Heterogeneous File Projects in the Sketchy Modeling Environment

Jüri Kiho and Svetlana Solopova

Institute of Computer Science, University of Tartu

J. Liivi 2, 50409, Tartu, Estonia

kiho@cs.ut.ee, marin@math.ut.ee

Abstract. The sketchy modeling environment (SKME) is a software tool for handling graphically modeled computer texts. It is a multi-representational environment with heterogeneous file collections. In this paper, a general formal definition for the basic notion file project description is given and a special feature of SKME, the file project support is introduced. The concept of file project originates from so called Project tool feature in many common IDEs. SKME supports hierarchical project descriptions. Beside attributed file names and sub-projects, file project descriptions may contain arbitrary auxiliary data. All file attributes such as locators, pre-open and post-save actions are user-defined, and can be inherited from super-projects.
1 Introduction

The file project management features are widely used in software engineering practice. Most of the common integrated development environments (IDEs) offer some kind of tools, usually called the Project tools, for managing lists of files involved into the current development process. The tools range from simply list-keeping (for files open at the moment or have being used during some previous sessions) to much more sophisticated ones, e.g. Project concept in Forte

[1], various CASE tools et al.

From a general point of view, a file list in a file project may be considered as a set of attributed file names. Some typical attributes of the list items are: locators (directory paths), open- and pre-open actions, save- and post-save actions etc. For instance, a pre-open action may prescribe the way how a back-up copy should be made, a post-save action may mean the request for compiling the saved source file.

The file project feature is inherent also for high level software engineering environments, both uni- and multi-representational ones, where, in particular, action attributes such as pre-access and post-edit are considered [2]. However, here we focus mostly on somewhat lower level environments designed for more direct file handling and processing.

In the homogeneous, e.g. mono-language IDEs, attributes of many files are uniform. So, simple text editors perform back-up (pre-open) actions at file opening similarly for all files; a Java-based IDE may always perform compiling (as a post-save action) just after the save operation. On the contrary, heterogeneous and multifunctional IDEs cannot rely on implicit attributes of the file list items. In particular, the accompanying file processing (e.g. pre- and post-actions) may essentially vary from file to file, even for the files with the same name extensions. During open operations it might be needed to convert a file to some appropriate format or view using a sequence of intermediate file conversions supported by this IDE. Before save operations it might be necessary to convert files to different output formats. Therefore a mechanism is to be provided to explicitly assign needed attributes to file names.

In this paper, the problem is considered in the context of the sketchy modeling environment (SKME) Amadeus [3]. The latter is under development as a really heterogeneous IDE, supporting handling and processing modeled computer texts of various base languages, views and I/O formats. At first, formal definitions of heterogeneous file project and project description are given. Thereafter, the sketchy model of project description is developed, which opens the way to handle any project description in SKME like another common sketchy text. At last, some implementation aspects are considered.
2 File Project and Project Description

A set of pairs (a, f) where f is a file name and a is a subset of file attributes is called the file project. It is assumed that the file names in any file project are pair-wise different. Further on, we will also use the term project instead of file project.

In practice, many subgroups of file names may have the same set of attributes. Therefore we introduce the notion of project description (project notation) as follows.

In a particular case, the simple project description consists of an attribute subset (a) and a list of file names: (a;

,

, …,

). It describes the file project {(a,

), (a,

), …, (a,

)}.

In real file projects some subgroups of file names have a common part of attributes. For such subgroups it is convenient to form subprojects belonging to a super-project which attribute subset is common for all the subprojects (and need not to be repeated in subprojects). It leads to the following generalization of the notion project description (for an attribute subset a):

1. Any simple project description (a;

,

, …,

) is a project description;

2. (a;

,

, …,

) where

 (i = 1, 2, …, n) is either a file name or a project description is a project description.

Consequently, the project description is a hierarchy – a tree with root a; its leaves are the file names and the internal nodes correspond to subprojects. A project is the super-project for all its subprojects. A sample tree for the project description (a; (a’;

,

),

,(a’’;

)) is depicted in Figure 1.

Figure. 1. A project description tree.

Any file name inherits its attributes from the attribute subsets occurring in the path from the leaf to the root. In the example above, the attributes for

 come from a, the attributes for

 and

 come from a and a’, the attributes for

 come from a and a’’. The exact inheritance mechanism is dependent on implementation. Loosely speaking, the attribute subset for a file name is the union of the attribute subsets occurring in the path from the leaf to the root. So, the sample project description in Figure 1 defines the file project {(a

a’,

), (a

a’,

), (a,

), (a

a’’,

)}.

3 The Sketchy Model for Project Description

In this section the formal model is further refined in the context of the multi-editor Amadeus. The development process of the editor involves certainly the problem of file projects handling. On the other hand, this multi-editor, being designed for processing hierarchical text structures, suits equally well for handling hierarchical file projects. It means that there is no need to introduce and implement any new specific tool for file projects.

The following subsections contain a brief introduction of sketchy modeling and its application for project description. This implementation-oriented treatment may be considered as a use-case solution of the file project problem.

3.1 About Sketchy Modeling
The main principles of sketchy modeling are fully outlined in [4]. In this section we shall give only a brief overview, restricted to the needs for this particular case.

The sketchy text model provides a uniform technique for constructing complex computer text structures, using elementary text units as atomic building blocks. Any correspondingly structured text is called the sketchy text. The elementary text units are supposed to have the row-structure, close to that for usual plain texts. A text unit is a sequence of rows together with a special row, called the comment (of the text unit). A row, in turn, is a sequence of row elements (characters in our case). Any sketchy text is obtained by arranging text units (and other attributes) into a tree-like structure, called the sketchy tree.

The sketchy tree has the following properties. There are three kinds of nodes: sketch (node of kind "sketch"), branch (node of kind "branch"), and primitive (node of kind "primitive"). The root of the sketchy tree is a sketch. All successors of a sketch are branches, successors of a branch can be either of kind "primitive" or "sketch". Primitives have no successors. Successors of a branch are called the branch members. The nodes are attributed as follows.

Any sketch has its type and head (text). Here we need sketches of two types: simple sketch and module sketch.

Any branch has its type. Here we need only the simple branches.

Any primitive has its type and text. Here we need only the simple primitives.

Note that any sketch is also a sketchy text. In figures, sketches are denoted by prolonged left brackets containing all sketch successors. Bold face is used for the module sketch brackets. Sketch head is placed at he beginning of the sketch bracket, sketch branches are located vertically along the sketch bracket, and separated by “―”.

In a broader sense, sketchy modeling means representing source data in the form of sketchy text.

3.2 Sketchy Modeling of Project Descriptions

Any project description is represented as a project description sketch. The project description sketch is a module sketch with just two simple branches, one for an attribute subset and another for a set of file names and/or subprojects. We shall assume that any project description is assigned its unique non-empty name (module sketch head’s text). The purpose and structure of the two branches are defined as follows.

Project description sketch first branch

The attribute subset is grouped, in turn, into one or more labeled attribute groups. Any attribute group is modeled as a simple sketch with a single branch (see Figure 2). The head’s text of the simple sketch is the label of the attribute group. The branch of the simple sketch contains (as branch members) zero or more simple primitives, each representing an attribute: the primitive’s text is the attribute description.

[image: image1.png]attribute group label

attribute 1
attribute 2

Figure 2. An attribute group.

Project description sketch second branch

In this branch files and subprojects are given. Any file name, say “f.html”, is represented by a simple primitive with text equal to “f.html”.

It is desirable to have auxiliary nodes in the project description sketch. For instance, one may want to form some extra file groups (or blocks) without changing the hierarchy of the whole file project. For that purpose he or she can introduce a new intermediate node (however, not a module sketch) as a common parent for some group of file names (and/or sub-groups). To distinguish between the “real” nodes and the auxiliary nodes the notion of the component, corresponding to the “real” part, is introduced.

So, by content, a component in a project description (a;
[image: image2.wmf]1

r

,
[image: image3.wmf]2

r

, …,
[image: image4.wmf]n

r

) is the node, describing just one
[image: image5.wmf]i

r

 (i = 1, 2, …, n). As explained below, it enables to define project description as a sketch, containing not only attribute subset (a) and components but also other nodes (for auxiliary information), i.e. some “non-components” as well.

Let s be a sketchy text. The sketchy text obtained from s by removing the first branches of all project description sketches is called the component tree of s and denoted comp(s).

A node v is called the component of a project description sketch d if v is in comp(d), v is either a simple primitive or a project description sketch, v is a successor (direct or indirect) of d and the path d ? ... ? v do not contain other project description sketches (other than d and, possibly, v).

Summarizing, the precise modeling scheme can be defined as follows.

Any project description, say name:(a;
[image: image6.wmf]1

r

,
[image: image7.wmf]2

r

, …,
[image: image8.wmf]n

r

), is modeled as a project description sketch (i.e. module sketch with just two simple branches). The head’s text of the module sketch is the name of the project description. The first branch of the module sketch contains (as the branch members) zero or more simple sketches, each representing an attribute group in a (see Figure 3).

[image: image9.png]Project description first branch
HELP

Attribute group "Paths" Paths
SOURCE: d:\Amadeus3\Documentation\Help
BACKUP: d:\Temp\HtmlBackup
TEXTUALIZED: d:\Amadeus3

Attribute grovp "Open-script” —
Open-script

* Import: path=SOURCE
Export plain- HTML: path= BACKUP

Save-script

Export plain-HTML: path=SOURCE
Textualize + Write text: path=TEXTUALIZED ext=java

Airibute group "Save-script"

Project description second branch

Figure 3. The first branch (attributes’ part) of project description “HELP”.

The second branch of the module sketch must be constructed so that the module sketch has just n components, representing

,

, …,

 correspondingly.

The modeling scheme defined above allows to express rather simple project descriptions (like in Figure 4a) as well as more structured ones (e.g. Figure 4b) using sketches of various kind and type for additional grouping of project components. Note that the two sample project descriptions in Figure 4 define the same file project (provided that the attributes in figures 4a and 4b are the same).

[image: image10.png]a)

Project 1

Attributes of Project 1

Project2

Attributes of Project 2

file_3.html
file_d html

file_5.html

by

Project 1

Attributes of Project 1

Project2

Attributes of Project 2

file_3.html
file_d html

Figure 4. Two sample project descriptions (with iconified attributes’ parts).

4 Implementation

4.1 The user interface

Since project descriptions are modeled as sketchy texts, there is no need for extra editing facilities for them. A special menu function (“File + Import project”) is available. After importing a project description, the latter becomes a “controller” over all files (called the project files) which names are present in this project description. The project description opens (at “File + Import project”) in one window, say pdw, project files will be opened in separate windows. At a triple mouse-click on a project file name in pdw the corresponding project file opens in a new window. To load a project file into an existing window w (to replace the previous opened project file in it), the project file name in the project description window should be selected and “File + Open” activated for w. Also, the menu function “File+Save” is applicable for project files. The names of currently opened project files stay grayed in pdw. After closing a project file, its name color is restored in pdw. An attempt to open a currently opened project file only takes its window on top of all other windows. The open and save operations use the attributes defined for the name of the involved file.

4.2 The attributes

Currently, three groups of file name attributes are supported. The groups labels are “Paths”, “Open-script” and “Save-script”. Other attribute groups may be included; they are simply ignored. Avoiding any syntax details here, the form and meaning of attributes will be briefly explained by example.

[image: image11.png]

Figure 5. ‘Path’ attribute group of a project description.

In the attribute group Paths (see Figure 5) three path-attributes are given; the attribute labels SOURCE, BACKUP and TEXT are chosen by the user and meant just for use in other attribute groups.

Attributes in groups Open-script and Save-script refer to some menu functions and also contain data needed to perform corresponding operations.

[image: image12.png]Open-script

Import: path=SOURCE
Export plain-HTML: path=BACKUP

Figure 6. ‘Open-script’ attribute group of a project description.

For any project file which name, say “x.html”, has the Open-script attributes in Figure 6, its opening means performing the following operations:

(1) “(File +) Import” file c:\d1\d2\x.html
(2) “(File +) Export plain-HTML” current file to the file c:\temp\bup\x.html

[image: image13.png]Save-script

Export plain-HTML: path=SOURCE
Textualize + Write text: path=TEXT ext=java

Figure 7. ‘Save-script’ attribute group of a project description.

For the current project file which name, say “x.html”, has the Save-script attributes in Figure 7, its saving means performing the following operations:

(1) “(File +) Export plain-HTML” current file to the file c:\d1\d2\x.html
(2) “(Tools +) Textualize” current, “(File +)Write text” result to file to h:/home/d3/x.java

4.3 Attributes’ inheritance
Source group attributes

In a Paths attribute, the directory path may be prefixed by a dot (“.”), for instance,

SOURCE: .\d4\d5

It means that the directory path (SOURCE) is only partly described in this project. In such case, the full directory path SOURCE is implicitly defined as D\d4\d5, where D is the directory path, labeled SOURCE, from the closest super-project description (containing the Paths attribute with label SOURCE). If such super-project does not exist, D is set to the current directory path.

Action group attributes

An action attribute group, i.e. Open-script or Save-script group, is inherited only as a whole. For instance, if the Save-script group is missing in a project description, then its Save-script group is assumed to be the Save-script group from the closest super-project description. If such super-project is not found, the Save-script group of this project description remains undefined. To prevent undesirable including any Save-script group from a super-project, an empty Save-script group should be declared in this project description. The same inheritance mechanism applies for Open-script groups too.

5 Conclusion and Further Work

In this paper we have considered the problem of file handling in multi-representational development environments with heterogeneous file collections. Corresponding file projects should define sets of attributed file names. However, it is desirable to have more advanced mechanisms for describing file projects, because the real file projects are actually of hierarchical and “sub-grouped” nature. As a solution basis, the notion of file project description is proposed. The latter is a tree of file names (the leaves of the tree) and project descriptions; the root of any project description contains a subset of file attributes to be propagated downwards to the successive components (file names or project descriptions).

The idea is implemented for the sketchy modeling environment. Any project description is also modeled (and handled) as a sketchy text. Actually, the defined sketchy model of project description allows to include auxiliary groupings; moreover, a sketchy text may be turned into a project description by inserting particular project description sketches. For instance, one can first develop a design document (in the sketchy form) and thereafter transform it into the architecture project by allocating files and inserting corresponding file project descriptions. The obtained project still contains design issues, but will serve also as the whole file project description. Indeed, complementing design projects as well as file projects may be carried out gradually, which best suits extreme programming purposes.

The nearest practical task to be solved is the validity problem. Beside the structural correctness of project descriptions, their consistency, adequacy to the current file system structure should be checked. It is a challenge to determine right moments when to perform the validity check.

The general problem of attribute inheritance related to the file projects deserves further theoretical investigations.
References

[1] Forte for Java Developer Resources Home, http://forte.sun.com/ffj/index.html
[2] Lars Bendix. General Object-Based Environments: An Engine for Software Develop-ment Environments. Proc. NWPER’98, Bergen/Ronneby, June 14-16, 1998, Informatics reportNo 152 / Information science report No 66, University of Bergen, 111–126

[3] Jüri Kiho. Sketchy Modeling of Computer Texts, Research report 18th January 2000 University of Tartu, 2000, 64 p. (http://www.cs.ut.ee/~kiho)

[4] Jüri Kiho. Sketchy Modeling for XML. Proc. 7th Symposium on Programming Languages and Software Tools, Szeged, June 15-16, 2001, University of Szeged, 183–197

3

_1087396987.unknown

_1087396996.unknown

_1087397005.unknown

_1087397009.unknown

_1087397011.unknown

_1087397014

_1087397015

_1087397017

_1087397012.unknown

_1087397010.unknown

_1087397007.unknown

_1087397008.unknown

_1087397006.unknown

_1087397000.unknown

_1087397003.unknown

_1087397004.unknown

_1087397001.unknown

_1087396998.unknown

_1087396999.unknown

_1087396997.unknown

_1087396992.unknown

_1087396994.unknown

_1087396995.unknown

_1087396993.unknown

_1087396989.unknown

_1087396991.unknown

_1087396988.unknown

_1087396979.unknown

_1087396983.unknown

_1087396985.unknown

_1087396986.unknown

_1087396984.unknown

_1087396981.unknown

_1087396982.unknown

_1087396980.unknown

_1087396975.unknown

_1087396977.unknown

_1087396978.unknown

_1087396976.unknown

_1087396973.unknown

_1087396974.unknown

_1087396972.unknown

