$$
\mathbb{Z}_{2} \times \mathbb{Z}_{3}=\mathbb{Z}_{6}
$$

Kristjan Kannike

September 11, 2015

The cyclic group \mathbb{Z}_{6} is the direct product of \mathbb{Z}_{2} and \mathbb{Z}_{3}. How are their representations related?

Representations of \mathbb{Z}_{2} and \mathbb{Z}_{3} are related to representations of \mathbb{Z}_{6} by

$$
\begin{align*}
& (0,0) \rightarrow 0 \\
& (1,1) \rightarrow 1 \\
& (0,2) \rightarrow 2, \\
& (1,0) \rightarrow 3 \tag{1}\\
& (0,1) \rightarrow 4, \\
& (1,2) \rightarrow 5
\end{align*}
$$

or in general

$$
\begin{equation*}
(x, y) \rightarrow(a x+b y) \quad \bmod 6 \tag{2}
\end{equation*}
$$

where $a=3$ and $b=4$. As explained in [1], the coefficients a and b arise from noting that if $(1,0) \rightarrow a$ and $(0,1) \rightarrow b$, then $(x, y) \rightarrow(a x+b y) \bmod 6$. Thus a and b are found from the equations

$$
\begin{equation*}
a=1 \quad \bmod 2, \quad a=0 \quad \bmod 3, \quad b=0 \quad \bmod 2, \quad b=1 \quad \bmod 3 . \tag{3}
\end{equation*}
$$

We can visualise the relation $\mathbb{Z}_{2} \times \mathbb{Z}_{3}=\mathbb{Z}_{6}$ as

Note that $4=-2 \bmod 6$ and $5=-1 \bmod 6$ is consistent with the representation 4 of \mathbb{Z}_{6} being the complex conjugate of 2 and 5 being the conjugate of 1 .

References

[1] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd ed., 1994.

