Recursive Factorial

```
factR 0 = 1
factR n = n * factR (n-1)
```

Recursive Factorial

```
factR 0 = 1
factR n = n * factR (n-1)
```

NB!

```
factR 4 ==> 4 * factR 3
```

Recursive Factorial

```
factR 0 = 1
factR n = n * factR (n-1)
```

NB!

```
factR 4 ==> 4 * factR 3
==> 4 * (3 * factR 2)
```

Recursive Factorial

```
factR 0 = 1
factR n = n * factR (n-1)
```

NB!

```
factR 4 ==> 4 * factR 3
==> 4 * (3 * factR 2)
==> 4 * (3 * (2 * factR 1))
```

Recursive Factorial

```
factR 0 = 1
factR n = n * factR (n-1)
```

NB!

```
factR 4 ==> 4 * factR 3
==> 4 * (3 * factR 2)
==> 4 * (3 * (2 * factR 1))
==> 4 * (3 * (2 * (1 * factR 0)))
```

Recursive Factorial

```
factR 0 = 1
factR n = n * factR (n-1)
```

NB!

```
factR 4 ==> 4 * factR 3
==> 4 * (3 * factR 2)
==> 4 * (3 * (2 * factR 1))
==> 4 * (3 * (2 * (1 * factR 0)))
==> 4 * (3 * (2 * (1 * 1)))
```

Recursive Factorial

```
factR 0 = 1
factR n = n * factR (n-1)
```

NB!

```
factR 4 ==> 4 * factR 3
==> 4 * (3 * factR 2)
==> 4 * (3 * (2 * factR 1))
==> 4 * (3 * (2 * (1 * factR 0)))
==> 4 * (3 * (2 * (1 * 1)))
==> 24
```

Tail-recursive factorial

```
factA = factAcc 1
    where factAcc a 0 = a
        factAcc a n = factAcc (a*n) (n-1)
```

Tail-recursive factorial

```
factA = factAcc 1
    where factAcc a 0 = a
        factAcc a n = factAcc (a*n) (n-1)
```

NB!

All calls in the same context:

```
factA 4 ==> factAcc 1 4
==> factAcc 4 3
==> factAcc 12 2
==> factAcc 24 1
==> factAcc 24 0
==> 24
```

Iterative control behavior

Function has

- iterative behavior if it uses O(1) memory,
- iterative control behavior if it uses O(1) of memory to store contexts,
- recursive control behavior, if does not have iterative control behavior.

Example

```
reverse = revApp []
  where revApp as [] = as
  revApp as (x:xs) = revApp (x:as) xs
```

Question

When does a function have iterative control behavior?

Question

When does a function have iterative control behavior?

NB!

Hard question!

Question

When does a function have iterative control behavior?

NB!

Hard question!

Example

Tail position/recursion/form

Subexpression in tail position, evaluating it immediately gives value to the whole expression.

```
if expr0 then expr1 else expr2
let x1 = expr1 in expr0
```

• Function application in tail position is a tail call.

Tail position/recursion/form

• Subexpression in tail position, evaluating it immediately gives value to the whole expression.

```
if expr0 then expr1 else expr2
let x1 = expr1 in expr0
```

- Function application in tail position is a tail call.
- Expression is in tail form if all non-tail-position subexpressions are "simple".

Tail position/recursion/form

Subexpression in tail position, evaluating it immediately gives value to the whole expression.

```
if expr0 then expr1 else expr2
let x1 = expr1 in expr0
```

- Function application in tail position is a tail call.
- Expression is in tail form if all non-tail-position subexpressions are "simple".

NB!

Tail form expressions have iterative control behavior!

- factR 4 is computed as 4 * (3 * (2 * factR 1))
- We can say that, factR 1 is computed in context
 4 * (3 * (2 * □))

- factR 4 is computed as 4 * (3 * (2 * factR 1))
- We can say that, factR 1 is computed in context
 4 * (3 * (2 * □))
- Context are an expressions with one hole;
 they can be expressed as lambda-terms:
 \(\nu \rightarrow \rightarrow 4 \rightarrow (3 \rightarrow (2 \rightarrow \nu))\)

- factR 4 is computed as 4 * (3 * (2 * factR 1))
- We can say that, factR 1 is computed in context
 4 * (3 * (2 * □))
- Context are an expressions with one hole;
 they can be expressed as lambda-terms:
 v -> 4 * (3 * (2 * v))
- Such lambda-terms are called continuations.

- factR 4 is computed as 4 * (3 * (2 * factR 1))
- We can say that, factR 1 is computed in context
 4 * (3 * (2 * □))
- Context are an expressions with one hole;
 they can be expressed as lambda-terms:
 v -> 4 * (3 * (2 * v))
- Such lambda-terms are called continuations.
- All computations of factR can be represented as
 k (factR n) where k is a continuation.

- factR 4 is computed as 4 * (3 * (2 * factR 1))
- We can say that, factR 1 is computed in context
 4 * (3 * (2 * □))
- Context are an expressions with one hole;
 they can be expressed as lambda-terms:
 v -> 4 * (3 * (2 * v))
- Such lambda-terms are called continuations.
- All computations of factR can be represented as
 k (factR n) where k is a continuation.
- CPS = Continuation Passing Style

Factorial in CPS

```
factCPS 0 k = k 1
factCPS n k = factCPS (n-1) (\ v -> k (n*v))
```

Factorial in CPS

```
factCPS 0 k = k 1
factCPS n k = factCPS (n-1) (\ v -> k (n*v))
```

Claim

For every k and n,

```
k (factR n) === factCPS n k
```

Factorial in CPS

```
factCPS 0 k = k 1
factCPS n k = factCPS (n-1) (\ v \rightarrow k (n*v))
```

Claim

For every k and n,

```
k (factR n) === factCPS n k
```

```
Proof for (n = 0)
```

```
k (factR 0) === k 1 === factCPS 0 k
```

```
Factorial in CPS
```

```
factCPS 0 k = k 1
factCPS n k = factCPS (n-1) (\ v -> k (n*v))
```

Claim

For every k and n,

```
k (factR n) === factCPS n k
```

Proof for (n > 0)

```
k (factR n) === k (n * factR (n-1))
=== (\ v -> k (n*v)) (factR (n-1))
=== factCPS (n-1) (\ v -> k (n*v))
=== factCPS n k
```

Jätkud

NB!

factCPS has iterative control behavior

```
factCPS 4 k

==> factCPS 3 (\ v -> k (4*v))

==> factCPS 2 (\ v -> k (4*(3*v)))

==> factCPS 1 (\ v -> k (4*(3*(2*v))))

==> factCPS 0 (\ v -> k (4*(3*(2*(1*v)))))

==> k (4*(3*(2*(1*1))))

==> k 24
```

Jätkud

NB!

factCPS has iterative control behavior

```
factCPS 4 k

==> factCPS 3 (\ v -> k (4*v))

==> factCPS 2 (\ v -> k (4*(3*v)))

==> factCPS 1 (\ v -> k (4*(3*(2*v))))

==> factCPS 0 (\ v -> k (4*(3*(2*(1*v)))))

==> k (4*(3*(2*(1*1))))

==> k 24
```

NB!

We get the normal "context independent" factorial if we take id as the continuation.

```
factC n = factCPS n id
```

Recursive length

```
length [] = 0
length (x:xs) = 1 + length xs
```

length in CPS

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

Example: S combinator

```
\mathbf{f} x (g x)
```

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

Example: S combinator

```
let v1 = f x
v2 = g x
v3 = v1 v2
in v3
```

 $\mathbf{f} \times (q \times)$

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

Example: S combinator

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

Example: Fibonacci

```
fibo 0 = 0

fibo 1 = 1

fibo n = fibo (n-1) + fibo (n-2)
```

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

Example: Fibonacci

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

Example: Fibonacci

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

Example: map

```
map f [] = []
map f (x:xs) = f x : map f xs
```

Continuations

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

Example: map

Continuations

CPS transformation

How to transform expressions into CPS:

- Identification of non-trivial intermediate results
- Serialize their computation.
- Introduce contexts for serial computations.

Example: map

Continuations

CPS

In CPS all non-trivial computations are explicitly revealed and serialized.

- Simplifies semantics and translation
- Instead of using Higher-order function, data structures can be used as continuations. (defunktsionaliseerimine)
- Continuations can be used (in a non-standard way) to model control structures.

Finding the product (ver. 1)

Finding the product (ver. 1)

NB!

If the list contains 0, the result is 0!

```
prod [1,2,3,0,1,2,3,4,5,6,7] ==> 0
```

NB!

The used definition still multiplies all list elements.

Finding the product (ver. 2)

```
prod [] = 1
prod (0:xs) = 0
prod (x:xs) = x * prod xs
```

Finding the product (ver. 2)

```
prod [] = 1
prod (0:xs) = 0
prod (x:xs) = x * prod xs
```

NB!

Traverses the list until the first zero.

NB!

Multiplies as many elements as it traverses.

Continuation version

Continuation version

NB!

Traverses the list until the first zero.

NB!

No multiplication if it finds a zero!

Compute list length and sum of the elements

```
sumLength = sumLen 0 0 where
  sumLen s l [] = (s,l)
  sumLen s l (x:xs) = sumLen (s+x) (l+1) xs
```

Compute list length and sum of the elements

```
sumLength = sumLen 0 0wheresumLen s l []= (s,l)sumLen s l (x:xs)= sumLen (s+x) (l+1) xs
```

NB!

Pairs are constructed to be immediately destructed!

```
average xs = let (s,1) = sumLength xs
    in s 'div' 1
```

Continuation version

```
sumLengthC xs k = sumLen 0 0 xs where
   sumLen s l [] = k s l
   sumLen s l (x:xs) = sumLen (s+x) (l+1) xs

averageC xs = sumLengthC xs (\ s l -> s 'div' l)
```

Continuation version

```
sumLengthC xs k = sumLen 0 0 xs where
    sumLen s l [] = k s l
    sumLen s l (x:xs) = sumLen (s+x) (l+1) xs

averageC xs = sumLengthC xs (\ s l -> s 'div' l)
```

NB!

Results are passed on directly.

Factorial in CPS

Representation Independent CPS

Representation Independent CPS

Using functions

```
mkFinalCont = id
mkNewCont k n = \ v -> applyCont k (n*v)
applyCont k v = k v
```

Representation using data structures

Representation using data structures

NB!

Type FactCont is isomorphic to lists of ints!

Representation using data structures

```
mkFinalCont = []
mkNewCont k n = n : k
applyCont k v = foldl (\ v n -> n*v) v k
```

Representation using data structures

```
mkFinalCont = []
mkNewCont k n = n : k
applyCont k v = foldl (\ v n -> n*v) v k
```

NB!

Substitute back into factC definition ...

CPS factorial — using lists

```
factC n = factCPS n [] where
  factCPS 0 k = foldl (\ v n -> n*v) 1 k
  factCPS n k = factCPS (n-1) (n:k)
```

Continuations for IO

Example

```
getCharCPS :: (Char -> a) -> a
putCharCPS :: Char -> a -> a
```

Continuations for IO

Example

```
getCharCPS :: (Char -> a) -> a
putCharCPS :: Char -> a -> a
```

Converting IO to CPS