
Experience from Building Industry Strength Agent-Based Appliances

Leon Sterling
The University of

Melbourne
Department of Computer

Science and Software
Engineering

Victoria, 3010, Australia
leon@cs.mu.oz.au

Kuldar Taveter
The University of

Melbourne
Department of Computer

Science and Software
Engineering

Victoria, 3010, Australia
kuldar@cs.mu.oz.au

The Daedalus Team
The University of

Melbourne
Department of Computer

Science and Software
Engineering

Victoria, 3010, Australia
leon@cs.mu.oz.au

Abstract

This paper describes the Intelligent Lifestyle project
conducted at the University of Melbourne in cooperation with
our industrial partner Adacel Technologies in 2004. The
Intelligent Lifecycle project aimed to design and build an
industrial-strength system of intelligent agent-based appliances.
It further aimed to demonstrate that agent development methods
were suitable for wide acceptance by software developers with
object-oriented but no agent-oriented experience. We first
describe initial requirements engineering activities undertaken
using the ROADMAP methodology and fast prototyping
performed by using the RAP/AOR methodology. We next
address the design and implementation of the intelligent agent
system, focusing on a subsystem which handles communication
in the case of an intruder break-in, and report on field testing.
We finally analyse the results and draw conclusions. Overall,
this paper defines and demonstrates a systematic approach for
achieving systems of intelligent agents of industrial strength.

1. Introduction

 A software agent is commonly understood as an active
entity, possessing the features of autonomy,
proactiveness, responsiveness and social behaviour [8].
Because of its distributed nature, a promising area of
application for intelligent agents is in building a smart
home where appliances interoperate seamlessly for the
benefit of the home occupants. This application area can
be naturally modelled as a society of interacting
autonomous entities – agents.
 The Intelligent Lifestyle project, conducted at the
University of Melbourne in 2004, was part of an ongoing
collaboration between Adacel Technologies and the
Intelligent Agent Lab at the University of Melbourne,
investigating how agent technologies can be effectively
deployed in industrial and commercial settings. The
collaboration includes an Industry Linkage Project to
build a system of ‘invisibly intelligent’ appliances

supported through the Australian Research Council, and a
project to develop a methodology for developing agent-
based systems for wide use supported by the Smart
Internet Cooperative Research Centre. As part of this
latter project, an Adacel engineer with no previous agent
experience participated in application of the
methodology. The Intelligent Lifestyle project aimed to
design and build an industrial-strength system of
intelligent agents, for the explicit purpose of performing
field testing and providing demonstrations of intelligent
agents. While the Intelligent Lifestyle project was initially
accomplished by using the ROADMAP methodology [1,
6], we later complemented the software engineering
process by fast prototyping using the RAP/AOR
methodology [2].
 In this paper, we first explain the requirements
engineering activities conducted for the Intelligent
Lifestyle project by means of the ROADMAP
methodology [1, 6]. We then dwell on rapid prototyping
by using the RAP/AOR methodology [2] and describe the
simulation by using the JADE (JADE, http://jade.cselt.it/)
agent platform [7]. After that, we address the design and
implementation of a system of intelligent agents and
report on the field testing that was performed at the
University of Melbourne by a team consisting of 15
graduate and undergraduate students. Finally, we analyse
the results and draw conclusions.

2. Requirements engineering

 Initial requirements engineering for the Intelligent
Lifestyle project was performed by means of the
ROADMAP methodology [1, 6]. Figure 1 shows the
models employed by the ROADMAP methodology. In
the ROADMAP methodology, the models are divided
vertically into Domain Specific Models, Application
Specific Models and Reusable Services Models. The
Environment Model and Knowledge Model represent

information about a specific domain and belong to
multiple phases in the software development lifecycle.
The Goal Model, Role Model, Agent Model and
Interaction Model are tied to the system being modelled.
Generic and reusable components in the system are
captured by the Social Model and Service Model. The
models are also split horizontally by dotted horizontal
lines according to the analysis and design phases so that
the Environment Model, Knowledge Model, Goal Model,
Role Model and Social Model are parts of the domain
analysis phase, while the Agent Model, Interaction Model
and Service Model form parts of the design phase.

Figure 1. ROADMAP Analysis and Design Models.

2.1. The Environment Model and Knowledge
Model

 As the first step of requirements engineering, the
Environment Model and Knowledge Model of the
problem domain were created. The Environment Model
consists of two high level environments – physical and
conceptual – where each of them is further decomposed
into specific zones. The conceptual environments are
non-physical environments with which the system
interacts, such as the Internet, Bluetooth and the
SMS/GMS environments used in the Intelligent Lifestyle
project.
 The knowledge model is a way of formalizing the
knowledge aspect of the system. It can be viewed as an
ontology providing a common framework of knowledge
for the agents of the problem domain. Figure 2 shows an
example of a Knowledge Model component that was
designed in order to enable the system to schedule
activities and check users’ schedules.

Figure 2. The Schedule Knowledge Component.

2.2. The Goal Models

 The Goal Model provides a high level overview of the
system requirements. Its main objective is to enable both
domain experts and developers to pinpoint the goals of
the system and thus the roles the system needs to fulfil in
order to meet those goals. Implementation details are not
described at all as they are of no concern in the analysis
stage.
 The Goal Model can be considered as a container of
three components: Goals, Quality Goals and Roles. A
Goal is a representation of a functional requirement of the
system. A Quality Goal, as its name implies, is a non-
functional or quality requirement of the system. We use
the term quality goal instead of the artificial intelligence
community’s term of soft goal because we wish to
emphasize the engineering aspects of the ROADMAP
methodology that are necessary to ensure controlled
delivery of desired outcomes. A Role is some capacity or
position that the system requires in order to achieve its
Goals. As Figure 3 reflects, Goals and Quality Goals can
be further decomposed into smaller related sub-Goals and
sub-Quality Goals.

Figure 3. The Goal Model of intruder handling.

Figure 3 represents the Goal Model of the intruder
handling scenario. In the diagram, the Role “Intruder
Handler” has only one Goal which is to handle an
intruder. This goal is characterized by the Quality Goal to
provide an appropriate and timely response to a possible
intruder detected. The Goal to handle an intruder can be
decomposed into four sub-Goals – to notice person,
identify intruder, respond and evaluate. There are the
Quality Goals of timely notice and accurate identification
pertaining to the sub-Goals to notice person and identify
intruder, respectively. The sub-Goal to respond, in turn,
has been divided into the sub-Goals to inform police,
inform the visitors and inform the owner. To accomplish
these, the additional Roles “Police”, “Visitor”,
“Scheduler” and “Owner” are required. Please note that
the order in which the sub-Goals are presented in Figure 3
does not per se imply any chronological order in which
they are to be achieved.

2.3. The Role Models

 The Role Model describes the properties of a Role.
The term Role Schema is used interchangeably with Role
Model. The Role Model consists of four elements to
describe the Role:

Role Name: A name identifying the Role.
Description: A textual description of the Role.
Responsibilities: A list of duties/tasks that the Role must
perform in order for a set of Goals and/or Quality Goals
to be achieved.
Constraints: A list of conditions that the Role must take
into consideration when performing its responsibilities.
These include guard conditions, safety conditions and
quality conditions.

 Clearly, this is analogous to the delegation of work
through the creation of positions in a human organisation.
Every employee in the organisation holds a particular
position in order to realise business functions. Different
positions entail different degrees of autonomy, decision
making and responsibilities. Taking this analogy, a Role
Schema is the “position description” for a particular Role.
Table 1 shows the Role Schema created for the Role
“Intruder Handler” shown in the Goal Model in Figure 3.
 The Role and Goal Models, as well as the
Environment Model and Knowledge Model, were created
in close cooperation with the client – our industry partner.
This was facilitated by the use of the Roadmap Editor
Built for Easy development (REBEL) tool [1] for building
the Role and Goal Models.

Table 1. Role Schema for the Intruder Handler.

Role Name Intruder Handler

Description Identifies and responds to the
intruder detected.

Responsibilities

Detect the presence of a person in
the environment.
Check the house schedule.
Take an image of the person.
Compare the image against the
database of known people.
Contact the police and send the
image to them.
Check the house schedule.
Send a message to stay away to
each visitor expected later that day.
Inform the owner that the police are
on their way and the visitors have
been warned not to enter the house.

Constraints

The owner and each person pointed
out by him/her needs to provide in
advance personal information
(face) to be recognised.
A subject to be detected needs to be
seen within the camera’s image
area.
The schedule must be maintained
and entered manually by the user.
Visitors must be within the
coverage area of mobile
communication with their mobile
access terminals switched on.

2.4. Fast Prototyping by RAP/AOR

 Input and feedback from clients is critical in successful
software engineering, so in order to enable our industry
partner to provide feedback about the system to be
developed at as early a stage as possible, the Environment
Model, Knowledge Model and the Goal and Role Models
were turned into executable specifications by using the
RAP/AOR methodology. The Radical Agent-Oriented
Process / Agent-Object-Relationship (RAP/AOR)
methodology of software engineering and simulation has
been introduced in [2] and is based on [3] and [4]. Before
introducing executable models of intruder handling, we
will explain briefly the notation to be used. For further
explanations, please refer to [2].
 An external AOR diagram specified by Figure 4
enables the representation in a single diagram of the types
and instances of institutional, human and artificial (for
example, software) agents1 of a problem domain, together

1 Agent type in RAP/AOR corresponds to Role in ROADMAP.

with their internal agent types and instances and their
beliefs about instances of “private” and external (“shared”
with other agents) object types. There may be attributes
and/or predicates defined for an object type and
relationships (associations) among agent and/or object
types. A predicate, which is visualized as depicted in
Figure 4, may take parameters.
 Figure 4 shows that the graphical notation of AORML
distinguishes between an action event (an event that is
created through the action of an agent, such as a physical
move performed by an Intruder) type and a non-action
event type (for example, types of temporal events or
events created by natural forces). The graphical notation
of AORML further distinguishes between a
communicative action event (or message) type and a non-
communicative (physical) action event type like providing
another agent with a commodity.

Figure 4. The core mental state structure and behaviour
modelling elements of external AOR diagrams.

 The most important behaviour modelling elements of
AORML are reaction rules. As is shown in Figure 4, a
reaction rule is visualized as a circle with incoming and
outgoing arrows drawn within the rectangle of the agent
type or instance whose reaction pattern it represents. Each
reaction rule has exactly one incoming arrow with a solid
arrowhead that specifies the triggering event type. In
addition, there may be ordinary incoming arrows
representing mental state conditions (referring to
corresponding instances of other object types or to the
predicates defined for them). There are two kinds of
outgoing arrows for specifying the performance of
epistemic, physical and communicative actions. An
outgoing arrow with a double arrowhead denotes an
epistemic action (changing beliefs). An outgoing
connector to an action event type denotes the performance
of a physical or communicative action of that type.
 Reaction rules start activities. Each activity belongs to
some activity type which we define as a prototypical job
function in an organization that specifies a particular way
of doing something by performing one or more
elementary epistemic, physical and communicative
actions in a non-zero span of time by an agent.

There are activity border events of the start-of-activity
and end-of-activity types implicitly associated with the
beginning and end of each activity. As Figure 4 reflects,
the start-of-activity event type is graphically represented
by an empty circle with the outgoing arrow to the symbol
of the sub-activity type or internal reaction rule.
 Figure 5 represents an external AOR diagram that
models the scenario of intruder handling. The outermost
activity of the scenario is started by reaction rule R1 that
is triggered by an action event of the type
move(IntruderDescription). This action event is created by an
Intruder and perceived by the IntruderHandler. Note that the
activity types modelled in the external AOR diagram in
Figure 5 correspond to the Goals represented in the Goal
Model in Figure 3. In other words, an activity of some
type achieves a Goal of the respective type. For example,
an activity of the type “Respond” achieves a Goal to
respond to the detection of an Intruder. For the sake of
clarity of Figure 5, the sub-activity type “Inform visitors”,
which involves the agent type Scheduler, is not refined in
the figure. Reaction rule R2 represents checking of the
Boolean value of the predicate isKnown attached to the
object type Person. If the predicate evaluates to false, that
is, if the person described by the IntruderDescription is not
recognized, an activity of the type “Respond” is started.
 Please note that the real scenario of intruder detection
is more complicated than the scenario created for
simulation purposes that is represented in Figure 5. For
example, the real scenario includes checking the house
schedule to see if someone, like a serviceman, has been
scheduled to be in the house.
 Reaction rules are also used for modelling elementary
epistemic, physical and communicative actions. For
example, reaction rule R1 in Figure 5 prescribes the
creation of an instance of the shared object type
IntruderDescription, while reaction rules R3 and R4 specify
the performance of the respective communicative actions
(sending of messages).
 In [4] we have shown how external AOR diagrams can
be straightforwardly transformed into the programming
constructs of the Java Agent Development Environment
(JADE, http://jade.cselt.it/) agent platform [7]. This
enables fast prototyping by executable specifications. We
turned the external AOR diagram represented in Figure 5
into the implementation constructs of JADE. As a result,
we obtained a dynamic model which enables to simulate
the scenario of intruder handling and experiment with it.
In the model, the agent types IntruderHandler, Police, Owner
and Scheduler were represented as the respective agent
types of JADE. The shared object type IntruderDescription
and the private object type Person were implemented as
the corresponding Java object types and the predicate
isKnown was represented in the form of a method attached
to the object type Person.

Figure 5. The external AOR diagram of intruder handling.

3. Design

Once the industry partner and the project team had a
clear understanding of the system to be developed, it was
appropriate to move on to the stage of designing an agent-
based system. The design goals – the properties
considered to be vital to the system – were:

• Adaptability in dynamic environment – Agents must
be aware of context and adapt to changes. They
should be able to change their plans during execution
if the environment changes. This should be done as
seamlessly to the human eyes as possible.

• Robustness – The architecture must facilitate
consistent behaviour of the system as the system will
be used by the industry partner for demonstration
purposes. The system should always provide the
required service whenever desired.

• Multi-agent collaboration – Agents must share
information and work collaboratively to make correct
deductions while achieving goals.

 We will now address architectural and detailed design
of the intruder handling system.

3.1. Architectural design

 The project team identified two feasible ways to
design a system of intelligent agent-based appliances.
One way is to use a vertical layered architecture whereby
information is passed up from low-level input devices,
then to upper layers where that information is added to
and converted to high-level representations finally ending
up being used by applications. The other way is to use a
horizontal design whereby agents provide information
relating to their interests to other agents. In this way
agents provide data as well as services to other agents and
can thus access situational context from the variety of
agents dealing with specific context. However, there is
little control over contextual information which makes it
hard to see how ideas such as conflicting information or
information accuracy could be allowed for. History of
information also seems difficult to add to such a design.
In addition, the design cannot handle large (for example,
more than a hundred) numbers of agents as it is
complicated to produce a hierarchy of agents. Thus a
large proportion of agents would be on the same level and
use the same blackboard. This is not scalable.
Considering our two options, therefore, the project team
decided to adopt a vertical, two-tiered architecture
consisting of an application tier and a context tier. The

Context Tier provides a broad base of information both
directly gathered from input devices and interpreted
through the analysis of various contextual information.
The Application Tier comprises the usage of that
information to provide services to users and interact with
users through output devices, while the Context Tier does
not have any access to output devices.

3.1.1. The Context Tier. There are three main ways to
describe contextual information – centralized
(“Blackboard”), decentralized (“Yellow pages”) and
hybrid (a combination of “Blackboard” and “Yellow
pages”).
 The project team decided to use the “Blackboard”
architecture because of its relative simplicity, allowance
for conflict resolution and accuracy feedback. The
Context Tier follows a layered architecture whereby
entities within a layer are aware only of layers above and
below them. Such a separation allows for a cleaner design
and simplifies the later programming. It also satisfies the
design goal of scalability as changes to a layer affect only
the layer above it.
 There are four layers in the architecture – sensors,
cues, context soup and context resolution. Sensors
represent sources of information. They are generally
physical devices attached to a personal computer, such as
a sensor for intruder detection, camera or microphone,
although they could also be virtual sources of information
such as the Internet. Cues have been introduced to
decouple general information from specific and
interpreted information. They extract specific information
streams from sensors. For example, a microphone sensor
may contain pitch, loudness, frequency as well as
language information. Cues extract that information and,
if needed, convert it into more accessible formats. The
context soup consists of the blackboard that context
providers post contextual information to along with the
associated meta-context data, such as accuracy of the
context data and information about the context provider.
The blackboard is considered to be a black box in the
architectural design. Context providers send information
to the blackboard, where it is stored and its history is
maintained. The context resolution layer comprises the
interface to the Application Tier, as is shown in Figure 6.
There are two main entities in this layer. The first is the
Resolver which takes contextual information provided by
context providers and complements or modifies the meta-
context data. In the case of multiple sources of the same
contextual information, the Resolver mediates between
them to resolve conflicting data. The second entity in this
layer is the Context Gateway which acts as a portal into
the Context Tier for the Application Tier. Applications
query the Context Gateway for contextual information
that it retrieves from the blackboard and forwards to the
applications.

3.1.2. The Application Tier. The Application Tier is the
upper layer of the agent-based system of intelligent
appliances where system-level services are provided. The
Application Tier consists of two types of software agents.
There are actuator agents that receive requests from other
agents to perform an action using an actuator (that is, an
output device). For example, actors of the types Police and
Owner modelled in Figure 6 are represented by the
CommunicatorAgent that contacts each actor in an
appropriate way like through a Personal Digital Assistant
(PDA) or a mobile phone. These agents are quite simple
and will not be further described. There are also agents
that are responsible for completing specific high level
tasks, such as greeting a user, guiding a user from one
location to another and handling an intruder. The overall
design of these individual agents follows the Belief-
Desire-Intention (BDI) architecture [5]. The beliefs of an
agent in our system describe the situation the agent is in.
The beliefs contain information the agent believes about
its environment (that is, the contextual information). The
beliefs also contain information that is internal to the
agent. Desires are the situations that an agent is willing to
bring about. They describe intentions the agent is
supposed to achieve once certain beliefs about the
environment or the agent itself hold. Obligations for an
agent in the system are the services that the agent
provides to other agents. They could be imagined as
intentions that are imposed by external parties instead of
internal beliefs. Intentions are actions to be taken to fulfil
certain desires once certain beliefs are present. These
actions may not be specific enough and are often too
abstract to be executed by an agent. In order to carry out
its intentions, an agent constructs plans, which are
sequences of instructions or commands to be followed by
it. Because plans consist of actions to be performed that
will affect the external environment, they need to be
resolved, that is checked against all other plans of the
agent to make sure no conflict will result from trying to
affect the environment.
 Figure 6 details the architecture of the Application Tier
in a graphical representation where the ovals represent
processes or “processors” and the cylinders represent
storages. As Figure 6 reflects, there are three layers in the
Application Tier – Situation Assessment, Response
Planning and Execution & Evaluation. The main purpose
of the Situation Assessment layer is to produce the correct
and complete set of beliefs. The three main objectives for
the Response Planning layer are to maintain current
desires and generate new desires, identify and decide to
pursue the realizable intentions and produce a detailed
step-by-step plan to carry out each intention to be
realized. The Executor is responsible for interfacing with
the physical actuators by generating and sending out
correct commands to different devices, such as PDAs and
mobile phones.

Figure 6. The Application Tier architecture.

3.2. Detailed design

 For the scenarios to be implemented, including the
scenario of intelligent intruder handling, the models of
detailed design were produced.

Table 2. Comparison of agent frameworks.

Criterion 3APL JADE OAA
Familiarity with

language and tools
3.5 4.0 4.5

Level of abstraction 4.5 3.5 3.0
Ease of deployment 2.0 4.0 4.0
Ease of debugging 2.5 3.5 4.0
Technical support 2.0 3.0 3.5

Documentation 2.5 4.5 4.5
Stability and

maturity
2.0 3.0 3.5

How well does it fit
into architectural

design?

4.0 3.5 3.0

How many features
need to be dropped
from architectural
design to use it?

4.5 4.5 4.5

The interface with
other systems and

code

3.5 4.0 3.5

Sum 31 37.5 37.0

 The agents of the Application Tier need to
communicate with each other. The project team
decided that designing a communication mechanism
from scratch would be beyond the scale of the project.
For this reason, and because there are agent
frameworks (infrastructures where inter-agent
communication has already been defined and
implemented) freely available, it was decided to pick
an agent framework to be used. To this end, three
freely available frameworks – JADE, Open Agent
Architecture (OAA) and 3APL – were chosen for
detailed evaluation.
 Each framework was evaluated using the five-point
scale according to the list of ten criteria as is reflected
by Table 2. The values in the table have been achieved
by averaging the points coming from each of the six
members of the design team. As a result, the JADE
agent platform was chosen due to its stability, language
features and simplicity. This decision was made
independently from using JADE for the fast
prototyping described in Section 2.4.
 Subsequently decisions of detailed design for the
Context Tier and the Application Tier were made. For
the Context Tier, the Web Server solution was chosen.
Due to the necessity of having some context providers
as non-Java programs, the extra flexibility of having a
Web Server accessible from any language outweighed
the tedium of coding the Web Server.
 In the Web Server design of the Context Tier
depicted in Figure 7, the context providers post
information to the Web Server which resolves any
conflicts between contextual information, thus acting

as the Resolver described in Section 3.1.1. The Web
Server then requests the Blackboard Manager to add
the contextual information to the storage of context
data. In this way, the Context Gateway has direct
access to resolved contextual information, the Resolver
(Web Server) is responsible for inserting contextual
information and the Blackboard Manager deletes and
updates contextual information as needed.

Figure 7. The Web Server design of the Context Tier.

 Figure 8 shows the class diagram depicting detailed
design of the Application Tier. As it can be seen from
the diagram, there are three agent classes – BDIAgent,
PlanResolver and TextToSpeech – that extend the Agent
class implemented by the JADE framework. The
BDIAgent is the base agent class that gets extended by
more specific agent classes of the Application Tier,
such as Greeter represented in Figure 8. It has abstract
methods that are implemented by agent classes
extending this class. An instance of BDIAgent has
reference to one or more Context objects (not shown in
Figure 8), one or more Intention objects and exactly one
Plan object. A Context object is used to encapsulate
contextual information. The Context Gateway of the
Context Tier will send an object of this class to the
agents interested in and registered for receiving
contextual information of the corresponding type. The
Intention class is an abstract class that describes Intention
objects. An Intention object has the attribute that is used
to specify one of two types: obligation or intention. An
obligation is a request from another agent while an
intention results from a combination of the agent’s
beliefs. The Intention class can be extended for different

functionalities provided by the Application Tier. For
example, Figure 8 shows that a greeting intention is
represented by a GreetIntention object that has attributes
greetee and timeToGreet so that the intention of who and
when to greet can be specified clearly by the object.
The Plan object represents a plan formulated by a
BDIagent. A plan has an intention corresponding to this
plan, a priority level and a vector of actuators (output
devices) to be used.
 The Greeter class was the only agent class extending
the BDIAgent class in the first build of the system of
intelligent agent-based appliances. It was accompanied
by the Guider and IntruderHandler classes in the second
and third builds.
 The second class extending the Agent class
implemented by the JADE framework is PlanResolver.
Its instance receives a plan sent by a BDIAgent and
either approves or disapproves it.
 The third class represented in Figure 8 that extends
the Agent class of the JADE framework is Text-
ToSpeech. Its instance receives from a BDIAgent a
message to be executed and calls a module
implemented in C++ that converts text to speech.

Figure 8. The class diagram of the Application Tier.

4. Implementation and testing

 In addition to the design decisions reported in
Sections 3.1. and 3.2., the implementation was based
on some decisions that depended on the available
technology. For example, it appeared that a human
agent playing the Owner role was needed to decide
whether a person detected should be treated as an
intruder because the technology required for
comparing an image of a person against the database
of known people was not mature enough.
 We performed field testing with the intruder
handling scenario. In the scenario, when a person
enters the house area, the Image Recogniser (Web
camera) detects the presence of a person and captures

his/her face. Then, the Context Gateway sends the
contextual information pertaining to the person
detected from the Context Tier to the
IntruderHandlerAgent of the Application Tier. This agent
is intended to run in parallel with humans acting out
the scenario. It first calls the SchedulerAgent to check
the house schedule to see if someone, for example, a
serviceman has been scheduled to be in the house at
that time. After that, the agent checks with the owner
whether he/she knows the person detected. Once the
owner has answered “No” (see Figure 9) and no one
has been scheduled to be in the house, the
IntruderHandlerAgent contacts the police to report the
intrusion. Followingly, the IntruderHandlerAgent again
calls the SchedulerAgent to check the house schedule to
see whether there are any visitors scheduled to come
during a specified time period. If there are scheduled
visitors, the SchedulerAgent retrieves a list of their
names and contact data and sends a message with this
information to the IntruderHandlerAgent. Subsequently,
the IntruderHandlerAgent contacts the scheduled visitors
to warn them to stay away. Finally, the
IntruderHandlerAgent informs the owner that both the
police and visitors have been contacted. Messages with
the owner, police and visitors are exchanged through
the CommunicatorAgent.
 In the course of field testing performed during the
project, the project team found some technologies
applied, such as JADE, PDA and Microsoft Speech
(for text-to-speech and speech-to-text conversions), to
be very useful for producing solutions of industrial
strength. However, some other technical solutions
applied, such as OpenCV used for image processing
and Bluetooth, did not perform satisfactorily. The
project team also recognized the opportunities for
using alternative technologies, like mobile phones and
SMS-messages instead of PDAs.
 In the course of testing, heuristic evaluation of the
system was performed by three student users who were
different from implementers. The following metric was
used for the scoring system of heuristic evaluation:

• Level 1: the application fulfils this particular
criterion 0 – 20% of the time.

• Level 2: the application fulfils this particular
criterion 21 – 40% of the time.

• Level 3: the application fulfils this particular
criterion 41 – 60% of the time.

• Level 4: the application fulfils this particular
criterion 61 – 80% of the time.

• Level 5: the application fulfils this particular
criterion 81 – 100% of the time.

Table 3. Heuristic evaluation of the Intelligent Lifestyle
application.

Criterion User 1
(PDA)

User 2
(STT)

User 3
(TTS)

Response time 0 N/A 4
Visibility of messages by

the system
4 N/A N/A

Understandability of
messages by the system

3 N/A 3

Error prevention 2.5 N/A N/A
Reversible actions 0 N/A N/A

Feedback by the system 1 3 4
Consistency 4 5 N/A

Normal interaction with
voice recognition

N/A 5 N/A

Accuracy of voice
recognition

N/A 5 N/A

Friendliness of the
system’s response

N/A N/A 3

Variety of phrases and
tones used by the system

N/A N/A 1

Human-like tone N/A N/A 2
Audibility of system’s

response
N/A N/A 2

Average 2.07 4.5 2.71

 Different users focused on testing the following
features of the system: Personal Digital Assistant
(PDA), Speech-To-Text (STT) and Text-To-Speech
(TTS) conversions. Therefore not all criteria were
considered by each user. The feedback given by the
users is summarized in Table 3. The testing results
presented in Table 3 reflect that the usability of the
application could be further improved.
 The video made of the field testing is available as
http://www.cs.mu.oz.au/~kuldar/final.swf

Figure 9. A snapshot of the video made of the field

testing.

5. Conclusions

The models produced by our requirements
engineering activities proved useful for understanding
the problem domain. Moreover, it was possible to
execute (simulate) domain models which helped to
understand how the system to be designed should look
and function. However, we found that a real industrial-
strength implementation required architectural and
design decisions that could not be predicted from the
domain analysis phase. In other words, it appears to be
hard to achieve the design and implementation of a
robust, efficient software system by just extending the
models of the problem domain. This seems to be due to
software Quality Goals falling into two separate
categories: qualities desired of the functionality of the
system, such as timeliness, accuracy and politeness,
and qualities desired of the construction of the system,
such as robustness, efficiency and scalability. These
categories are clearly related, but the relation is neither
simple nor obvious, and requires further work by both
the software agents’ and the software engineering
communities. For example, there was no
straightforward manner in which the external AOR
diagram represented in Figure 5 could have been
turned into the design model and implementation
consisting of the Context and Application Tiers. We
believe that this was at least partly due to the fact that
some design decisions were influenced by trends in the
software agents’ community. The fast prototyping via
RAP/AOR reported in Section 2.4. made it clear that
the scenario of intruder handling does not really need
complicated BDI agents but could be successfully
implemented by means of less sophisticated reactive
agents instead. Based on the experience of
transforming external AOR diagrams into the
programming constructs of JADE reported in Section
2.4., it should be possible to generate, from domain
models, design and implementation solutions
consisting of reactive agents. As reflected in Figure 1,
this would be consistent with the ROADMAP
methodology, which covers the whole process of
software engineering from requirements to
implementation. Automated software engineering of
this kind would also comply with the Model Driven
Architecture (MDA, http://www.omg.arg/mda/) where
computation-independent domain models are
transformed into platform-independent design models
that are then turned into platform-specific models and
implementations. We intend to investigate automated
software engineering from domain models to reactive
agents in the future.

We also believe that different tools are necessary
for achieving automated agent-oriented software
engineering. This project served as a useful test case
for developing the Roadmap Editor Built for Easy
development (REBEL) tool [1] for building Goal
Models and Role Models.

We also found that in the future, more emphasis
should be put on exception handling. For example,
how to proceed if the owner is not contactable?

6. Acknowledgements

 We are thankful to the Australian Research Council
(Industry Linkage Project number 0348797), the Smart
Internet Cooperative Research Centre (grant number
SPA-07), the Adacel Technologies and to Kendall
Lister and Thomas Juan.

7. References

[1] Kuan, P. P., Karunasakera, S., Sterling, L. Improving

Goal and Role Oriented Analysis for Agent Based
Systems. In Proceedings of the 16th Australian
Software Engineering Conference (ASWEC 2005), 31
March - 1 April 2005, Brisbane, Australia. IEEE 2005,
40-47.

[2] Taveter, K., Wagner, G. Towards radical agent-oriented
software engineering processes based on AOR
modelling. In B. Henderson-Sellers & P. Giorgini
(Eds.), Agent-oriented methodologies (pp. 277-316).
Hershey, PA: Idea Group, 2005.

[3] Wagner, G. The agent-object-relationship meta-model:
Towards a unified view of state and behavior.
Information Systems, 28(5), 2003, 475-504.

[4] Taveter, K. A multi-perspective methodology for agent-
oriented business modelling and simulation. PhD thesis,
Tallinn University of Technology, Estonia, 2004.

[5] Rao, A. S., Georgeff, M. P. BDI Agents: From Theory
to Practice. In Victor R. Lesser and Les Gasser (Eds.),
Proceedings of the First International Conference on
Multiagent Systems, June 12-14, 1995, San Francisco,
California, USA (pp. 312-319). The MIT Press, 1995.

[6] Juan, T., Sterling, L. The ROADMAP Meta-model for
Intelligent Adaptive Multi-agent Systems in Open
Environments. In P. Giorgini, J. P. Muller, J. Odell
(Eds.), Agent-Oriented Software Engineering IV, 4th
International Workshop, AOSE 2003, Melbourne,
Australia, July 15, 2003, Revised Papers (LNCS, Vol.
2935, pp. 826-837). Berlin: Springer-Verlag, 2003.

[7] Bellifemine, F., Poggi, A. & Rimassa, G. (2001).
Developing multi-agent systems with a FIPA-compliant
agent framework. Software – Practice and Experience,
31 (2001), 103-128.

[8] Jennings, N. R., Sycara, K., Wooldridge, M. A
Roadmap of Agent Research and Development.
Autonomous Agents and Multi-Agent Systems, 1(1), 7-
38, 1998.

