
���������	
��	
�������	���	����	��������	������	

�������	���	����������	��������	

	
������	�������	

VTT Information Technology
(Technical Research Centre of Finland)

P.O.Box 1201, FIN-02044 VTT, Finland
kuldar.taveter@vtt.fi

����	 �����	

Institute of Informatics, Free University Berlin
Takustr. 9, 14195 Berlin, Germany

gw@inf.fu-berlin.de

�����!�	

An enterprise model is a comprehensive description of the organizational structure, the information
resources and the business processes that constitute an enterprise with the help of a conceptual
modeling method. Existing methods, however, have difficulties to capture the physical and social
dynamics which is inherent in organizations, and to integrate it with a static information model.
�������	
����� methods represent a promising approach to overcome these difficulties. In this paper,
we investigate the combination of a recently proposed agent-oriented approach, called �������
�����
�����
����
� (AOR) modeling [8], with the more established business rule modeling method of Ross
[10] in modeling a car rental company.

"#	 $������!����	

�������	
�����
�� is emerging as a new paradigm in software and information systems engineering. It
offers a range of high-level abstractions that facilitate the conceptual and technical integration of
communication and control with conventional (object-oriented) information storage and retrieval.
Agent-Orientation is highly significant for business information systems since business processes are
driven by and directed towards agents, and hence have to comply with the physical and social
dynamics of interacting individuals, groups and markets.

In order to capture more semantics of the dynamic aspects of information systems, such as the events
and actions related to the ongoing business processes of an enterprise, it is necessary to make an
ontological distinction between active and passive entities, that is, between ������ and �
�����. In
particular, the semantics of business transactions can only be captured if the specific business agents

associated with the involved events and actions are explicitly represented in the information system in
addition to passive business objects.

Current information system technologies do not support the concept of an agent: no matter if the
customers of an enterprise are represented in a relational or in an object- relational database table, they
are not explicitly represented and treated as agents but rather as objects in the same way as items or
bank accounts. E.g., UML [26], the current object-oriented modeling standard, does not support the
concept of an agent as a first class citizen. In UML [26], agents are only considered as “actors” that
are involved in “use cases” but remain external to the system model. Both the customers and the
suppliers of a company would have to be modeled as UML objects in the same way as currencies and
bank accounts. UML treats the dynamic aspects of an application system by providing a multitude of
process modeling diagrams largely unrelated with each other and with the object class diagram of the
system.

In this paper, we investigate the combined application of agent-oriented modeling and of business rule
modeling by using the example of a ��	�	�����������������	���������	�������	������	���	���
�����
��
����	����������
�����������	���������	��
����
�����
����	��. The geographical distribution of such an
enterprise over a headquarter and a number of branches suggests to view and model it as a group of
interacting agents represented by their respective information systems.

%#	&��������	'���	(��	����������	��������	
	
%#"	
����)��*�!�)���������+��	
�������	

Agent-Object-Relationship (AOR) diagrams were proposed in [8,9] as an agent-oriented extension of
Entity-Relationship modeling. In AOR modeling, an entity is either an event, an action, a claim, a
commitment, an agent, or an object. Only agents can communicate, perceive, act, make commitments,
and satisfy claims. Objects do not communicate, cannot perceive anything, are unable to act, and do
not have any commitments or claims. An organization is viewed as a complex
���
���
����� �����
defining the rights and duties of its
���	����agents (or ��
������) that act on behalf of it, and being
involved in a number of interactions with them and with � ��	����agents. Communication is viewed as
asynchronous point-to-point message passing. The expressions !	���
�
������������" and !����
�����
�������" are taken as synonyms of !��	��
�
��� �� ������
���
��� �����" and !��	��	�
��� ��
������
���
������".

In addition to the two designated relationship types ����
��
#��
�� and ������
�
�� of ER/OO
modeling, there are twelve designated relationships in which specifically agents, but not objects,
participate. Six of them relate agents with events and commitments: an agent ��	��
��� environment
events, 	���
��� and ����� messages, ���� physical actions,
������
���������	�� and �������
���
���
��� other agents. The remaining six of these designated relationships associate subagents with
particular rights and duties: a subagent may have the 	
��������� an action, the 	
����������� a

message, the ��������	������ to a message, the ��������	���� to a physical event, the ������������
�� a
commitment, and the �����������
��	 a claim.

Some of the AOR modeling concepts are
���
���: taking the perspective of the agent to be modeled,
actions of other agents are viewed as events, and commitments of other agents are viewed as claims
against them. Likewise in the case of an organization: only the actions of the organization itself and of
its subagents count as actions, while the actions of external agents count as events.

�������	�
����
���

���������	�

��������	��
����	

�����	

����������

��	���	���
�������
����	

�������

���	����

�������

�
���
��	��

���	�
�����

� ��	���

�

���	��

��������

���

����

!�����
����	

���������
�������

������
���
 ����������

����
��
�

���
����
���

����	

!���

���"���

#����
����	

Figure 1. The AOR model of the car rental company from an objective observer’s point of view	

Recall that entity types are visually represented by rectangles while relationship types are represented
by connection lines (possibly with crows feet endings in order to indicate multiplicity). In AOR
diagrams, a ��
����� is visualized as a rectangle within its superclass. A ��������������� is visualized
as a rectangle with dotted lines drawn within the superior class it belongs to (recall that a component
cannot exist independently of the whole; if the whole ceases to exist, all of its components also cease
to exist).

An ������ ����� is visualized as a rectangle with rounded corners. In order to distinguish an internal
agent (subagent) class from an external agent class and from an agent subclass, it is visualized by such
a rectangle with a dotted line (like $�	%����
������� in Figure 1).
	
Both actions and events may be communicative or physical. Events have a concave (incoming)
rectangle side, while actions have an convex (outgoing) rectangle side. Communication event
rectangles and communication act rectangles have a grey background color.

In the perspective of an organization, commitments are commitments towards other agents, while
commitments of other agents are viewed as claims against them. A commitment towards another
agent (such as a commitment towards a customer to provide a car) is coupled with the associated
action (such as a �	��
��$�	 action). It is visualized as a rectangle with a dotted line on top of the
associated action rectangle like shown in Figure 3. A claim against another agent (such as a claim
against a customer to return a car) is coupled with the associated event (such as a 	���	�$�	 event). It
is visualized as a rectangle with a dotted line on top of the associated event rectangle like shown in
Figure 6.
	
Since the ����� of an entity can be interpreted as a subclass of the entity (see e.g. [6]), we use the
notation for subclasses also for representing states. For example, an entity of the class �������	��	 in
Figure 1 can be in the state 	���	���, ���������, ������
��, or �	���������. States can also have
��
������, like in Figure 1 the state �	����� of $�	&�	������ has the substates ���
��
��, 	�'�
	���
��	�
��, and ������������	���	�
��.

The AOR model of the car rental company from an objective observer’s point of view is represented
in Figure 1.

%#%	����	&�������	

AOR diagrams can be complemented by depicting
�����
������	��
����� (��	
���
���	����) evaluated
by the agents in the course of business processes. In Figure 2 the Ross Notation [10] is used for
representing derivation rules. The Ross Notation enables to represent both ����	
��
#�� (i.e.
instantiated) and ������������������� views of intensional predicates. According to the Ross Notation,
each rule consists of an anchor, rule symbol, and correspondent. �����	 is a data type or another rule
for whose instances a rule is specified. In the graphical representation of the Ross Notation, the anchor
connection �
�� the anchor and ����	� the rule symbol. $�		��������� is a data type, another rule, or
action whose instances are subject to the test exercised by the rule. In the graphical representation of

the Ross Notation, the correspondent connection �
�� the rule symbol and ����	� the correspondent.
Both the anchor connection and correspondent connection are dashed.

���������	�

�����	

����������

�������

���	����

�������

�
���
��	��

���	�
�����

� ��	���

�

���	��

��������

���

����

���������
�������

������
���
 ����������

����
��
�

���
�

���

��

�� ������

������

���"���

���������	�

��	��
��
��
�

��

�����	

����

�����	

����

��	 ��

��

��

���

��

���
���
����������	�

����	�
�
�������

��

��
�
��

����

����

�		�
�����

��������	

��	����

���
�

	���

�����
�

��

�	

��	����

�
�

�

���	

Figure 2. A part of the ontology of car rental

Every rule produces a value, called the (
����)���� (abbreviated YV), at any point of time. Usually
this value is hidden. It is used internally by the rule to achieve the appropriate truth value for the rule.
Sometimes, rules require testing the Yield Value of a rule directly. To satisfy this need, the Yield
Value of a rule may be externalized. When externalized, the Yield Value appears as an attribute type
for the rule itself.

The symbols of the Ross Notation, used in our model of the car rental company, and their basic
meanings are given in Table 1. They are used for representing the derivation rules in Figure 2.

The derivation rule D1 in Figure 2 subtracts 12 hours from the �
�������
�� of a �������	��	 in the
state 	���	���, and copies the yielded value to the attribute �������
����
�� of the �������	��	.

The derivation rule D2 determines that the rental rate of a �������	��	, expressed by its attribute
	������	���, is copied from the rental rate of the $�	*	��� that the car allocated for the �������	��	
belongs to.

The derivation rule D3 defines how to determine the set of cars that are available to rent. This rule
determines that a given car $�	&�	������ in the state �	����� is available if and until it is not allocated
for any �������	��	, doesn’t require service (i.e. does not belong to the subclass 	�'�
	�����	�
�� of
�	�����), and is not already scheduled for service (i.e. does not belong to the subclass ������������	�
��	�
�� of �	�����).

The derivation rule D4 determines that the return value of the intensional predicate �������
��
�� of
the object class $�	*	��� is equal to the instance of $�	&�	������ in the substate ���
��
�� with the
minimal value of the attribute �
�����. The RCOP component rule reduces the scope of the overall
rule to the $�	*	��� of the given �������	��	 (see also the explanation for RCOP in Table 1).

The derivation rule D5 determines that if an instance of $�	&�	������ is assigned to an instance of
�������	��	, the state of the �������	��	 changes to ���������, and stays that for exactly as long as
this relationship persists.

The rule D6 is a derivation rule prescribing that a customer belongs to the class ������	 if and until
any �������	��	 related to it is in the state ������
��.

The derivation rule D7 says that if the mileage since the last service of a car physically present at the
branch, represented by the value of the attribute �
�������
�����������	�
�� of $�	&�	������ in the
state �	�����, is greater or equal than 10,000 km, the substate of the corresponding instance of
$�	&�	������ changes to 	�'�
	�����	�
��, and stays that until the car is scheduled for service
(because the substates 	�'�
	�����	�
�� and ������������	���	�
�� are mutually exclusive).

Since the Ross Notation does not allow for graphical modeling of intensional predicates whose values
depend on the values of parameters, such intensional predicates should be represented textually rather
than graphically. In our case study, the intensional predicate ���������
�� of the object class
$�	*	��� determines the existence of rental capacity in the given $�	*	��� during the requested
rental period at the time of making a rental reservation. Therefore the truth value of this predicate is
also dependent on the value of the parameter 	��������	
��.

AOR diagrams together with derivations rules expressed by the Ross Notation and textually form a
graphical representation of an ontology1 of the problem domain. A partial representation of the
ontology of car rental is depicted in Figure 2.

1 A �	�
�����	
�������������� is a description by truth values of the concepts and relationships of the
problem domain that exist for an agent or more commonly for a community of agents [24].

Table 1. A selection of rule symbols and other graphical symbols according to the Ross Notation

,-����	 ����!	�������	
 Given an instance of the anchor, do instances of all the

correspondent types simultaneously exist for that instance?

 Is the value of the anchor greater or equal than the value of
the correspondent?

 The Yield Value produced by the rule is the subtraction of
the values of the correspondents

 Creates an instance of the correspondent

 Creates an instance of the correspondent, but does not
materialize it (i.e. terminates such an instance when the

instance of the anchor is deleted)
 Requires propagation (i.e. copying) of the value of an

instance of the anchor to instance(s) of the correspondent.

 Same as COP, except that reverses the value of instance(s)
of the correspondent upon deletion of the instance of the

anchor, if ever. ���������		����������
��������	�	�������	����

���	�	����
��������
������	�	����� ����
�������	����
���������

����������
�	"�������	
 Negation

 Attribute type

	

.#	������������	��������	�����	

.#"	�+�	&�����	���	��������!�����	��	��������	�����	

�������
��
����������, a
��
�����	��� is defined as a statement that defines or constrains some aspect of
the business [11]. A business rule is based on a business policy. An example of a business policy in a
car rental company is “only cars in legal, roadworthy condition can be rented to customers” [11]. A
business rule is also subject to one of the following enforcement levels: ������� (must be followed),
	�'�
	����� (may be deviated from only with permission), and ��
���
�� (suggestion) [4]. Many

$��

�
���	�
�

������

%�

�$��

�&!�

"$

��(�

���(�

business rules are of a �����	��
�������	�: they describe certain states of affairs that are either required
or prohibited while not prescribing the steps to be taken to achieve the transition from one state to
another, or the steps to be taken to prohibit a transition [11].

Alternatively, a business rule may be defined as a law or custom that guides the behaviour or actions
of the actors connected to the organization [12]. We view all ����	� connected to the business, which
can be individuals, organizational units, software systems, or external units like customers or
suppliers, as agents and assign ���
��� to them. We view an agent’s action in a broader sense as
something that the agent ����: a human may make a decision, an agent wrapping a database may
execute certain retrieval primitives, a statistical computation agent may run certain mathematical
procedures, and one agent may send a message to another agent [1]. Consequently,
��
����� 	�����
���
��� ���� �����	�
�� ������"� ���
���. Actions consume and affect different 	����	���, including
information resources.

+ ������ of business rules from the problem domain of car rental are:
1. A car is available for rental when it is physically present, is not assigned to any rental, and is not

scheduled for service.
2. When receiving from a customer the request to reserve a car of some specified car group, the

branch checks with the headquarter to make sure that the customer is not blacklisted.
3. Transferring a car to the automotive service station requires that the car has been scheduled for

service and commits the automotive service station to return the car after completing the service.

Rule 1 defines the conditions how to determine the set of cars that are available to rent. It can be
naturally represented as a ��	
���
���	��� that may be applied either top-down to compute answers on
the fly, or bottom-up (like a “production rule”) to compute a materialized view. Rule 2 defines how to
proceed when some event (a reservation request) occurs. It corresponds to a 	����
��� 	���. Finally,
rule 3 defines the conditions under which some action (transferring a car to the automotive service
station) may be performed, and the effects of its actual performance. It corresponds to an ���
���	���.
Notice that reaction rules are triggered by the occurrence of specific events, and thus represent
automated business process steps, while action rules are applied when an agent decides to perform an
action of that type.

	
.#%	�������	��������	�����	��	�����������	�����	��	
�����	

Business rules, being of a declarative nature, can in principle also be declaratively represented as
functions between different knowledge states of an agent and accordingly implemented by using e.g.
the BDI agent architecture [18, 21]. The biggest benefit of such an approach lies in a small gap
between the formal specifications and actual implementations of the rules. However, if we want to
create an effective agent system, business rules should be ���	��
����
#�� in order to facilitate their
implementation. According to the thesis [3], in practice very few, if any, declarative implementations
for industrial use live up the criterion of effectiveness.

We have chosen to map business rules to action and reaction rules of the �
�
������� architecture of
[5] because of the relative straightforwardness of this kind of mapping and the effectiveness of the

�
�
�� ����� model needed for business applications in comparison with other candidate agent
architectures like e.g. the BDI-architecture [18, 21] mentioned above. Following the work [7], we
define an ����� to be consisting of three components:
• a �
	���������������
��� 2�,, consisting of the agent’s
��
���;
• an ������ '����� +-, i.e. a buffer receiving messages from other agents or from perception

subsystems running as concurrent processes;
• a set of ���
���	������� and 	����
���	������� respectively determining the agent’s �	����
�� and

	����
�� behaviour.

���
��� 	���� have the general form of ���
�� ← $���
�
�� where $���
�
�� refers to the agent’s
information state represented in its VKB. According to the actions prescribed by action rules, action
rules are divided into [5]:
• ��
����
�����
���	���� of the form +�� ← $��� where +�� is an epistemic effect formula specifying

a corresponding update of the agent’s VKB;
• ����
�������
���	���� of the form ��(α), +�� ← $��� where ��(α) calls the procedure α affecting

some actuators available to the agent;
• ������
���
������
���	���� of the form �������[�.�/,
], +�� ← $��� where �������[�.�/,
]

is a procedure call to send the message �.�/ to agent
.

Agents communicate in some high-level ������������
���
����������� (ACL) that is based on ������
�������� such as “ASK”, “TELL”, “REQUEST”, and “PROPOSE”. In contrast to the application-
specific messages in OO-programming, ACL message types are appplication-independent and
therefore, in combination with an ontology, defining the semantic vocabulary of a problem domain,
allow for true software interoperability [7].
�����
��� 	���� encode the behaviour of an agent in response to perception events created by the
agent’s perception subsystems, and to communication events created by communication acts of other
agents. Both perception and communication events are represented by incoming messages of an agent
[7].

There are three types of reaction rules [7]:
• ��
����
�� 	����
��� 	���� of the form +�� ← ��!����[�.�/, �], $��� where the event condition
��!����[�.�/, �] is a test whether the event queue +- of the agent contains the message �.�/ sent
by agent �;

• ����
����	����
���	���� of the form ��(α), +�� ← ��!����[�.�/, �], $���;
• ������
���
���	����
���	���� of the form �������[�".�"/,
], +�� ← ��!����[�.�/, �], $���;

Additionally there are ��	
���
��� 	���� of the form $������
�� ← 0	��
�� which define intensional
predicates in the agent’s virtual knowledge base [7]. They are described by the ontology of the
problem domain (v. Figure 2).
�

2 An agent’s �
	���������������
��� (VKB) is called “virtual” because it is not necessarily
implemented as a classical knowledge base.

Table 1 shows how business rules of the Examples 1-3 from section 3.1 can be respectively mapped to
the derivation, reaction, and action rule of the vivid agent model.

While reaction rules are triggered by events, thus representing automated business process steps
performed by an enterprise information system (or, for instance, by an automated teller machine as a
subagent), action rules represent process steps recorded in the enterprise information system but
performed by human agents.

Table 2. Correspondences between business rules and their formal representations by means of
derivation, reaction and action rules

��������	
����	

�����������	����	

1 available(�)
← CarForRental.present (�) ∧
¬∃� (RentalOrder(�) ∧ ��CarID = �) ∧
¬CarForRental.requires-service (�) ∧
¬CarForRental.scheduled-for-service (�)

2 ����%���(ASK-IF (blacklisted (����	
��)),
���������������)
← ����%���(request (reserve (������	�� �����������	�)), ����	
��)

3 ���(sendCarToService (�, ���	
	����������������)), �
����(returnCar (�),
���	
	����������������)
← �����	 (CarForRental.scheduled-for-service (��, ������������	�)

	
.#.	��������	
!����	���	���!����	�����	�-	
��	
�������	

In AOR diagrams, a (re)action rule is visualized as a named circle with incoming and outgoing
arrows. The incoming arrows start from the graphical symbols representing the triggering event of a
rule and the epistemic conditions to be evaluated. The epistemic effects of a rule are visualized as
update arrows from the circle representing the rule to the entities or their specific (sub)states affected.
The communicative and physical effects of a rule are represented as arrows from the rule symbol to
the symbols representing communicative and physical actions. For example, the triggering event of
the rule R1 in Figure 3 is the reception of the reservation request message, the condition to be checked
is ���������
��� .	��������	
��/, and the communicative effect is sending the query message with the
content 1
�����
�����.�������	/. The mental effect caused by the rule R2 in Figure 3 is the creation of
a �������	��	 in the state 	���	���.

	
.#/	�����)0�����!����	��������	��	��������	0��!�����	

Business rules define and control business processes. A
��
����� �	����� can be defined as a
collection of activities that takes one or more kinds of input, and creates an output that is of value to
the customer [13, 25]. A business process describes from start to finish the sequence of events
required to produce the product or service [13]. Business processes typically involve several different
autonomous units of an organization. Often business processes also cross organizational boundaries.

Business processes can be modeled from an objective observer’s point of view like, for example,
described in [13]. However, in this paper business processes are modeled from the perspectives of
different agents (resp. actors) involved in them, that is, we take the design perspective. We model a
business process by a set of related reaction and action rules representing single process steps. The
business processes of the car rental company to be modeled are those of 	������	���	���
�����������
���
����	� ��	���	�������	��	, �
��
����������	, �	���
�����������	, and �������
�������	� ��	��������
���
��	�
��. Because of the lack of space, we have omitted from this paper the business processes of
paying for a rental and transferring a car from one branch to another.

The reaction and action rules defining the above-mentioned business processes are described below
along with the AOR diagrams modeling them. In the diagrams reaction rules are denoted by �

�
 and

action rules by

�
. The reaction and action rules described make use of the derivation rules of the

ontology represented in Figure 2.

In the modeling of reaction rules, we have omitted the reaction rules describing the standard behavior
for answering queries with the content like 1
�����
�����.�������	/ and 1������	�.�������	/.

���"���

���	���� ���������	�

��������	��
����	

���������	
��
���	��
��

��	�
��������	
��
���	��
���

������
���

������
���

���
�	
��
�
�	������

�������
���	

���
�
�
����
��	
�������

��

���
�
��
�
������������
�	����
�����

���	�
�����

� ��	���

�

���	��

��������

���

���� #����
����	

�
����

�
�	�������������	����	��
�

Figure 3. The AOR model of the business process of rental reservation from the perspective of a
Branch Agent

In Figure 3 the business process of 	������	���	���
�� is represented �	���������	�����
��������2	�����
�����. It contains the following reaction rules:
R1. Upon receiving from a $������	 the request to reserve a car of some specified $�	*	���	for

some specified rental period, if that $�	*	��� has enough rental capacity during the requested
rental period (found by evaluating the intensional predicate ���������
��� .	��������	
��/ of

$�	*	���), the 2	���������� sends a query to the %���'��	��	������ to make sure that the
$������	 is not blacklisted (see also Operational Rule 2 in Table 2);

R2. Upon receiving from the %���'��	��	� ����� a reply telling that the $������	 is not
blacklisted, the 2	���������� creates the corresponding rental reservation (i.e. an instance of
�������	��	 in the state 	���	���), commits towards the $������	 to provide a car, sends to
its subagent 3
��	������ a request to remind about the allocation time of a car for the given
�������	��	, computed and assigned to the attribute �������
����
�� of the �������	��	 by the
derivation rule D1 (v. Figure 2), and sends an acknowledgement to the $������	.

Figure 4 models the
��
������	�����������	��������
�����	���������	���	���
�����	���������	�����
���
�����2	����������4 This business process is defined by just one reaction rule:
R3. When the �������
����
�� of a �������	��	 arrives, the 2	���������� receives from the 3
��	�

����� a reminder to allocate a car for the given �������	��	, and if there is an available car of
the specified $�	*	���, expressed as the return value of the intensional predicate ����
���
��
���./ that, in turn, makes use of the derivation rules D3 and D4 as shown in Figure 2
(see also Operational Rule 1 in Table 2), this car is assigned to the �������	��	 by creating
the corresponding relationship between the �������	��	 and $�	&�	������.

���"���

���������	�

�����	

����������

�������

���������
�������

������
���
 ����������

����
��
�

���	�
�����

� ��	���

�

���	��

��������

���

����

���������	�

��	��
��
��
�

��

�����������	
�������
��#����
����	

��

Figure 4.	The AOR model of the business process of car allocation for advance reservations from the
perspective of a Branch Agent	

3���
��
������	����������
��
�������� ��	� �	��� ������	�����
��������2	���������� is represented in
Figure 5. It consists of the following reaction rules:
R4. Upon receiving from a $������	 a pick-up-request referring to some �������	��	, the 2	�����

����� first makes sure that the $������	 does not already have a car rented from any branch
of the company by asking that from the %���'��	��	������;

R5. Upon receiving from the %���'��	��	������ a reply confirming that the $������	 does not
have a car rented from any branch of the company, the 2	���������� provides the car (and the
customer respectively picks up the car), changes the state of the corresponding instance of
$�	&�	������ to �
�������, and informs the %���'��	��	� ����� about the new effective
�������	��	 (i.e. a �������	��	 where the car has been picked up).

���	�
��������	����

��������	��
����	

����������	��
��
����������

���
�����
��
������

������
��
�����
��
�������

����������

����������

��

����������
������������
��������

���������

���������	�

�����	

����������

�������

���������
�������

������
���
 ����������

����
��
�

Figure 5. The AOR model of the business process of picking up a car from the perspective of a Branch
Agent

Figure 6 depicts the business processes of �
��
��� ��� �� ��	 and �	���
��� ���� �� ��	 �	��� ����
��	�����
����������%���'��	��	������. The reaction rules represented in Figure 6 are:
R6. Upon receiving from a 2	���������� the message about the new effective �������	��	, the

%���'��	��	������ inserts into its VKB the corresponding instance of �������	��	 in the state
������
�� (as a result of which the derivation rule D6 changes the state of the $������	 to ����
��	, see Figure 2), and inserts a claim against the $������	 to return the car;

R7. Upon receiving from a 2	���������� a message telling that the car of the given �������	��	
has been dropped off, the %���'��	��	������ changes the state of the corresponding instance
of �������	��	 to �	���������.

���������	�

!�����
����	

�����������	�
���
����������	��� ��

�	�����
�����	�
���
��� ��

	���	
��	

	���	
��	

���	����

�������

�
���
��	��

���	�
�����

� ��	���

�

���	��

��������

���

����

Figure 6. The AOR model of the business processes of picking up and dropping off a car from the

perspective of the Headquarter Agent

And finally, the business processes of �	���
�����������	 and �������
�������	���	��������
�����	�
��
�	��� ���� ��	�����
��� ��� �� 2	����� ����� are represented in Figure 7. The rules of these business
processes are:
R8. When the $������	 drops a car off at the branch, then:

• the 2	���������� informs the %���'��	��	������ about the drop-off;
• an instance of $�	&�	������ in the state �	����� is created for that car, or if �
������

	����� 5� �	�������
	����, the state of the corresponding instance of $�	&�	������ is
changed from �
������� to �	�����;

R9. When the $������	 drops a car off at the branch, then if the car requires service (i.e. the
corresponding instance of $�	&�	������ is in the substate 	�'�
	�����	�
����determined by the
derivation rule D7 depicted in Figure 2), the request to schedule the car for service is sent to
the �������
���6�	�
��������;

R10. Upon receiving from the �������
���6�	�
�������� the automotive service confirmation, the
2	���������� changes the state of the corresponding instance of $�	&�	������ to ����������
��	���	�
��, and inserts the commitment to send the car to service;

A1. In order to fulfill the ����$�	3�6�	�
�� commitment, the human subagent $�	� %����
���
����� of the 2	���������� sends or takes the car himself to the �������
���6�	�
�������� for
service (see also Operational Rule 3 in Table 2) which results in the change of the state of
$�	&�	������ from ������������	���	�
�� to
����	�
�� and in the insertion of the claim
against the �������
���6�	�
�������� to return the car.

���	�
��������	����

��������	��
����	

������������	��
��
����

��

��	���	���
�������
����	 ������
��������������	������� ��

������
���������������	����������������������

���������	�

�����	

����������

�������

���������
�������

������
���
 ����������

����
��
�

��
�������������

��
�������������

���
����
���

����	

��

����������

���

�����
���

�����
���

Figure 7. The AOR model of the business processes of dropping off a car and scheduling a car for
automotive service from the perspective of a Branch Agent

/#	�������	 ��1	

In the paper [22] a general methodology for agent-oriented analysis and design is presented. The
proposed methodology deals with both the macro-level (societal) and the micro-level (agent) aspects
of systems. In the analysis phase of the methodology, the 	���� in the system are identified and the
patterns of interaction that occur in the system between various roles are recognized. The functionality
of each role is defined by its liveness and safety responsibilities. 7
������� 	������

�
�
�� are those
that say “something will be done”, e.g. “whenever the coffee machine is empty, fill it up”. 6������
	������

�
�
�� relate to the absence of some undesirable condition arising, e.g. “the coffee stock
should never be empty”. In the design phase, the liveness and safety responsibilities are respectively

mapped to agents’ ��	�
��� and �	�� and ��������
�
��� on each service. Liveness and safety
responsibilities thus bear a close resemblance to business rules. The difference from our work is that
the methodology proposed in [22] is a software engineering approach, while our approach is aimed at
creating business information systems. Another important difference is that while [22] has adopted an
objective observer’s point of view in modeling agent systems, the AOR modeling enables modeling
from the perspectives of different agents involved.

In the work described in [15] agents are directly applied to managing business processes. The main
difference from our work is that [15] focuses on the interaction and negotiation aspects of business
processes, and does not explicitly treat conceptual models of the problem domain, and agents’ beliefs
and (re)actions.

The paper [19] also concentrates on the interaction aspects of agents in the domain of integrated
supply chain management, and particularly on the agents’ mutual obligations and interdictions.

Conceptual modeling of the problem domain is included in the paper [23] where concepts and
relations between concepts are defined in hierarchies and rules that are used for automatic generation
of prototype agent applications directly from their specifications. The latter is also one of our future
intentions.

As was already mentioned in section 1, object-oriented approaches such as described in [13], [25], and
[26], do not support the concept of an agent, and are therefore not relevant to be discussed here.

2#	 ���!�������	���	(�����	 ��1	

Agent-oriented concepts allow the seamless integration of business rule modeling and information
modeling. Our approach is based on the rather well-developed methodology of capturing information
systems’ requirements in the form of business rules (see e.g. [10, 11, 20]). Implementation of business
rules has been traditionally connected to (active) databases [16]. We have widened the sphere of
applying business rules by showing that they can also be interpreted and implemented as a
combination of action and reaction rules, and of derivation rules associated with the ontology of the
problem domain.

Additionally, we have empirically proved that the claim in [14] according to which dynamic integrity
constraints cannot be represented through a visual formalism is not entirely true. In particular, the
conditional parts of dynamic integrity constraints can be represented by using the Ross Notation,
while the AOR modeling enables to represent their event and action parts. However, the Ross
Notation does not allow for graphical modeling of intensional predicates whose values depend on the
values of parameters. The AOR modeling proposal in its present stage leaves several issues
unanswered. Although [9] provides a sketch how an AOR model can be transformed into an object-
relational database schema, the logical and operational semantics of AOR models is not yet
sufficiently established. In particular, the semantics of the deontic concepts of AOR modeling seems

to be a challenging research issue. Furthermore, the relationship of AOR diagrams to the process
modeling concepts of UML needs to be investigated.

We think that agents are well-suited to be used in �����	��
���
���	���
���������� [2] where both data
and application logic are distributed like e.g. in our experimental information system of car rental. We
hope our work to be a step from the currently predominant client/server systems [17] towards the
peer-to-peer systems of the future.

Our present models represent just positive scenarios, and do not address the cases where something
goes wrong, like e.g. when a customer does not appear to pick up a car as agreed, or when the
automotive service station fails to return a car on time. We plan to introduce ���������	�� ����
��� in
our future work.

Our other future aims include further ��	���
#��
��, ��	
�
���
��, and ���
���
�� of our work. Another
important aim is is to work out the environment that would enable ���
�������
�� ����	��
��� ���
�
������	
������
����������
��������������	
������
��
�����
���	���
���������s from their high-level
descriptions by graphical agent-oriented models. Such an environment should also enable interactive
visualizing of graphical models. Since many business rules in real life are essentally of a “fuzzy”
nature, we plan to introduce ��##��
��
�����	�������	�������. We also plan to introduce modeling-time
����
������������� for the rules, commitments, and claims of an agent and deal with the �������
������
����
������ between agents.

3#	�������!��	

1. Y. Shoham, Agent-Oriented Programming,��	�
�
�
���������
�����, 60(1), 51-92, 1993.
2. G. de Michelis, E. Dubois, M. Jarke et al, $����	��
�������	���
���6������8���9��
�����.

Available at http://www.sts.tu-harburg.de/projects/EUCAN/manifesto.html
3. S. Hägg, F. Ygge, �������	
������0	��	���
���
��0���	�:
��	

��
����������
��8����

�	��
�����	�����7����������������
	�����
��

�
��4 Licentiate Thesis, Lund University, 1995.
4. D. C. Hay, Business Policies, Means and Ends, :����3��;���������<��������	, Vol. 27, No. 4

July/August 1999.
5. Vivid Agents - How They Deliberate, How They React, How They Are Verified. Extended version

of G. Wagner: A Logical And Operational Model of Scalable Knowledge- and Perception-Based
Agents, in W. Van de Velde and J.W. Perram (Eds.), �������2	���
���������0	��4����
9��9�=>?@, Springer Lecture Notes in Artificial Intelligence 1038, 1996.

6. ����	���
��������	��
�����	�$����		����+��
���	
���.��$+/��:+&A�9����������	�. Prepared by
Knowledge Based Systems, Inc., 1994. Available at
http://www.idef.com/downloads/Downloads.htm

7. G. Wagner, &������
�������;���������6��������
�������
���
�������:���
���������������.
Kluwer Academic Publishers, 1998.

8. G. Wagner, Agent-Object-Relationship Modeling, in 0	��4�����6����������	���
�����6�����
���
B&	���������3���	����������������������
��B�.�3C���C/, Vienna, April 2000.

9. G. Wagner, Agent-Oriented Analysis and Design of Organizational Information Systems, in 0	��4�
���&��	����+++�����	���
�����2���
��=�	���������:���
�������������	���
���6������, 1 May
2000, Vilnius (Lithuania).

10. Ronald G. Ross, 3���2��
����������2���8�$����
��
����:��
�
�������9����
��������, Second
Edition. Boston, Massachusetts, Database Research Group, Inc., 1997.

11. *D�:+�2��
�����������0	�������&
��������	�, October, 1997. Prepared by D. Hay and K. A.
Healy. Available at http://www.guide.org/ap/apbrules.htm

12. F. Van Assche et al, Information systems development: a rule-based approach, ;���������2�����
6������, 1(4), 227-234, 1988.

13. E. Yourdon, K. Whitehead, J. Thomann, K. Oppel, P. Nevermann, 9�
���	�����
�����8����
������
������:��
������	�������	�2��
����. Yourdon Press, 1996.

14. K. Jeffery, J. Kalmus, D. Montesi, 3���	�����)
�����&�	���
�����	�2��
�����9�����
��. Technical
Report SYS-C96-02, University of East Anglia, Norwich, UK.

15. N. R. Jennings et al, Using Intelligent Agents to Manage Business Processes. In: 0	�����
�������
����&
	�������	���
�����$����	���������+ �

�
����������0	���
��������
���
������������
�����
�����������9���
�������3��������� (PAAM’96), London, UK, April 1996, pp. 345-360.

16. ���
���:���
����6������8�3	
���	��������������	����������:���
����0	�����
��. Edited by
Jennifer Widom and Stefano Ceri. Morgan Kaufmann Publishers, Inc., San Francisco, 1996.

17. Alex Berson, $�
���E6�	��	��	��
�����	�. McGraw-Hill, 1992.
18. M. P. Georgeff, A. Lansky, Reactive reasoning and planning. In: 0	�����
�����������6
 ���<��
�����

$����	���������	�
�
�
���������
������.�����FG/, Seattle, Washington, USA, 1987, pp. 677–682.
19. M. Barbuceanu, T. Gray, S. Mankovksi, Roles of Obligations in Multiagent Coordination, ����
���

�	�
�
�
���������
�����, 13(1), 11–38, 1999.
20. H. Herbst��2��
�����������	
������$����������9����
���.$���	

��
�������9����������6�
����/.

Springer-Verlag, 1997.
21. M. J. Huber, H����������
����<�������. Available at http://members.home.net:80/marcush/IRS/
22. M. Wooldridge, N. R. Jennings, D. Kinny, A Methodology for Agent-Oriented Analysis and

Design. In: 0	�����
�����������I	������	���
�����$����	��������������������������.�������??/,
Seattle, Washington, USA, May 1-5, 1999. Available at http://gryphon.elec.qmw.ac.uk/dai/pubs/

23. F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, J. Treur, DESIRE: Modelling Multi-
Agent Systems in a Compositional Formal Framework, ����	���
�����H��	�������$����	��
���
����	���
���6������, 6(1), 67-94, 1997.

24. T. R. Gruber, A Translation Approach to Portable Ontologies, ;�����������'�
�
�
��, 5(2), 199-
220, 1993. Available at http://ksl-web.stanford.edu/knowledge-
sharing/papers/README.html#ontolingua-intro

25. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, �
������	
������9����
�������
:��
��. Prentice-Hall International, 1991.

26. D97������	���$����	: http://www.rational.com/uml/index.jtmpl

