mathcal{H})$ and by $\alpha(\mathcal{H})$, where $\Theta(\mathcal{H})$ is the Shannon capacity and $\alpha(\mathcal{H})$ is the independence number of the graph.

Proof idea

- Merge transmitters into a single transmitter.
- Add missing edges from the transmitter to every receiver.
- Solve the corresponding index coding problem.
- The solution to the initial data dissemination problem is the solution to the new index coding problem.

Graph-theoretic upper bound

Bipartite graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ can be partitioned into disjoint subgraphs $\mathfrak{P}=\{\mathcal{G}_1,\mathcal{G}_2,\cdots,\mathcal{G}_t\},\ \mathcal{G}_i=(\mathcal{V}_i,\mathcal{E}_i),\ \text{where}\ |\mathcal{A}|=t\ \text{and}\ |\mathcal{A}\cap\mathcal{V}_i|=1\ \text{for every}\ i\in[t].$

Lemma

For all \mathcal{G}_i as above, $i \in [t]$, consider an induced instance of index coding problem with a transmitter in $\mathcal{A} \cap \mathcal{V}_i$ and the set of the receivers $\mathcal{B} \cap \mathcal{V}_i$. For each $\ell \in \mathcal{V}_i$, the sets \mathcal{P}_ℓ and \mathcal{T}_ℓ are defined exactly as above. Denote by \mathcal{H}_i , $i \in [t]$, the corresponding side information graph. Then, the optimum number of transmissions for the given bipartite data dissemination problem is less or equal to $\sum_{i=1}^t \min \operatorname{rank}_2(\mathcal{H}_i)$.

Graph-theoretic upper bound

Proof idea

- Every subgraph G_i induces an index coding instance.
- ullet Solve the corresponding index coding problem for every subgraph \mathcal{G}_i .
- The solutions to each sub-problem together define a solution to the initial problem.

Notation

- The matrix I is a $n \times n$ unity matrix.
- The matrix \boldsymbol{E} is a $n \times n$ ones matrix.
- The vector e_j is canonical vector of length n.
- The operator diag is the diagonalization operator.
- The vector $D^{[j]}$ is the j-th row vector of D.
- The operator Γ(·) replaces the symbols '*' in the maximal number of the first rows with linearly independent canonical vectors, and replaces the symbols '*' in the remaining rows with zeros.
- The operator $\Gamma_{\ell}(\cdot)$ is defined as $\Gamma_{\ell}(\mathbb{A}) = \Gamma(\mathbb{A}_{\ell})$.
- The operator max-rank(\cdot) returns the rank of the matrix with the maximal rank in the matrix family.

General case

Theorem

Let $\mathcal{G}=(\mathcal{V},\mathcal{E}), |\mathcal{V}|=k$, be the underlying directed graph of a r_0 -solvable network defined by the adjacency matrix \mathbf{D}^T . Then there exists an iterated data exchange protocol with r rounds, for any $r \geq r_0$, and τ transmissions, where

$$au \ = \ \sum_{i=1}^r \left(\min_{m{A}^{(i)} \in (m{D}^{i-1} \otimes m{E}) \cdot \mathbb{A}} \left\{ \sum_{\ell \in \mathcal{V}} \operatorname{rank} \left(m{A}_\ell^{(i)}
ight)
ight\}
ight)$$

for matrices $\mathbf{A}^{(i)}$ which are subject to

$$\begin{split} \forall \ell \in \mathcal{V} \,:\; \mathsf{rank} \left(\left[\frac{\left(\mathsf{diag} \left(\boldsymbol{D}^{[\ell]} \right) \otimes \boldsymbol{I} \right) \cdot \boldsymbol{A}^{(i)}}{\Gamma_{\ell}((\boldsymbol{D}^{i-1} \otimes \boldsymbol{E}) \cdot \mathbb{A})} \right] \right) \\ &= \mathsf{max-rank} \left(\left(\mathsf{diag}(\boldsymbol{e}_{\ell}) \otimes \boldsymbol{I} \right) \cdot \left(\boldsymbol{D}^{i} \otimes \boldsymbol{E} \right) \cdot \mathbb{A} \right) \,. \end{split}$$

Thanks!

Questions?

- Z. Bar-Yossef, Y. Birk, T.S. Jayram, and T. Kol, "Index coding with side information," *IEEE Trans. Inform. Theory*, vol. 57, no. 3, pp. 1479–1494, 2011.
- S. El Rouayheb, A. Sprintson and P. Sadeghi, "On coding for cooperative data exchange," *Proc. IEEE Information Theory Workshop (ITW)*, Cairo, Egypt, 2010.
- J.F. Geelen, "Maximum rank matrix completion", *Linear Algebra and its Applications*, vol. 288, pp. 211-217, Feb. 1999.