

Rational Unified Process
for Systems Engineering
RUP SE1.1

A Rational Software White Paper
TP 165A, 5/02

Table of Contents

INTRODUCTION ...1

BUSINESS MODELING ..3

SYSTEM ARCHITECTURE ...4

SYSTEM ARCHITECTURE DIAGRAMS ..5

LOCALITY..8

RELATION TO 4+1 ARCHITECTURE MODEL ..11

REQUIREMENTS ANALYSIS ...11

DERIVED REQUIREMENTS ...11

USE-CASE FLOWDOWN ...12

SUPPLEMENTARY REQUIREMENTS FLOWDOWN..20

COMPONENT SPECIFICATION ..20

SYSTEM DEVELOPMENT...22
PROJECT ORGANIZATION ...22
CONCURRENT DESIGN AND IMPLEMENTATION...24
ITERATIVE DEVELOPMENT, INTEGRATION, AND TEST...24

CONCLUSION ..25

The Rational Unified Process for Systems Engineering 1.1

Introduction

A system provides a set of services that are used by an enterprise to carry out a business purpose 1. System components
typically consist of hardware, software, data, and workers. Systems are specified by the services they provide along with
other non-behavioral requirements such as reliability or cost of ownership. A system’s design consists of specifying
components, their attributes, and their relationships. The problem of systems engineering is to design and implement a
system that meets the needs of system stakeholders, including:

• Users who are concerned with functionality and performance

• Owners who are concerned with cost of deployment and ownership

• Investors who are concerned with competitive advantage

Analysis of stakeholder needs results in a variety of system requirements, including:

• Function – support the system provides to the users and other systems to enable them to carry out their role in
meeting the business need. Functional requirements should include the behavior the system exhibits as it
provides the functionality

• Usability – ease of access to system function

• Maintainability – ease of discovery, isolation, and removal of defects

• Extendability – ease of adding function

• Scalability – ability to support number of users, data items

• Reliability – probability of a correct system response, possibly including safety concerns

• Performance – expected response time of the system to a step in a use case under capacity loads

• Capacity – expected number of users, data items

• Supportability – ease of service in the field, including acceptable down time

• Manufacture, deployment cost

• Operational cost

Analysis of stakeholder needs results in a variety of system requirements, including:
Depending on circumstances, there might be other system requirements such as logistics support, security, and remote
training needs.

Some of these requirements are familiar to software development. Some cannot be addressed without hardware, software,
and worker considerations. Systems design requires that all three types of components be specified concurrently.

A systems developer may want to maintain a number of system configurations. These systems configurations would have
common architectures but different hardware or software deployments that meet different requirements tradeoffs such as
cost/performance.

The system problem then differs from the software-only problem in that systems engineering addresses a broader set of
requirements than are normally addressed in software efforts. Even so, it is important to note that almost all software
development efforts contain some elements of the system problem. Examples of software developments that have system

1 Blanchard and Fabrycky, Systems Engineering and Analysis (Third Edition), Prentice Hall, 1998.

1

The Rational Unified Process for Systems Engineering 1.1

concerns include web-based applications, business applications, information technology integrations, and embedded
software, as well as defense and intelligence systems.

This paper introduces a derivative of the Rational Unified Process, or RUP,1 that addresses the problem of system
specification, analysis, design, and development.

As a derivative of RUP, RUP SE consists of new artifacts as well as modifications of RUP disciplines and roles to support
the creation of those artifacts.

This paper provides an overview of:

• RUP principles that are maintained in RUP SE

• RUP SE requirements models

• The UML-based artifacts for system architecture modeling

• The workflows for creating the artifacts

RUP SE is delivered as a deployment package providing assistance to customers wishing to deploy RUP in Systems
Engineering projects. Contact the local Rational account team for more information.

Figure 1: The Rational Unified Process

1 Kruchten, Philippe, The Rational Unified Process, An Introduction (Second Edition), Addison Wesley, 2000.

2

The Rational Unified Process for Systems Engineering 1.1

• Lifecycle – the four phases based on the team’s evolving understanding and development of the project details

• Disciplines – the main focus areas of effort carried out by the team in developing the system. While the project
team has systems engineers as members, there is no separate systems engineering discipline. Rather, the
systems engineers participate in RUP disciplines.

• Iterations – RUP SE uses a series of system builds based on risk identification and mitigation. A key feature
that RUP SE inherits from RUP is a rejection of waterfall development and the use of iterated development.

• Use of UML for visual modeling – RUP SE includes a set of UML artifacts suitable for system architecture and
specification.

RUP is shown in Figure 1. RUP SE follows RUP in these ways:
One key feature of RUP and RUP SE is that the development team consists of workers such as architects, developers, testers,
and others who concurrently evolve their particular artifacts. These workers do not hand off work to each other using a serial
approach. They work together throughout the effort, evolving levels of detail to address their areas of concern. In RUP SE,
this idea is carried forward, adding systems engineers to the mix. Their area of concern is the design and specification of the
hardware and system deployment to ensure that the overall system requirements are addressed.

In addition to adequacy of the software architecture to meet functional requirements, software architects are generally
concerned with:

• Usability – ease of accessing the system functionality

• Maintainability – ease of isolating and removing defects without introducing others

• Extendibility – ease of adding new functionality to an existing software product

Besides functionality, systems engineers or designers usually address the following types of concerns:

• Availability/reliability – the likelihood that the system will be available and respond correctly to input

• Performance – responsiveness of the system to some input

• Capacity – the number of items such as users or data records that the system can handle

• Scalability – the ease of increasing capacity

• Supportability – the ease of providing support in the field. Supportability can include installing the system and
applying patches.

Other domain-specific systems engineering concerns include security, ease of training, and logistics support.
 RUP SE provides the artifacts for addressing these concerns and the workflows for evolving their detailed specification.
Business Modeling

Following Blanchard and Fabrycki’s definition, it is important when architecting a system to understand the business purpose
it serves. It is not surprising that understanding and modeling the business that will use the system is crucial to RUP SE or
any other systems engineering process. The system requirements rely on a solid understanding of the business activities.

RUP SE does not include changes to the business modeling discipline. However, for the business model to provide adequate
information to support the determination of system requirements, it should include business use cases1 with the associated

1 Several good texts provide more information on business use cases. See Writing Effective Use Cases by Alistair Cockburn (Addison
Wesley, 2001) or Enterprise Modeling with UML by Chris Marshall (Addison Wesley, 2000).

3

The Rational Unified Process for Systems Engineering 1.1

identification of business actors and flow of events. These flows of events can be swimlane activity diagrams that show how
the entities of the business collaborate to carry out the use case.

System Architecture

There are two dimensions to system architecture:

• Viewpoint – the context for addressing a limited set of quality concerns

• Model level – UML models that capture various levels of design specificity

The different viewpoints allow for separation of concerns. Table 1 outlines viewpoints and associated concerns. The
viewpoints align with those found in ISO standard ISO/IEC 10746-1: Reference Model – Open Distributed Processing (RM-
ODP)1. The framework provides a set of viewpoints as expressed in Table 1.

Viewpoint Expresses Concern

Enterprise Relationship of the enterprise resources
and the system

Worker activities,
Installation and logistic support

Computation Logical decomposition of the system as a
coherent set of UML subsystems that
collaborate to provide the system behavior

System functionality is adequate to
realize use cases.
System is extendible and maintainable.
Internal reuse
Good cohesion and connectivity

Engineering Distribution of resources to support
functionalit

System physical characteristics are
adequate to host functionality and meet
supplementary requirements.

Information Data managed by the system System has sufficient capacity to store
data.
System has sufficient throughput to
provide timely access to the data.

Process Threads of control, which carry out the
computation elements

System has sufficient partitioning of
processing to support concurrency and
reliability needs.

Table 1: Common System Architecture Viewpoints

The viewpoints in Table 1 are some of the most common for software-intensive systems. Many system architectures also
require additional, domain-specific viewpoints. Examples include safety, security, and mechanical viewpoints.
Viewpoints represent different areas of concern that must be addressed in the system architecture and design. If there are
system stakeholders or experts whose concerns are important to the overall architecture, there is likely to be a need for a set
of viewpoint artifacts to capture their design decisions.

It is important to build a system architecture team with staff who are competent to look after the various viewpoints. The
team might consist of business analysts and users who take primary responsibility for the enterprise viewpoint, software
architects who attend to the computation viewpoint, and engineers who concern themselves with the engineering viewpoint,
as well as experts on domain-specific viewpoints.

1 Putman, Janis, Architecting with RM-ODP, Prentice Hall, 2001.

4

The Rational Unified Process for Systems Engineering 1.1

In addition to viewpoints, a system architecture exercise requires levels of specification. As the architecture is developed, it
evolves from a general, abstract specification to a more specific, detailed specification. Following the Rational Unified
Process, there are four architectural levels, which are described in Table 2.

Model Level Expresses
Context The system and its actors.

Analysis Initial partitioning of the system to establish the conceptual approach
Design Realization of the analysis model to hardware, software, and people
Implementation Realization of the design model into specific configurations

Table 2: Architectural Levels

Through these levels, the design goes from the abstract to the physical. The context model captures all of the external entities
(actors) that interact with the system. These actors may be external to the enterprise that deploys the system or may be
internal to the enterprise. In both cases, the actors may be workers or other systems. At the analysis level, the partitions do
not reflect choices of hardware, software, and people. Instead, they reflect design approaches for dividing up what the system
needs to do and how the effort should be distributed. At the design level, the decisions are made as to the sorts of hardware
and software components and worker roles that are needed. At the implementation level, specific choices of hardware and
software technology are made to implement the design. For example, at the design level, a data server may be specified. At
the implementation level, the decision is made to use a specific platform running a specific database application.

System Architecture Diagrams

The system architecture then is captured in a set of diagrams that express the architecture from various viewpoints and levels.
As shown in Table 3, there is not a diagram for every viewpoint-level combination. At the implementation level, a single
diagram captures the realization of hardware and software components for each system configuration.

5

The Rational Unified Process for Systems Engineering 1.1

Viewpoints

Models Enterprise Computation Information Engineering Process

Context UML
organization
model

System context
diagram

Enterprise object
model

Enterprise data
model

Enterprise locality
(Distribution of enterprise
resources)

Analysis Subsystem
diagram

System data
model

System locality diagram System
Process
diagram

Design Business
Worker Survey

Subsystem class
model

Software
component model

System data
schema

Descriptor node diagram Detailed
process

Implementation Worker
Instructions

Configurations: deployment diagram with software system components

Table 3: Static System Architecture Views

Almost all the artifacts specified in Table 3 are standard UML diagrams. For example, in the analysis level of the
computational viewpoint, the system is decomposed in UML as subsystems that collaborate to meet user requirements. In
RUP SE, subsystems are defined as in The Unified Modeling Language Reference Manual1. These subsystems, in turn, are
decomposed into either subsystems or classes. The design level of the computational view is the detailed class model.
Figure 2 is a subsystem diagram for a click-and-mortar retail system.

The Business Worker Survey is a current RUP artifact. Note that the worker instructions can be derived using the flow-down
technique discussed below

1 Rumbaugh, James, Grady Booch and Ivar Jacobson, The Unified Modeling Language Reference Manual, Addison Wesley, 1999, page
458.

6

The Rational Unified Process for Systems Engineering 1.1

Figure 2: Example Subsystem Model

The process model is also standard UML1. Figure 3 shows an example.

The domain-specific viewpoints should also have artifacts in place for one or more of the levels. The set of project artifacts,
within this framework, should be a part of the project development case.

7

1 Booch, Grady, James Rumbaugh and Ivar Jacobson, The Unified Modeling Language User Guide, Addison Wesley, 1999, page 455.

The Rational Unified Process for Systems Engineering 1.1

Figure 3: Sample Process Model

Locality

UML support for the engineering viewpoint (Table 1) is more problematic. UML does provide design level artifacts to
capture engineering decisions in the descriptor version of the deployment diagram. The deployment diagrams are meant to
capture configurations, actual choices of hardware and software, and to provide a basis for system analysis and design,
serving as an implementation level in the technology viewpoint. The UML Reference Manual describes a deployment
diagram as “a diagram that shows the configuration of run-time processing nodes and component instances and objects that
live in them.”1

As shown in Table 3, RUP SE uses an analysis level, engineering viewpoint diagram called Locality. In the engineering
viewpoint, the system is decomposed into elements by which host the processing. Locality diagrams are the most abstract
expression of this decomposition. They express notionally where processing occurs without tying the processing locality to a
specific geographic location or even the realization of the processing capability as kinds of hardware. That level of detail is
captured in the design model. For example, a locality view might show that the system enables processing on a space satellite
and a ground station. The processing hosted at each locality is an important design consideration. Figures 4 and 5 provide
other examples.

The locality diagrams show the initial partitioning, how the system processing elements are distributed, and how they are
connected. Locality of computing is an issue when considering primarily non-functional requirements. For many systems
engineers, this is “the architecture.” Sometimes the elements of this view are nodes.

8

1 Rumbaugh et al., Op. cit., page 252ff.

The Rational Unified Process for Systems Engineering 1.1

Locality diagrams consist of two elements:

• Localities – a collection of computing and storage resources that can host processing

• Connections – information paths between the localities

The semantics of the locality diagrams are similar to those of deployment diagrams. Localities are stereotyped UML nodes.
Recall that UML nodes are classifiers that have processing ability and memory1. As such, they may be stereotyped and
tagged values may be applied. Localities are stereotyped nodes. Their icon is a rounded cube (see Figures 2 and 3).

Localities may be realized as a hardware platform or a group of workers communicating via fax. They have characteristics
specified by tagged values.

Localities have two sets of tags:

• Quality: reliability, availability, performance, capacity, and so on

• Management: cost, technical risk

These locality characteristics form a nominal set. Each development team should determine the best set of characteristics for
their project. This determination could be a development case specification activity.

Locality characteristics are set to meet their derived requirements. There is a subtle difference between characteristics and
requirements. For example, for good engineering reasons, you might specify a locality that exceeds requirements.

A locality is notionally where processing occurs. What processing occurs at a locality is specified by the subsystem use cases
hosted on that locality, determined by the flowdown process discussed below. Each locality is a candidate for providing or
hosting a set of logical subsystem use cases. Localities can participate in dialogs in much the same way as logical
components.

Localities are related by connections, which are the mechanisms for information passing. Connections are stereotyped
associations with tagged values, again capturing characteristics. Nominal connection tags are:

• Throughput: data rate, supported protocols

• Management: cost, technical risk

 In the design model, localities may be realized as one or more processor nodes, or more than one locality may be realized as
a single node.

Figures 4 and 5 are locality diagrams that document different engineering approaches to a click-and-mortar enterprise. The
enterprise has a number of retail stores, central warehouses, and a web presence. In the first solution (Figure 4), there is
processing capability in the stores. In the second solution (Figure 5), all the terminals are connected directly to a central
office processor. In each case, characteristics can be set of the localities that are required to realize the design. These days,
most people would agree that Figure 4 is a better design. However, the solution in Figure 5 may be superior in a few years.

1 Rumbaugh et al., Op. cit., page 358.

9

The Rational Unified Process for Systems Engineering 1.1

Figure 4: Locality Diagram, Example 1

Figure 5: Locality Diagram, Example 2

10

The Rational Unified Process for Systems Engineering 1.1

Relation to 4+1 Architecture Model
The viewpoints and models, along with the use of derived requirements discussed in the following section, are consistent
with the 4+1 architecture framework (Figure 6) and model levels currently documented in RUP1. In particular, the
engineering viewpoint is a generalization of the 4+1 deployment view, and the computation viewpoint is a generalization of
the 4+1 view.

tion

nt

stem Engineering
stem Topology
livery, Installation
mmunication

ogrammers
ftware Management

tion

nt

tion

nt

tion

nt

stem Engineering
stem Topology
livery, Installation
mmunication

ogrammers
ftware Management

Requi

Followi

• Use
and
syst

• Sup

Derive

In RUP
requirem
architec

1 Kruchte

Implementa
View

Logical
View

Deployme
View

Process
View

Use - Case
View

System Integrators
Performance
Scalability
Throughput

Sy
Sy
De
Co

Pr
So

End User
Functionality

Analysts/Testers
Behavior

Implementa
View

Logical
View

Deployme
View

Process
View

Use - Case
View

Implementa
View

Logical
View

Deployme
View

Process
View

Implementa
View

Logical
View

Deployme
View

Process
View

Use Case
View

System Integrators
Performance
Scalability
Throughput

Sy
Sy
De
Co

Pr
So

End User
Functionality

Analysts/Testers
Behavior

Figure 6: RUP 4+1 Architecture Framework
rements Analysis

ng UML and RUP, there are two types of system requirements in RUP SE:

 cases – services provided by the system to its actors. Use cases capture the system functional requirements
 may have associated performance requirements. An actor is any external entity that interacts with the
em. Typically, actors are users or other systems.

plementary – nonfunctional requirements such as reliability and capacity

d Requirements

SE, a distinction is made between allocated and derived requirements. A requirement is allocated if a system
ent is assigned to an architectural element. A requirement is derived if it is determined by studying how the

tural element collaborates with others to meet a system requirement.

11

n, Op. cit.

The Rational Unified Process for Systems Engineering 1.1

The use of derived requirements for subsystems collaborating to carry out use cases is called logical decomposition.
Similarly, determining subsystem by allocation is functional decomposition. Generally, logical decomposition is essential for
quality systems.

One aspect of the systems problem is to specify a set of system use cases and supplementary requirements that, if met, would
provide for a system that meets its business purpose. It follows that the system requirements are derived from an
understanding of the business model. The system architectural elements in the analysis model are subsystems, localities, and
processes, as described earlier. In the requirements analysis discipline, requirements for each of these types of elements are
determined.

There is a process pattern for deriving requirements for architectural elements:

• Determine the requirements for a given model.

• Decompose that model into elements, assigning roles and responsibilities to the elements

• Study how the elements collaborate to carry out the model requirements. This usually involves some form of
collaboration diagram.

• Synthesize the analysis of the collaboration to determine the requirements for the elements.

This pattern is well known1 2. It is particularly interesting that Friedenthal et al. in their Object Oriented System Engineering
Method (OOSEM) also adopted the pattern3.

For example, with the business model in place, the RUP SE method for deriving system requirements is by partitioning the
enterprise into the system and its actors. Then how the system and its actors collaborate to meet the business requirements is
studied to determine the system requirements.

The following sections describe the application of this pattern for deriving requirements to the elements of the analysis
model. The same method, with little modification, can be applied to determine system requirements from business
requirements.

Use-Case Flowdown
Use-case flow down is the activity for deriving functional requirements for the analysis elements. The outcomes of the
activity are:

• Use-case survey for subsystems

• Survey of hosted subsystem use cases for localities

• Survey of realized subsystem use cases for processes

The activity begins with the standard RUP activity of choosing an architecturally significantly set of use cases. For each
chosen use case, the flow of events is developed. This is the description of the interactions between the system actors and the
system. The system responses are black box; the descriptions make no reference to the architectural elements.
Table 4 shows an example flow of events for making a sale in a retail store. Black box steps have associated performance
requirements.

1 Cockburn, Op. cit.
2 Putman, Op. cit.
3 Friedenthal, Sanford, et al., “Adapting UML for an Object-Oriented Systems Engineering Method,” Proceedings of the 2000 INCOSE
Symposium.

12

The Rational Unified Process for Systems Engineering 1.1

Ste
p

Actor Action

Black Box

Black Box Budgeted
Requirements

1 This use case begins when the
Clerk pushes the New Sale
button.

The system brings up new sale clerk and
customers screens and enables the
scanner.

Total response time is
0.5 second.

2 The Clerk scans the items and
enters the quantity on the
keyboard.

For each scanned item, the system
displays the name and price.

Total response time is
0.5 second.

3 The Clerk pushes the Total
button.

The system computes and displays on
the screen the total of the item prices
and the sales taxes.

Total response time is
0.5 second.

This use case ends when the system
validates the credit card, and, if it is
valid,
Prints out a receipt,
Updates the inventory,
Sends the transaction to accounting,
And clears the terminal.

Total response time is
0.5 second.

4 The Clerk swipes the credit
card.

If the credit card is not valid, the system
Returns a rejected message.

Total response time is
30 seconds.

Table 4: Example Black Box Flow of Events

The next steps are also standard RUP: Apply OOAD to determine the subsystem and process models. Table 4 is a flow for a
use case for a click-and-mortar retail system. In this example, following RUP, the subsystem and process diagrams for the
system are shown in Figures 2 and 3.

Note that the response time for the credit card check is 30 seconds, compared to 0.5 seconds for the other system responses.
A common phenomenon in the system design is that the system may have an initial global requirement that cannot be met in
all instances. In this case, the overall requirement that the system respond to clerk actions within 0.5 seconds cannot be met
during the credit car validation. Hence the overall requirement needs modification. One advantage of the use case
description is that it provides a mechanism for discovering these inconsistencies so they can be addressed.

The next steps are a departure from the current RUP activity. With initial subsystem, locality, and process diagrams in place,
the team revisits the flow of events by specifying how the analysis elements participate in carrying out the use case. Because
this version of the flow of events refers to design elements, it is the white box view. Table 5 shows an example white box
flow for the example system using locality model 1 (Figure 5).

• Subsystem white box steps – how the subsystems collaborate to carry out each black box step

• White box budgeted requirements – budgeting of the black box performance requirements to the white box
steps

• Locality – which locality hosts each white box step

• Process – which process executes the white box step

The following information is added to each black step, as shown in Table 5:

Note if a white box step requires more than one hosting locality or executing process, the step should be broken into smaller
steps so that each step can be associated uniquely with a locality and a process.

13

The Rational Unified Process for Systems Engineering 1.1

Step

Actor
Action

Black
Box

Black Box
Budgeted
Requirements

Subsystem
White Box

White Box
Budgeted
Requirements

Locality

Process

The Point-
of-Sale
Interface
clears the
transaction,
brings up
new sales
screens, and
requests that
Order
Processing
start a sales
list.

1/6 second Point-of-
Sale
Terminal

Terminal

Order
Processing
starts a sales
list.

1/6 second Store
Processor

Sales
Processing

1 This use
case
begins
when the
Clerk
pushes the
New Sale
button

The
system
brings up
the a new
sale
Clerk
screen
and
Custome
r screen,
and
enables
the
scanner.

Total response
time is 0.5
second.

Point-of-
Sale
Interface
enables the
scanner.

1/6 second Point-of-
Sale
Terminal

Terminal

The Point-
of-Sale
Interface
captures the
bar from the
scanner.
The Point-
of-Sale
Interface
requests that
Order
Processing
retrieve the
name, price,
and taxable
status for
the scanned
data.

1/8 second Point-of-
Sale
Terminal

Terminal 2 The Clerk
scans the
items and
enters the
quantity
on the
keyboard.

For each
scanned
item, the
system
displays
the name
and
price.

Total response
time is 0.5
second.

Order
Processing
retrieves the
name, price,
and taxable
status for
the scanned
data.

1/8 second Store
Processor

Sales
Processing

14

The Rational Unified Process for Systems Engineering 1.1

Step

Actor
Action

Black
Box

Black Box
Budgeted
Requirements

Subsystem
White Box

White Box
Budgeted
Requirements

Locality

Process

Order
Processing
adds the
item to the
sales list.

1/8 second Store
Processor

Sales
Processing

The Point-
of-Sale
Interface
displays the
item name,
price,
quantity,
and item
total on the
clerk and
customer
screens.

1/8 second Point-of-
Sale
Terminal

Terminal

The Point-
of-Sale
Interface
requests that
Order
Processing
sum the
price and
compute the
taxes.

1/6 sec. Point-of-
Sale
Terminal

Terminal

Order
Processing
sums the
price and
computes
the taxes.

1/6 sec. Store
Processor

Sales
Processing

3 The Clerk
pushes the
Total
button.

The
system
computes
the total
price of
the items
and sales
taxes and
displays
the total
on the
screen.

Total response
time is 0.5
second.

The Point-
of-Sale
Interface
displays the
totals.

1/6 sec. Point-of-
Sale
Terminal

Terminal

15

The Rational Unified Process for Systems Engineering 1.1

Step

Actor
Action

Black
Box

Black Box
Budgeted
Requirements

Subsystem
White Box

White Box
Budgeted
Requirements

Locality

Process

The Point-
of-Sale
Interface
reads the
credit card
data and
request that
that Credit
Card
Services
validate the
sales

.5 sec Point-of-
Sale
Terminal

Sales
Processing

Credit
Card
Services
requests
validation
through
Credit
Card
Gateway
for the given
card number
and amount.

28 sec Store
Processor

Sales
Processing

If valid, the
Point-of-
Sale
Interface
prints a
receipt for
signature.

1 sec Point-of-
Sale
Terminal

Terminal

The Point-
of-Sale
Interface
requests that
Order
Processing
complete the
sale.

1/6 sec Point-of-
Sale
Terminal

Terminal

4 The Clerk
swipes the
customer
credit card

The
system
validates
the card,
prints
two
copies of
the credit
card
receipt
and
closes
out the
sale

30 seconds

Order
Processing
requests that
Inventory
Control
remove the
items from
inventory.

1/6 sec Store
Processor

Sales
Processing

16

The Rational Unified Process for Systems Engineering 1.1

Step

Actor
Action

Black
Box

Black Box
Budgeted
Requirements

Subsystem
White Box

White Box
Budgeted
Requirements

Locality

Process

Inventory
Control
removes the
items from
inventory.

1/6 sec Store
Processor

Store
Accounting

Order
Processing
requests that
Accounting
Services
post the
transaction.

1/6 sec Store
Processor

Sales
Processing

Accounting
Services
updates the
account.

1/6 sec. Central
Office
Processor

Central
Accounting

Table 5: Example White Box Flow of Events

The assignment of white box steps to subsystems, localities, and processes involves a set of design decisions. Each decision
adds detail to the role that each analysis element plays in the overall system design. In the process of making the
assignments, the team may decide to refactor the design, shifting responsibilities from one element to another within a given
diagram.

The next step is to determine the subsystem use cases. This is done by sorting the white box steps by subsystem. For each
subsystem, the white box steps are sorted and aggregated by similarity. The result of this process is a survey of use cases for
each subsystem. An example subsystem use case survey is shown in Table 6. It includes the hosting localities and executing
process for each subsystem use case.

Subsystem
Use Case

Description

Locality

Process

System
Use Case
Name

White Box Text

Enter a
sale

Order Processing starts a
sales list.

Initiate Sales
List

The subsystem
initiates a list of
items to be included
in the sales
transaction.

Store
Processor
e-commerce
server

Sales
processing

Enter
online
sale

The e-commerce interface
requests Order
Processing to instantiate
an ordering list and add
the item to the list.

Enter a
sale

The scanner data is sent to
Order Processing.
Order Processing
retrieves the name, price,
and taxable status from
Inventory and updates the
list.

Add Product
Data

The subsystem adds
an item to a sales list
when requested by
the actor.

Store
Processor
e-commerce
server

Sales
processing

Enter
online
sale

The E-Commerce
Interface requests Order
Processing to instantiate
an ordering list and add
the item to the list.

17

The Rational Unified Process for Systems Engineering 1.1

Compute
Total

… Store
Processor
e-commerce
server

Sales
processing

Enter a
sale

Order Processing sums
the price and computes
the taxes.

Check
Availability

 e-commerce
server

Sales
processing

Enter
online
sale

Order Processing
requests availability status
of all items from
Inventory Control.

Complete
Sale

 Store
Processor

Sales
processing

Enter a
sale

When Order Processing
receives a valid sale, it
returns Valid status to the
Point-of-Sale Interface.
Order Processing sends
a request to Inventory
Control to remove the
items from inventory.
Order Processing sends
the transaction to
Accounting Services for
posting.

Table 6: Example Subsystem Use Case Survey

Once the subsystem use-case surveys are created, the set of subsystem use cases may be sorted by locality or by process.

Sorting results:

The survey of hosted use cases for each locality expresses what computing occurs at the locality as well as the associated
performance requirements. This information provides input to the specification of the physical components that will be
deployed at the locality. Similarly, the survey of executed use cases for each process serves as input to the specification of
software components. Specification of the components is described more fully in the next section.

For various reasons, it is important to maintain traceability between the system and subsystem use cases. This traceability,
generally an m-to-n relationship, is best maintained in a requirements management tool such as RequisitePro.

The textual description in the white box flow of events can also be expressed as a set of sequence or collaboration diagrams.
These diagrams convey the traffic between analysis elements:

• For each locality, create a survey of hosted use cases

• For each process, create a survey of executed use case

Each diagram is a sequence diagram whose objects are proxy diagram elements. The messages are invocations of the
subsystem use cases. Figures 7 and 8 show the subsystem and locality interaction diagrams for the flow of events in Table 5.

18

The Rational Unified Process for Systems Engineering 1.1

: Sales

: Point of :
Processi

:
Managem

:
Servic

: Credit
Servic

New

Initiate Sales

Display

Send Scan

Get Product

Update

Scan

Display

Tot

Compute Total and

Display

Swipe

Complete

Validate

Remove

Record

Print

Clear

Figure 7: Example Subsystem Interaction Diagram

Figure 7 provides insight into the coupling and cohesion of the subsystems. This insight may used to refactor the subsystem
design. For example, if there is a lot of traffic between a pair of subsystems, it may make sense to combine them.

19

The Rational Unified Process for Systems Engineering 1.1

Figure 8: Example Locality Interaction Diagram

The traffic in Figure 8 shows what data must flow between the localities. This information is used to specify the associations
between the localities.

Supplementary Requirements Flowdown

As a part of the analysis process, the system architects develop an initial locality diagram. The locality view is a synthesis of
the non-functional considerations and provides a context for addressing how the non-functional requirements such as
reliability and capacity will be addressed.

Standard engineering practice allows for the budgeting of capacity, permitted failure rates, and so forth. This effort results in
a set of derived supplementary requirements for each locality element. The locality characteristics are determined from these
requirements. The derived requirements and characteristics will be revisited after the hosting requirements are determined in
the use-case flowdown activity described below.

Component Specification
Moving from the analysis to the design level of the architecture entails determination of the hardware and software
component design. This design-level specification consists of the components to be deployed: hardware, software, and
workers.

20

The Rational Unified Process for Systems Engineering 1.1

Hardware components are determined by analyzing the localities, their derived characteristics, and hosted subsystem use
cases. With this information, descriptor-level realizations of the localities can be selected. Descriptor node diagrams specify
the components, servers, workstations, workers, and so forth, without specific choices of technologies that implement those
components. Figure 9 is an example descriptor node diagram that realizes the locality diagram shown in Figure 5. The
fulfillment locality is realized as four components: a warehouse gateway and mailing/postage system, and two workers.

The descriptor nodes inherit characteristics from their localities through an allocation or budgeting process.

Figure 9: Example Descriptor Node Diagram

The implementation hardware components, the actual deployed set of hardware, are determined by making
cost/performance/capacity trades from the descriptor view. In fact, a system may have more than one hardware
configurations, each meeting different price/performance points.

21

The Rational Unified Process for Systems Engineering 1.1

Components are determined by specifying a set of object classes, and then compiling and assembling the code associated
with those classes into executable files. A fully considered software component design must reflect a variety of concerns:

• Locality – where the components need to run

• Hosting – processor instruction set and memory restrictions for the executing code

• Concurrency – separation of processing into different hosts or memory spaces to address reliability and related
concerns

It follows that the information needed to specify components includes the surveys of hosted subsystem use cases for
localities and their realized hardware components, surveys of executed use cases for processes, along with the view of
participating classes (VOPC) for the subsystem use cases.

An overview of the method is, for each hardware configuration to create a component from the class participating in all of
subsystem use cases hosted on each node. If those use cases need to be executed in more than one process, divide the
components further by assigning the participating classes of the subsystem use cases executed by each of the processes. Note
that some subsystem use cases may be executed by more than one process and therefore their classes may be in more than
one component. Complete the process by dividing the components further to account for memory constraints (such as .exe
and .dll trade-offs), shipping media limitations, and so forth.

These activities result in a set of specific hardware and software components that make up the system.

System Development

RUP SE projects are managed much as any RUP project. However, because of the size and additional activities of most
systems engineering efforts, there are some differences. These differences are discussed briefly in this section.

Project Organization
The movement from a serialized to an iterative process has profound implications in how a project must be organized. In a
serialized process, staff is often assigned to a project until their artifacts are complete. For example, the engineering staff
might complete the specifications, hand them off to the development staff, and move on to the next project. In any RUP-
based project, no such handoff occurs. Rather the artifacts evolve throughout the development. It follows that the staff
responsible for project artifacts, such as the requirements database and UML architecture, must be assigned to the
development project throughout its duration.

Figure 10 shows the organization for a typical RUP SE project. The organization is collection of development teams, each
with a project manager and a technical lead. There are also teams that deal with overall system architecture and project
management.

22

The Rational Unified Process for Systems Engineering 1.1

Enterprise/ Business Modeling

System Architecture

Software Subsystem
Development Teams

Project
M

anagem
ent

Hardware Development,
Acquisition Teams

B
uild, Integration &

 Test Team

D
eploym

ent, O
perations

&
 M

aintenance Team

Figure 10: A RUP SE Organization Chart

• The Enterprise Modeling team analyzes the business need and generates business models and/or related
artifacts such as Concept of Operations documents.

• The System Architecture Team works with the Enterprise Modeling Team to create the system context and
derive system requirements. The team develops the subsystem and locality views as well as their derived
requirements. Throughout the development, this team serves as a technical escalation point, resolving
architectural and engineering issues. The System Architecture Team also works with the development teams to
specify the software component architecture. Team members include the technical leads of the development
teams.

• The Project Management Team looks after the standard project issues such as project reviews, resource
planning, budget tracking, earned value and variances, and coordinated iteration planning

• For each iteration, the Integration and Test Team receives the code and hardware components from the
development teams, builds the software components, and installs the hardware and software components in a
laboratory setting. The team also plans, executes, and reports on the system tests for each iteration.

23

The Rational Unified Process for Systems Engineering 1.1

• The Subsystem Development Teams are responsible for the design and implementation of the software
realization of one or more subsystems. The teams base their work on the derived use cases discovered during
the flowdown activity. Depending on the size and complexity of the system, the subsystem use cases may be
realized as class design and associated code modules or the subsystems may be further decomposed into
subsystems. In the latter case, a subsystem team may be further decomposed into sub-subsystem teams and a
subsystem architecture team may be created. This process enables scalability of the RUP SE approach.

• The Hardware Development and Acquisition Teams are responsible for the design, specification, and
delivery of the cases; this team might install and maintain the system in the field. In other cases, this team might
handle user defect reporting and provide patches to the field.

• The Deployment Operations and Maintenance Team handles operational issues and serves as a liaison with
the users.

Concurrent Design and Implementation
One feature of the RUP SE organization approach is that it scales to very large programs. This is accomplished by taking
advantage of the decomposition of the system into subsystems and localities with their derived requirements. Each of these
analysis model elements is suitable for concurrent design and development. As described in the previous section, UML
subsystems may be assigned to separate develop teams, localities to hardware development or acquisition teams. Each team
works off of its derived use case survey to develop their portion of the design model and implementation models. This way
the design and implementation of the design elements can proceed in parallel.

For very large systems, a systems-of-systems approach can be adopted. In this case, each UML subsystem has its own
locality model. This assignment permits there the application of the above organization structure at the subsystem level,
providing even more scalability.

Iterative Development, Integration, and Test
One central feature of the RUP is that the system is developed in a series of iterations, each of which adds functionality. The
system is integrated and tested at each iteration. The iteration testing is a subset of the system tests. Consequently, the final
iteration results in a fully tested system ready for transition to the operational setting.

The timing and content iterations are captured in an Iteration Plan early in the project. However, like any RUP artifact, the
Iteration Plan is updated continually to reflect the emerging understanding of the system as it comes together.

The content of an iteration, captured in a system iteration plan, is specified by what use cases and supplementary
requirements are realized by the components developed in the iteration. Each iteration is tested by the subset of applicable
system test cases.

Recall that subsystems and localities have derived use cases that trace from system use cases. This tracing provides a basis
for derived iteration plans for the subsystems and localities. That is, the content of each system iteration determines by
traceability the functionality that needs to be provided by the subsystems and localities to support the iteration. In practice,
the development teams will negotiate the iteration content to reflect their development practicalities. For example, an early
system iteration cannot require full functionality of a subsystem. Compromises must be made.

A good system iteration plan provides the opportunity to identify and resolve system technical risks early, before the typical
panic of the waterfall-based integration and testing phase. The technical risks can involve both functional and nonfunctional
requirements. For example, an early integration can shake out system bring up and fail-over issues that cannot be fully
understood with detailed design and interface specifications. In practice, the early iterations should validate that the
architecture is sufficient to meet the non-functional requirements.

Iterative system development may seem more expensive because it requires more testing, as well as scaffolded or simulated
hardware environments to support the early iterations. Coordination of the iteration content across development teams also

24

The Rational Unified Process for Systems Engineering 1.1

takes more project management effort. However, these apparent costs are offset by the savings in early identification and
mitigation of risks associated with the system architecture. It is a standard engineering principle that removing architectural
defects late in a project is much more expensive than removing them early. Removing defects late also adds uncertainty and
schedule risk late in a project.

The role of the testing organization is different than it is in an organization that adopts a serialized, waterfall approach.
Rather than spending more of the development planning for an overall system integration at the end of the development, the
organization spends its time integrating, testing, and reporting defects.

Conclusion

RUP SE is a derivative of the Rational Unified Process; RUP SE Deployment Service is a packaged service available from
Rational Software. It is suitable for projects that have one or more of the following characteristics:

• Architecturally significant deployment issues

• Concurrent hardware and/or software development efforts

RUP SE provides the system development team with the advantages of RUP best practices while providing a setting for
addressing overall system issues. Some of the benefits of RUP SE include:

• System Team Support – Provides for ongoing collaboration of business analysts, architects, system
engineers, software developers, hardware developers, and testers.

• System Quality – Provides the views to support addressing system quality issues in an architecture
driven process

• System Visual Modeling – Provides UML support for systems architecture

• Scalability –Scales from small to large systems

• Component Development – Provides the workflows for determining the hardware and software
components

• System Iterative Design and Development – Supports concurrent design, iterative development of
hardware and software components

25

Corporate Headquarters
18880 Homestead Road
Cupertino, CA 95014
Toll-free: 800-728-1212
Tel: 408-863-9900
Fax: 408-863-4120
E-mail: info@rational.com
Web: www.rational.com

For International Offices: www.rational.com/corpinfo/worldwide/location.jtmpl

Rational, the Rational logo, RUP and Rational Unified Process are registered trademarks of Rational Software Corporation in the United States and in other
countries. All other names used for identification purposes only and are trademarks or registered trademarks of their respective companies. ALL RIGHTS
RESERVED. Made in the U.S.A.

 Copyright 2002 Rational Software Corporation.
TP165A 5/02. Subject to change without notice.

mailto:info@rational.com
http://www.rational.com/
http://www.rational.com/corpinfo/worldwide/location.jtmpl

	Table of Contents
	Introduction
	Business Modeling
	System Architecture
	System Architecture Diagrams
	Locality
	Relation to 4+1 Architecture Model
	Requirements Analysis
	Derived Requirements
	Use-Case Flowdown
	Supplementary Requirements Flowdown
	Component Specification
	System Development
	Project Organization
	Concurrent Design and Implementation
	Iterative Development, Integration, and Test

	Conclusion
	rational.com
	Rational Software

