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There are many ways to skin a cat, and many ways to derive constraints for tree-level vacuum
stability of a scalar potential. It is sufficient to consider only the quartic part of the potential, since
mass and cubic terms are small in the limit of large field values. The simplest non-trivial quartic
potential that can serve as an example is that of a complex scalar singlet S with no explicit CP
violation – all the couplings are real:

V = λS |S|4 +
λ′S
2

(S4 + S†4) +
λ′′S
2
|S|2(S2 + S†2). (1)

We can alternatively write S in terms of its Cartesian or polar components,

S =
SR + iSI√

2
= seiφS , (2)

in which the potential takes the form

V =
1

4

[
(λS + λ′S + λ′′S)S4

R + 2(λS − 3λ′S)S2
RS

2
I + (λS + λ′S − λ′′S)S4

I

]
(3)

or
V =

(
λS + λ′S cos 4φS + λ′′S cos 2φS

)
s4. (4)

From (3), we can write out the matrix of quartic couplings in the (S2
R, S

2
I ) basis:

Λ =
1

4

(
λS + λ′S + λ′′S λS − 3λ′S

λS − 3λ′S λS + λ′S − λ′′S

)
. (5)

Because S2
R and S2

I are non-negative, the matrix Λ has to be copositive for the potential to be
bounded below [1]. Obviously, the diagonal terms have to be positive because we can set separately
either S2

R or S2
I to zero. In addition, the non-diagonal term cannot be too negative. Altogether, the

vacuum stability conditions are

λS + λ′S + λ′′S > 0, (6a)

λS + λ′S − λ′′S > 0, (6b)

λS − 3λ′S +
√

(λS + λ′S)2 − λ′′2S > 0. (6c)
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Figure 1: The allowed region in the λ′′S vs. λ′S plane for λS = 1/2 (dark grey) and λS = 1 (light
grey). In the light red region, (10) is not true and the condition (9) does not hold. If not taken into
account, we would erroneously exclude part of this region.

Equivalently, the coefficient of s4 in (4) must to be positive. Because φS is a free parameter, we
have to minimise with respect to it. The extremum condition is

2λ′S sin 4φS + λ′′S sin 2φS = (λ′S + 4λ′′S cos 2φS) sin 2φS = 0, (7)

yielding φS = ±nπ2 and φS = 1
2

[
± arccos

(
− λ′′S

4λ′S

)
+ 2nπ

]
. The former solution reproduces

λS + λ′S ± λ′′S > 0, (8)

while the latter solution gives

λS − λ′S −
λ′′2S
8λ′S

> 0. (9)

Note that this condition only has to hold if the argument of the arccosine is within its domain

− 1 6 −
λ′′S
4λ′S

6 1. (10)

By the way, Sylvester’s criterion yields a similar condition for the usual positivity of singlet
self-couplings:

8(λS − λ′S)λ′S − λ′′2S > 0. (11)
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The allowed region is shown in Figure 1. In the light red region, (10) is not true and only (8)
holds. If we neglected that and imposed (9), we would exclude part of this region in error.

Another way to test copositivity is Kaplan’s test: a symmetric matrix A is copositive if and
only if every principal submatrix B of A has no eigenvector v > 0 with associated eigenvalue λ 6 0.
Its advantage is that it generalises easily [2] to copositive tensors [3]. For matrices, the tensor
eigenvalue equation

Λvm−1 = λv[m−1], (12)

where m is the order of the tensor Λ, coincides with the characteristic equation (the vector v[n]

has each component of v taken to the power of n). Just like for matrices, the diagonal entries of
tensors have to be non-negative, giving (6a) and (6b). Solving the characteristic equation, we find
for the components of the two eigenvectors and eigenvalues

(S2
I )± =

−λ′′S ±
√

(λS − 3λ′S)2 + λ′′2S

λS − 3λ′S
S2
R, λ± =

1

4

(
λS + λ′S ∓

√
(λS − 3λ′S)2 + λ′′2S

)
, (13)

where we can take S2
R > 0. To satisfy Kaplan’s test, we have

(S2
I )± > 0 =⇒ λ± > 0, (14)

together with the conditions (6a) and (6b), of course, reproducing the grey areas in Figure 1.

There is another, less general way to derive the conditions. One can go from the S2
R,I basis to

one of

s0 = |S|2 and s1 =
S2 + S†2

2
. (15)

Indeed,

s0 =
S2
R + S2

I

2
and s1 =

S2
R − S2

I

2
, (16)

and we can express

1

2
(S4 + S†4) = 2

(
S2 + S†2

2

)2

− |S|2 = 2s21 − s20. (17)

The scalar potential becomes

V = λSs
2
0 + λ′S(2s21 − s20) + λ′′Ss0s1

≡ Λ00s
2
0 + 2Λ01s0s1 + Λ11s

2
1.

(18)

The matrix of couplings in the s0, s1 basis is

Λ =

(
λS − λ′S

λ′′S
2

λ′′S
2 2λ′S

)
. (19)

By definition s0 > 0; also s20−s21 = S2
RS

2
I > 0 that defines the forward light cone in the SO(1, 1)

field space, in analogy with the SO(1, 3) of the two Higgs doublet model (see e.g. [4] and references
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therein).1 We can diagonalise the tensor Λ with a ‘Lorentz transformation’(
coshφ − sinhφ

− sinhφ coshφ

)(
Λ00 Λ01

Λ01 Λ11

)(
coshφ − sinhφ

− sinhφ coshφ

)
=

(
Λ0 0

0 −Λ1

)
. (20)

Λ has a time-like eigenvalue Λ0 and a space-like eigenvalue −Λ1. The eigenvalues are

Λ0 =
1

2

[
Λ00 − Λ11 +

√
(Λ00 + Λ11)2 − 4Λ2

01

]
, (21)

Λ1 =
1

2

[
Λ00 − Λ11 −

√
(Λ00 + Λ11)2 − 4Λ2

01

]
(22)

or

Λ0 =
1

2

[
λS − 3λ′S +

√
(λS + λ′S)2 − λ′′2S

]
, (23)

Λ1 =
1

2

[
λS − 3λ′S −

√
(λS + λ′S)2 − λ′′2S

]
. (24)

For the vacuum to be bounded below, one needs [4]

Λ0 > 0 and Λ0 > Λ1. (25)

We see that Λ0 > 0 directly corresponds to (6c). From Λ0 > Λ1 one gets

(λS + λ′S + λ′′S)(λS + λ′S − λ′′S) > 0. (26)

Both factors could be either positive or negative. But when λ′′S = 0, then Λ0 > Λ1 gives λS+λ′S > 0.
Therefore they have to be both positive and we have recovered the full set of conditions (6).
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1This even works with explicit CP violation: we can use a phase shift of S to fix the phases φλ′′
S

= φλ′
S
/2.
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