Ml UNIVERSITYoTARTU

Recursion versus Iteration

Recursive Factorial

factR 0 = 1
factR n = n * factR (n-=1)

Kalmer Apinis Continuations Functional Programming, Spring 2017



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Recursive Factorial

factR 0 = 1

factR n = n * factR (n-=1)

NB!

The context of factR increases with every recursive call:
factR 4 ==> 4 * factR 3

Kalmer Apinis Continuations Functional Programming, Spring 2017



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Recursive Factorial

factR 0 = 1
factR n = n * factR (n-=1)
NB!

The context of factR increases with every recursive call:
factR 4 ==> 4 * factR 3

==> 4 * (3 * factR 2)

Kalmer Apinis Continuations Functional Programming, Spring 2017



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Recursive Factorial

factR 0

factR n

NB!

= 1
= n * factR (n-=1)

The context of factR increases with every recursive call:

factR 4

==> 4 * factR 3
==> 4 * (3 * factR 2)

==> 4 * (3 * (2 * factR 1))

Kalmer Apinis

Continuations Functional Programming, Spring 2017



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Recursive Factorial

factR 0 = 1
factR n = n * factR (n-=1)
NB!

The context of factR increases with every recursive call:
factR 4 ==> 4 * factR 3

==> 4 * (3 * factR 2)
==> 4 * (3 * (2 * factR 1))

==> 4 * (3 * (2 * (1 * factR 0)))

Kalmer Apinis Continuations Functional Programming, Spring 2017



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Recursive Factorial

factR 0 = 1
factR n = n * factR (n-=1)
NB!

The context of factR increases with every recursive call:
factR 4 ==> 4 * factR 3

==> 4 * (3 * factR 2)

==> 4 * (3 * (2 * factR 1))

==> 4 * (3 * (2 * (1 * factR 0)))
==> 4 * (3 * (2 * (1 * 1)))

Kalmer Apinis Continuations Functional Programming, Spring 2017



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Recursive Factorial

factR 0 = 1
factR n = n * factR (n-=1)
NB!

The context of factR increases with every recursive call:
factR 4 ==> 4 * factR 3

==> 4 * (3 * factR 2)

==> 4 * (3 * (2 * factR 1))

==> 4 * (3 * (2 * (1 * factR 0)))
==> 4 * (3 * (2 * (1 * 1)))

==> 24

Kalmer Apinis Continuations Functional Programming, Spring 2017



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Tail-recursive factorial

factA = factAcc 1
where factAcc a 0
factAcc a n

a
factAcc (a*n) (n-1)



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Tail-recursive factorial

factA = factAcc 1
where factAcc a 0
factAcc a n

a
factAcc (a*n) (n-=1)

NB!
All calls in the same context:
factA 4 ==> factAcc 1 4

==> factAcc 4 3

==> factAcc 12 2
==> factAcc 24 1
==> factAcc 24 0
==> 24



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Iterative control behavior
Function has
e iterative behavior if it uses O(1) memory,
e iterative control behavior if it uses O(1) of memory
to store contexts,

e recursive control behavior, if does not have iterative
control behavior.

Example

reverse = revApp []
where revApp as []
revApp as (x:xs)

as
revApp (x:as) xs



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Question
When does a function have iterative control behavior?



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Question
When does a function have iterative control behavior?

NB!
Hard question!



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Question
When does a function have iterative control behavior?

NB!

Hard question!

Example

factQ n = if strangePredicate n

then factR n
else factA n



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Tail position/recursion/form

e Subexpression in tail position, evaluating it immedi-
ately gives value to the whole expression.
if expr0 then exprl else expr2
let x1 = exprl in expr0

e Function application in tail position is a tail call.



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Tail position/recursion/form

e Subexpression in tail position, evaluating it immedi-
ately gives value to the whole expression.
if expr0 then exprl else expr2
let x1 = exprl in expr0

e Function application in tail position is a tail call.

e Expression is in tail form if all non-tail-position
subexpressions are “simple”.



Ml UNIVERSITYoTARTU

Recursion versus Iteration

Tail position/recursion/form

e Subexpression in tail position, evaluating it immedi-
ately gives value to the whole expression.

if expr0 then exprl else expr2
let x1 = exprl in expr0

e Function application in tail position is a tail call.

e Expression is in tail form if all non-tail-position
subexpressions are “simple”.

NB!
Tail form expressions have iterative control behavior!



Ml UNIVERSITYoTARTU

Continuation

Contexts and Continuations
e factR 4iscomputedas4 * (3 * (2 * factR 1))

e We can say that, factR 1 is computed in context
4 % (3 * (2 * [))



Ml UNIVERSITYoTARTU

Continuation

Contexts and Continuations
e factR 4iscomputedas4 * (3 * (2 * factR 1))
e We can say that, factR 1 is computed in context
4 % (3 * (2 * [))
e Context are an expressions with one hole;

they can be expressed as lambda-terms:
\ v => 4 * (3 * (2 % v))



Ml UNIVERSITYoTARTU

Continuation

Contexts and Continuations
e factR 4iscomputedas4 * (3 * (2 * factR 1))
e We can say that, factR 1 is computed in context
4 % (3 * (2 * [))
e Context are an expressions with one hole;

they can be expressed as lambda-terms:
\ v => 4 * (3 * (2 % v))

e Such lambda-terms are called continuations.



Ml UNIVERSITYoTARTU

Continuation

Contexts and Continuations

e factR 4iscomputedas4 * (3 * (2 * factR 1))

e We can say that, factR 1 is computed in context
4 % (3 * (2 * [))

e Context are an expressions with one hole;
they can be expressed as lambda-terms:
\ v => 4 * (3 * (2 % v))

e Such lambda-terms are called continuations.

e All computations of factR can be represented as
k (factR n) where k is a continuation.



Ml UNIVERSITYoTARTU

Continuation

Contexts and Continuations

factR 4iscomputedas4 * (3 * (2 * factR 1))
We can say that, factR 1 is computed in context
4 % (3 * (2 * [))

Context are an expressions with one hole;
they can be expressed as lambda-terms:
\ v => 4 * (3 * (2 % v))

Such lambda-terms are called continuations.

All computations of factR can be represented as
k (factR n) where k is a continuation.

CPS = Continuation Passing Style



Ml UNIVERSITYoTARTU

Factorial in CPS

factCPS 0 k
factCPS n k

Continuations
k 1
factCPS (n-=1) (\ v => k

(n*v))



Ml UNIVERSITYoTARTU

Continuations
Factorial in CPS
factCPS 0 k = Lk 1
factCPS n k = factCPS (n-1) (\ v => k (n*v))

Claim

For every k and n,
k (factR n) === factCPS n k



Ml UNIVERSITYoTARTU

Continuations
Factorial in CPS
factCPS 0 k = k 1
factCPS n k = factCPS (n-1) (\ v => k (n*v))
Claim
For every k and n,
k (factR n) === factCPS n k

Proof for (n = 0)
k (factR 0) === k 1 === factCPS 0 k



Ml UNIVERSITYoTARTU

Continuations
Factorial in CPS
factCPS 0 k = k 1
factCPS n k = factCPS (n-1) (\ v => k (n*v))
Claim
For every k and n,
k (factR n) === factCPS n k

Proof for (n > 0)

k (factR n) === k (n * factR (n-=1))
=== (\ v => k (n*v)) (factR (n-=1))
=== factCPS (n-1) (\ v => k (n*v))
=== factCPS n k



Ml UNIVERSITYoTARTU

Jatkud

NB!
factcPs has iterative control behavior
factCPS 4 k

==> factCPS 3 (\ v => k (4*v))

==> factCPS 2 (\ v => k (4*(3*v)))

==> factCPS 1 (\ v => k (4% (3% (2%v))))
==> factCPS 0 (\ v => k (4*(3* (2% (1*v)))))
==> k (4*(3*(2*(1*1))))

==> k 24



i UNIVERSITYoTARTU

Jatkud

NB!
factcPs has iterative control behavior
factCPS 4 k

==> factCPS 3 (\ v => k (4*v))

==> factCPS 2 (\ v => k (4% (3*v)))

==> factCPS 1 (\ v => k (4% (3*(2*v))))

==> factCPS 0 (\ v => k (4% (3*(2*(1*v)))))
==> k (4*(3*(2*(1*1))))

==> k 24

NB!

We get the normal “context independent” factorial if we
take id as the continuation.
factC n = factCPS n id



Ml UNIVERSITYoTARTU

Continuations

Recursive length

length [] = 0
length (x:xs) = 1 + length xs

length in CPS

lengthC xs = lengthCPS xs id
where lengthCPS [] k =%k 0
lengthCPS (x:xs) k = lengthCPS xs (\v =->
k (1+4+v))



10 @l UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.



10 i UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.

Example: S combinator
f x (g x)



10 i UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.

Example: S combinator

f x (g x)

let vl = f x
v2 = g X
vd = vl v2

in v3



10 i UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.

Example: S combinator

f x (g x)

let vl = f x \ k > f x (\ v1 ->
v2 = g x g x (\ v2 =->
v3 = vl v2 vl v2 (\ v3 -—>

in v3 k v3)))



11 @l UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.

Example: Fibonacci

fibo 0 0
fibo 1 1
fibo n fibo (n=1) + fibo (n-2)



11 @l UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.

Example: Fibonacci

fibo 0 = O
fibo 1 = 1
fibon = 1let vl = fibo (n-1)

v2 = fibo (n-2)
in vl + v2



11 @l UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.

Example: Fibonacci

fibo 0 k = k O

fibo 1 k = k 1

fibon k = fibo (n—=1) (\ vl ->
fibo (n-=2) (\ v2 ->

k (v1i+v2)))



12 i UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.

Example: map

map £ []
map f (x:xs)

f x : map £ xs



12 @l UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.

Example: map

[]

let vi1
v2

in vl : v2

map f []
map f (x:xs)

f x
map f xs



12 @l UNIVERSITYoTARTU

Continuations

CPS transformation

How to transform expressions into CPS:
e Identification of non-trivial intermediate results
e Serialize their computation.
e Introduce contexts for serial computations.

Example: map

k [1]

f x (\ vl —>

map £ xs (\ v2 ->
k (vli:v2)))

map f [] k
map £ (x:xs) k



13 Ml UNIVERSITYoTARTU

Continuations

CPS
In CPS all non-trivial computations are explicitly
revealed and serialized.
e Simplifies semantics and translation
e Instead of using Higher-order function, data struc-
tures can be used as continuations. (defunktsion-
aliseerimine)
e Continuations can be used (in a non-standard way)
to model control structures.



14

Ml UNIVERSITYoTARTU

CPS example: exceptions

Finding the product (ver. 1)

1
X * prod xs

prod []
prod (x:xs)



14 @l UNIVERSITYoTARTU

CPS example: exceptions

Finding the product (ver. 1)

prod [] = 1

prod (x:xs) = x * prod xs

NB!

If the list contains 0, the result is 0!
prod [1,2,3,0,1,2,3,4,5,6,7] ==> 0
NB!

The used definition still multiplies all list elements.



15

Ml UNIVERSITYoTARTU

CPS example: exceptions

Finding the product (ver. 2)

1
0
x * prod xs

prod []
prod (0:xs)
prod (x:xs)



15 Ml UNIVERSITYoTARTU

CPS example: exceptions

Finding the product (ver. 2)

1
0
x * prod xs

prod []
prod (0:xs)
prod (x:xs)

NB!
Traverses the list until the first zero.

NB!
Multiplies as many elements as it traverses.



16 @l UNIVERSITYoTARTU

CPS example: exceptions

Continuation version

prod xs = prodC xs id where
prodC T[] k k1
prodC (0:xs) k 0
prodC (x:xs) k prodC xs (\ v => k (x*v))



16 i UNIVERSITYoTARTU

CPS example: exceptions

Continuation version

prod xs = prodC xs id where
prodC [] k k 1
prodC (0:xs) k 0
prodC (x:xs) k prodC xs (\ v => k (x*v))

NB!
Traverses the list until the first zero.

NB!
No multiplication if it finds a zero!



17 @l UNIVERSITYoTARTU

CPS Example: multiple results

Compute list length and sum of the elements

sumLength = sumLen 0 0 where
sumLen s 1 [] (s, 1)
sumLen s 1 (x:Xx8) sumLen (s+x) (1+1) xs



17 @l UNIVERSITYoTARTU

CPS Example: multiple results

Compute list length and sum of the elements

sumLength = sumlLen 0 0 where
sumLen s 1 [] (s, 1)
sumLen s 1 (x:xs) sumLen (s+x) (1+1) xs

NB!
Pairs are constructed to be immediately destructed!

average xs = let (s,1l) = sumlLength xs
in s ‘div' 1



18

Ml UNIVERSITYoTARTU

CPS Example: multiple results

Continuation version

sumLengthC xs k = sumLen 0 0 xs where

sumLen s 1 [] = k s 1
sumLen s 1 (x:x8) = sumlLen (s+x) (1+1) xs

averageC xs = sumLengthC xs (\ s 1 => s ‘div' 1)



18 @l UNIVERSITYoTARTU

CPS Example: multiple results

Continuation version
sumLengthC xs k = sumLen 0 0 xs where

sumLen s 1 [] = k s 1
sumLen s 1 (x:Xx8) = sumlLen (s+x) (1+1) xs
averageC xs = sumLengthC xs (\ s 1 => s ‘div' 1)

NB!
Results are passed on directly.



19 M UNIVERSITYoTARTU

Continuations using data structures

Factorial in CPS
factC n = factCPS n id where
factCPS 0 k = k 1
factCPS n k = factCPS (n-1)
(\ v. —> k (n*v))



20 @l UNIVERSITYoTARTU

Continuations using data structures

Representation Independent CPS

factC n = factCPS n mkFinalCont where
factCPsS 0O k = applyCont k 1
factCPS n k = factCPS (n=1)
(mkNewCont k n)



20

Continuations using data structures

Representation Independent CPS

factC n = factCPS n mkFinalCont where
factCps 0 k applyCont k 1
factCPS n k factCPS (n=1)
(mkNewCont k n)

Using functions

mkFinalCont = id
mkNewCont k n = \ v => applyCont k (n*v)
applyCont k v = k v

Ml UNIVERSITYoTARTU



21 @l UNIVERSITYoTARTU

Continuations using data structures

Representation using data structures

data FactCont = FinalFactCont
| NewFactCont Int FactCont

mkFinalCont = FinalFactCont

mkNewCont k n = NewFactCont n k

applyCont k v = case k of
FinalFactCont -> v

NewFactCont n k -> applyCont k (n*v)



21

Ml UNIVERSITYoTARTU

Continuations using data structures

Representation using data structures

data FactCont =
I

mkFinalCont
mkNewCont k n =
applyCont k v =

FinalFactCont
NewFactCont Int FactCont

FinalFactCont
NewFactCont n k
case k of

FinalFactCont -> v
NewFactCont n k -> applyCont k (n*v)

NB!

Type FactCont is isomorphic to lists of ints!



22

Ml UNIVERSITYoTARTU

Continuations using data structures

Representation using data structures

[]

n : k

foldl (\ v n => n*v) v k

mkFinalCont
mkNewCont k n
applyCont k v



22 @l UNIVERSITYoTARTU

Continuations using data structures

Representation using data structures

[]

n : k

foldl (\ v n => n*v) v k

mkFinalCont
mkNewCont k n
applyCont k v

NB!
Substitute back into factc definition ...

CPS factorial — using lists

factC n = factCPS n [] where
factCPS 0 k = foldl (\ vn —-> n*v) 1 k
factCPS n k = factCPS (n-1) (n:k)



23

Ml UNIVERSITYoTARTU

Example

getCharCPS ::
putCharCPS ::

Continuations for I0

(Char => a) =-> a
Char => a => a



23

Ml UNIVERSITYoTARTU

Continuations for I0

Example

getCharCPS :: (Char -> a) —> a
putCharCPS :: Char -> a -> a

Converting 10 to CPS
f :: a ->1I0Db

4

fCPS :: a => (b => ¢) =-> c



