Ml UNIVERSITYoTARTU

QuickCheck is a framework for automatic program testing:

e Allows to test whether the program satisfies given
properties on randomly generated inputs.

e originally for Haskell, but now also for Erlang, Scala,
Java, etc.

e The library has:

e combinators for describing properties which
functions should satisfy;

e generators of random values for standard types;

e combinators for constructing generators for user
defined datatypes.

Kalmer Apinis QuickCheck Functional Programming, Spring 2015

Ml UNIVERSITYoTARTU

Basic interface

import Test.QuickCheck

quickCheck :: Testable prop => prop -> IO

e Function quickCheck gets a property as an argument
which is tested on randomly generated inputs.

e By default 100 times (but this is configurable).
e If some tests fail it outputs a counter example.

Ml UNIVERSITYoTARTU

Example

Properties of reverse

Vz.reverse (reverse z) = z

prop_RevRev H [Int] => Bool
prop_RevRev xs = reverse (reverse xXS) == XS

Va.Vb.reverse (a++b) = (reverse b)++(reverse a)

prop_RevApp N [Int] => [Int] -> Bool
prop_RevApp xs ys = reverse (xs ++ ys)
== reverse ys ++ reverse Xxs

Let’stryitout...

Main> quickCheck prop_RevRev
+++ OK, passed 100 tests.

Main> quickCheck prop_RevApp
+++ OK, passed 100 tests.

Ml UNIVERSITYoTARTU

Example (cont.)

Properties of reverse
Va.Vb.reverse (a++Db) = (reverse b)++(reverse a)
prop_RevApp H [Int] -> [Int] -> Bool

prop_RevApp xs ys = reverse (xs ++ ys)
== reverse ys ++ reverse Xs

Va.Vb.reverse (a++b) = (reverse a)++(reverse b)

prop_RevWrong H [Int] => [Int] -> Bool
prop_RevWrong xs ys = reverse (xs ++ ys)
== reverse Xs ++ reverse ys

Let’s try it out...

Main> quickCheck prop_RevWrong

*** Failed! Falsifiable (after 3 tests and 2 shrinks):
(0]

(1]

Ml UNIVERSITYoTARTU

Properties

class Testable prop where
property :: prop —> Property

instance Testable Bool

instance (Arbitrary a, Show a, Testable prop) =>
Testable (a —=> prop)

e Properties are expressions which type belongs to
class Testable.
e Arguments should be of a monomorphic type.
e Necessary for knowing how to generate arguments.

e Naming convention: prefix prop_

Ml UNIVERSITYoTARTU

Properties

Example: insertion sort

isort :: Ord a => [a] -> [a]
isort = foldr insert []
insert :: Ord a => a =-> [a] => [a]
insert x [] = [x]
insert x (y:ys) | x <=y =X : Yy ! VS
| otherwise =y insert x ys

Ml UNIVERSITYoTARTU

Properties

Sorting property 1: sorted list must be ordered

prop_sortOrder :: [Int] —-> Bool
prop_sortOrder xs = ordered (isort xs)
ordered :: Ord a => [a] -> Bool

ordered (x:y:ys) = x <=y && ordered (y:ys)

True

ordered ys

Ml UNIVERSITYoTARTU

Properties

Sorting property 2: sorted and original list have

same elements

prop_sortElems ::
prop_sortElems xs

sameElems :: Eq a
sameElems xs ys

[Int] -> Bool

= sameklems xs (isort xs)

-> [a] => Bool
(xs \\ ys) && null

> [al
null

(ys \\ xs)

Ml UNIVERSITYoTARTU

Properties

Inspecting test data
collect :: (Show a, Testable prop) => a —> prop —> Property

e Function collect gathers statistics about test cases.
e This information is displayed when a test passes.

How many test cases were non-empty?

Main> let p = prop_sortOrder
Main> quickCheck (\ xs => collect (null xs)
+++ OK, passed 100 tests.
93% False
7% True

How long were argument lists?

Main> let 120 xs = length xs ‘div' 20

Main> quickCheck (\xs => collect (120 xs) (p xS
+++ OK, passed 100 tests:

53% 0

22% 1

14%

7%

4%

What were actual arguments?

Main> quickCheck (\ xs —=> collect xs (p xs))

+++ OK, passed 100 tests:

8% [1

1% [97723,95805,-104521,45943,-73844,6249, 64936]

10 Tl UNIVERSITY=TARTU

Properties

Insertion property: insertion preserves sorting

(ver. 1)

prop_insertOrderl :: Int => [Int] =-> Bool

prop_insertOrderl x xs = ordered xs ‘implies’
ordered (insert x xs)

implies :: Bool -> Bool -> Bool

implies x y = not x || vy

Problem!

Main> let p = prop_insertOrderl
Main> quickCheck (\x xs => collect (ordered xs) (p x xs))

+++ OK, passed 100 tests:
87% False
13% True

11 @l UNIVERSITYoTARTU

Properties

Implications
(==>) :: Testable prop => Bool —-> prop —> Property

instance Testable Property

e The combinator (==>) ignores inputs where premise
is not satisfied and regenerates new test data.

e By default 500 times (but this is configurabe).

12 i UNIVERSITYoTARTU

Properties

Insertion property: insertion preserves sorting

(ver. 2)
prop_insertOrder2 :: Int => [Int] -> Property
prop_insertOrder2 x xs = ordered xs ==>

ordered (insert x xs)

Better but still ...

Main> let p = prop_insertOrder2
Main> quickCheck (\x xs => collect (ordered xs) (p x Xs))
*** Gave up! Passed only 82 tests (100% True).

13 @l UNIVERSITYoTARTU

Properties

Universal quantification

forAll :: (Show a, Testable prop) =>
Gen a —-> (a —> prop) —> Property

e The combinator forall gets an explicit generator
which is used for generating test cases.

e Allows to use special generators which guarantee
that input satisfies certain properties.

14

Ml UNIVERSITYoTARTU

Properties

Insertion property: insertion preserves sorting

(ver. 3)
prop_insertOrder3 :: Int -> Property
prop_insertOrder3 x = forAll orderedList (\ xs =>

ordered (insert x xs))

Now works!!

Main> quickCheck (forAll orderedList ordered)
+++ OK, passed 100 tests.

Main> quickCheck prop_insertOrder3

+++ OK, passed 100 tests.

15 Ml UNIVERSITYoTARTU

Generators
Generators
newtype Gen a = ...
instance Monad Gen
instance Functor Gen
instance (Testable prop) => Testable (Gen prop)

e Generators belong to an abstract data type Gen.

e Gen is a monad which effect is ”access” to random
numbers.

16

Ml UNIVERSITYoTARTU

Generators

Sampling generated data

sample :

: Show a => Gen a -> IO ()

Combinators for generators

choose
elements
oneof
frequency
sized
vectorOf

:: Random a => (a, a) -> Gen a

[a] => Gen a

[Gen a] =-> Gen a

[(Int, Gen a)] -> Gen a
(Int => Gen a) =-> Gen a

: Int -> Gen a -> Gen [a]

17 M UNIVERSITYoTARTU

Generators

Default generators

class Arbitrary a where

arbitrary :: Gen a
shrink troa => [a]
shrink _ =[]

e Types belonging to the class Arbitrary have the
default generator.

¢ In addition, the class has a method shrink which is
used for generating smaller counterexamples:

e shrink returns a list of structurally smaller values;
e if the property fails it is retested on values returned
by shrink until there is no smaller counterexamples.

18

Ml UNIVERSITYoTARTU

Generators

Simple generators

instance Arbitrary Bool where
arbitrary = choose (False,True)

instance (Arbitrary a, Arbitrary b)
arbitrary = 1liftM2 (,) arbitrary
data Color = Red | Blue | Green

instance Arbitrary Color where
arbitrary = elements [Red, Blue,

=> Arbitrary
arbitrary

Green]

(a,b) where

19

Ml UNIVERSITYoTARTU

Simple generators

instance Arbitrary a
arbitrary = oneof

Generators

=> Arbitrary (Maybe a)
[return Nothing
, 1liftM Just arbitrary]

where

Problem!
Half of the values are Nothing!!

Ml UNIVERSITYoTARTU

Generators

Simple generators

instance Arbitrary a => Arbitrary (Maybe a) where
arbitrary = oneof [return Nothing
, 1liftM Just arbitrary]

A better version

instance Arbitrary a => Arbitrary (Maybe a) where
arbitrary = frequency [(1, return Nothing)
, (3, 1iftM Just arbitrary)]

20

Ml UNIVERSITYoTARTU

Generators

Generating integers (ver. 1)

instance Arbitrary Int where
arbitrary = choose (=20, 20)

20

Ml UNIVERSITYoTARTU

Generators

Generating integers (ver. 1)

instance Arbitrary Int where
arbitrary = choose (=20, 20)

Generating integers (ver. 2)

instance Arbitrary Int where
arbitrary = sized (\ n -> choose (-n,n))

21 @l UNIVERSITYoTARTU

Generators

Generating recursive data types (ver. 1)

data Tree a = Leaf a
| Node (Tree a) (Tree a)

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = frequency [(1, 1liftM Leaf arbitrary)
, (2, 1iftM2 Node arbitrary arbitrary)]

Problem!

Termination is not guaranteed!!

22 @l UNIVERSITYoTARTU

Generators

Generating recursive data types (ver. 2)

instance Arbitrary a => Arbitrary (Tree a) where

arbitrary = sized arbitraryTree
arbitraryTree :: Arbitrary a => Int -> Gen (Tree a)
arbitraryTree 0 = 1iftM Leaf arbitrary
arbitraryTree n = frequency [(1, 1liftM Leaf arbitrary)
, (4, 1iftM2 Node t t)]
where t = arbitraryTree (n ‘div' 2)
NB!
e The second equation has the possibility to generate
Leaf.

e Otherwise would generate only balanced trees.

23 M UNIVERSITYoTARTU

Generators

Predefined special generators
newtype OrderedList a = Ordered [a]
instance (Ord a, Arbitrary a) => Arbitrary (OrderedList a)

newtype NonEmptyList a = NonEmpty [a]
instance Arbitrary a => Arbitrary (NonEmptyList a)

newtype Positive a = Positive a
instance (Num a, Ord a, Arbitrary a) => Arbitrary (Positive a)

newtype NonZero a NonZero a
newtype NonNegative a = NonNegative a

24 @l UNIVERSITYoTARTU

Function Generators

class CoArbitrary a where
coarbitrary :: a => Gen b -> Gen b

instance (CoArbitrary a, Arbitrary b) => Arbitrary (a -> b)

Example

variant :: Integral n => n -> Gen a -> Gen a

instance CoArbitrary a => CoArbitrary [a] where
coarbitrary [] = variant 0
coarbitrary (x:xs) = variant 1 . coarbitrary (x,xs)

e You should use variant to perturb the random
generator; the goal is that different values for the
first argument will lead to different calls to variant.

25

Ml UNIVERSITYoTARTU

QuickCheck

Conclusion

e As Haskell is lazy language, it allows to use infinite

values; but properties may inspect only a finite part
of it.

e Also provides features to test monadic values (incl.
10).

