
1

THESIS ON INFORMATICS AND SYSTEM ENGINEERING

A MULTI-PERSPECTIVE METHODOLOGY FOR
AGENT-ORIENTED BUSINESS MODELLING AND SIMULATION

KULDAR TAVETER

 2

Faculty of Information Technology,

Department of Informatics,

TALLINN UNIVERSITY OF TECHNOLOGY

Dissertation is accepted for the commencement of the degree of Doctor of Philosophy in
Engineering on………….., 2004.

Supervisor: Prof Emeritus Boris Tamm (up to 5.2.2002)

Co-supervisor: Prof Dr Gerd Wagner, Chair/Professor in Internet Technologies, Cottbus University,
Germany; Assistant Professor of Information Systems, Eindhoven University of
Technology, the Netherlands

Opponents: Prof Dr Brian Henderson-Sellers, Professor of Information Systems, Director of the
Centre for Object Technology Applications and Research, University of Technology,
Sydney, Australia

 Dr Frank Dignum, Associate Professor, Institute of Information and Computing
 Sciences, Utrecht University, the Netherlands

Commencement: 12 June 2004

Declaration

Hereby I declare that this doctoral thesis, my original investigation and achievement, submitted for the
doctoral degree at Tallinn University of Technology, has not been submitted before for any degree or
examination.

Signature of candidate:

Date:

Copyright Kuldar Taveter 2004

ISSN

ISBN

 3

 To my parents

 To Siiri

 To Eliise and Sanne

 4

 5

Abstract

With the development of Internet and communication facilities, the importance of distributed
information systems both within a given enterprise and between enterprises is increasing. As business
modelling always constitutes the first stage in the lifecycle of an information system, developing such
information systems requires a new modelling paradigm that would put more emphasis on the
modelling of communication and interaction. Agent-Orientation is emerging as such a new paradigm
in business modelling and information systems engineering. Agent-Orientation emphasizes the
fundamental role of actors/agents and their mental state, and of communication and interaction, for
analyzing and designing organizations and organizational information systems. An agent is thus not
just a technological building block (software agent), like it is sometimes understood, but also an
important modelling abstraction that can be used at different logical levels in the creation and
development of an information system.

In this thesis, we first provide new definitions of business rules and business processes and a
classification of business rules that comply with the paradigm of Agent-Orientation. We then make the
scope of Agent-Orientation more precise by defining six views of agent-oriented modelling as an
improvement on the existing business modelling frameworks. These views are the organizational,
informational, interactional, functional, motivational, and behavioural view. Thereafter we evaluate
and compare seven “traditional” business modelling techniques and one agent-oriented software
engineering technique with respect to the six views and argue for the need for a distinctive technique
of agent-oriented business modelling.

The main contribution of this thesis is a technique for agent-oriented business modelling covering all
the views mentioned above and producing executable models. This modelling technique, called the
Business Agents’ Approach, consists of the steps of analysis and design. The analysis is performed by
means of goal-based use cases, while the design is based on a combination of the Agent-Object-
Relationship Modelling Language (AORML) and the Object Constraint Language (OCL), now
forming a part of the Unified Modelling Language (UML). The business modelling technique
proposed by us also draws guidelines for transforming goal-based use cases of the step of analysis to
multi-perspective models of the design step.

For the step of design, we extend the graphical notation of AORML by activity diagrams and describe
how they function. After that, we provide an operational semantics for activity diagrams based on the
semantic framework of Knowledge-Perception-Memory-Commitment (KPMC) agents. We also define
semi-formally the activity modelling language that serves as a foundation for activity diagrams and
outline the way how activity diagrams can be mimicked on the JADE agent platform. After that, we
show how activity diagrams enable to combine models of all six views of agent-oriented modelling.
Additionally, for creating models of the informational view, we propose some modifications to OCL.
In order to represent models of the interactional view, we elaborate on the interaction frame diagrams
of AORML.

Finally, we apply the business modelling methodology created by us to the case studies of the ceramic
factory and business-to-business electronic commerce in the field of advertising. The goals of the case
studies are simulating the business processes of these domains and preparing for their automation.

The Business Agents’ Approach thus allows increased capturing of the dynamic and deontic semantics
of business modelling in comparison with e.g. object-oriented modelling approaches, such as UML.
Taking into account that the main motivation for object-oriented modelling stems from software
engineering and not from business modelling, or cognitive modelling, this should not be surprising.

Keywords: agent, actor, business rule, business process, ontology, business modelling, conceptual
modelling, enterprise modelling

 6

Kokkuvõte

Interneti ja kommunikatsioonivõimaluste arenguga kasvab nii ettevõttesiseste kui ka
ettevõtetevaheliste hajutatud infosüsteemide tähtsus. Kuna ärimodelleerimine on alati infosüsteemi
elutsükli esimeseks sammuks, nõuab selliste infosüsteemide loomine uut modelleerimisparadigmat,
mis paneks rohkem rõhku kommunikatsiooni ja interaktsiooni modelleerimisele. Niisuguseks uueks
paradigmaks ärimodelleerimisel ja infosüsteemide loomisel on agentorienteeritus. Agentorienteeritus
rõhutab agentide/tegijate ja nende “vaimsete” olekute ning agentidevahelise kommunikatsiooni ja
interaktsiooni fundamentaalset tähtsust organisatsioonide ja nende infosüsteemide analüüsimisel ja
kavandamisel. Agent ei ole seega mitte ainult tehnoloogiline ehitusblokk (tarkvaraagent), nagu vahel
on aru saadud, vaid ka oluline modelleerimisabstraktsioon, mida saab kasutada infosüsteemi loomise
ja arendamise erinevatel loogilistel tasemetel.

Käesolevas väitekirjas anname kõigepealt ärireeglite ja -protsesside uued definitsioonid ning
ärireeglite uue klassifikatsiooni, mis kõik on vastavuses agentorienteerituse paradigmaga. Pärast seda
täpsustame agentorienteerituse skoopi defineerides olemasolevate ärimodelleerimise raamistike
edasiarendusena agentorienteeritud modelleerimise kuus vaadet. Need vaated on organisatsiooniline,
informatsiooniline, interaktsiooniline, funktsionaalne, motivatsiooniline ja käitumuslik vaade. Seejärel
hindame ja võrdleme seitset “traditsioonilist” ärimodelleerimise menetlusviisi ja ühte agendipõhist
tarkvaratehnikat nimetatud kuue vaate suhtes ning põhjendame erilise menetlusviisi vajadust
agentorienteeritud modelleerimise jaoks.

Käesoleva väitekirja peamine panus ongi agentorienteeritud modelleerimise menetlusviis, mis hõlmab
kõiki ülalnimetatud vaateid ja võimaldab täidetavate mudelite loomist. See menetlusviis, mille
nimetuseks on “Äriagentide lähenemisviis”, koosneb analüüsi ja kavandamise (disaini) sammudest.
Analüüsiks kasutatakse modelleerimist eesmärkidega kasutusjuhtude abil ning kavandamine põhineb
graafilise modelleerimiskeele AORML-i ja OCL-i, mis nüüdseks moodustab UML-i osa,
kombinatsioonil. Meie poolt väljatöötatud menetlusviis sisaldab ka juhiseid analüüsi tulemusena
saadud eesmärkidega kasutusjuhtude teisendamiseks kavandamissammu mitmevaatelisteks
mudeliteks.

Kavandamissammu jaoks täiendame AORML-i graafilist tähistusviisi tegevusdiagrammidega ja
kirjeldame nende funktsioneerimist. Seejärel defineerime tegevusdiagrammide jaoks
operaatorsemantika, mis põhineb KPMC-agentide teoorial. Samuti defineerime poolformaalselt agendi
funktsioonide ja käitumise modelleerimiskeele, mis on tegevusdiagrammide aluseks, ning kirjeldame
viisi, kuidas tegevusdiagramme saab simuleerida JADE agendiplatvormil. Pärast seda näitame kuidas
tegevusdiagrammid võimaldavad agentorienteeritud modelleerimise kõigi kuue vaate mudelite
kombineerimist. Sellele lisaks pakume informatsioonilise vaate mudelite loomiseks välja rea OCL-i
modifikatsioone ning arendame interaktsioonilise vaate mudelite loomiseks edasi AORML-i
interaktsioonidiagramme.

Lõpuks rakendame meie poolt loodud modelleerimismetodoloogiat keraamikatehase
juhtumianalüüsile ja ettevõtetevahelise elektronkaubanduse juhtumianalüüsile reklaaminduses.
Juhtumianalüüside eesmärkideks on nimetatud valdkondade äriprotsesside simuleerimine ja
automatiseerimiseks ettevalmistamine.

“Äriagentide lähenemisviis” võimaldab seega ärimodelleerimise dünaamilise ja deontilise semantika
täpsemat esitamist kui näiteks objektorienteeritud modelleerimisviisid nagu UML. Kui võtta arvesse,
et objektorienteeritud modelleerimise peamiseks lähtekohaks on tarkvaratehnika, mitte
ärimodelleerimine või kontseptuaalne modelleerimine, ei ole see üllatav.

Võtmesõnad: agent, tegija, ärireegel, äriprotsess, ontoloogia, ärimodelleerimine, kontseptuaalne
modelleerimine, ettevõtte modelleerimine

 7

Acknowledgements

First of all, I would like to pay reverence to and Thank God for my late supervisor Prof Emeritus Boris
Tamm for offering me invaluable advice in the course of my doctoral studies. In addition to his
scientific encouragement and support, in the spring and summer of 2001 he even provided me with a
corner in his office, so that I could work on my thesis. Unfortunately, it is too late to thank him
personally.

I would also like to express the warmest and kindest thanks to my co-supervisor Prof Gerd Wagner
from Cottbus University and the Eindhoven University of Technology. His scientific guidance and
pressure to finalize the thesis is beyond thanks. It is the results of his previous research work that this
thesis builds on.

Add Reet Hääl and her colleagues from Tallinn Ceramic Factory to the list of people that were
irreplaceable in helping me get my thesis finished. Thank you all, very much, for enabling me to use
the factory as a basis for one of the case studies and for providing me with the source materials for the
case study. For the same reason, I extend my thanks to the colleagues Asta Bäck and Hannele
Antikainen from the Technical Research Centre of Finland.

I am grateful to the Estonian Science Foundation which has supported the research work that has led
to this thesis by its grant number 4721. I would also like to thank the Estonian National Culture
Foundation for partial funding of my attendance at the Conference on Conceptual Modelling in Japan.
I bow many times towards these two Foundations from Estonia.

If it wasn’t for the vacation of three months and numerous unpaid vacations to work on my thesis,
complements of the Technical Research Centre of Finland, writing of this thesis would still have been
under way. Thank you Technical Research Centre of Finland, for helping me finish the thesis this way.

I would also like to thank Prof Seppo Linnainmaa and Aarno Lehtola for enabling me to attend
conferences and other research events related to my thesis. These conferences and events were crucial
to my thesis. Also, many thanks to the leading group and team of the Plug-and-Trade B2B research
project where the results of this thesis have been applied.

It is with grateful memories I recall the help and advice that I have received at different phases of
doing my Ph.D. work from Director Rein Kuusik and Prof Jaak Tepandi from the Department of
Informatics of Tallinn University of Technology.

Thanks to Bob McDonald from Oregon, United States for proofreading my long thesis and checking
the English grammar and spelling.

The accomplishing of this thesis would have been impossible without the enormous support that I
have received from my wonderful family and parents. My parents have always surrounded me with
utmost care and love. In one way or another, they have led me from my early childhood towards a
career as a researcher. In 2001 - 2004, I stayed for several months with them while preparing different
versions of my thesis.

My wife and children are the best Blessing God could ever give me. They have been so helpful and
understanding through this whole long process. While I have worked on my Ph.D. thesis, I also had
my everyday work. My wonderful wife and children have had to endure me being away from home
almost every Saturday and staying long evenings at work at least two to three evenings per week
throughout the last five years. I missed them during this time. This was the most difficult barrier to
writing my thesis. The time I had to spend away from my family. In addition, I have also spent the
lion’s share of my vacations for the past three years writing down my thesis. I am very much indebted
to my beloved wife Siiri and wonderful daughters Eliise (5 years) and Sanne (2 years) for all that. I am
also thankful to my wife Siiri for the technical help with the editing of the thesis.

And last but not least, I thank our Heavenly Father who has made all this possible, but has also
revealed to us through Jesus Christ that there are more important things already in this world than
writing Ph.D. theses.

Kuldar Taveter

In Espoo, Finland and Randvere, Estonia, 2001 - 2004.

 8

Preface

The author’s interest in business modelling based on business rules took rise in the project of
developing a compiler for the COBOL programming language that he participated in more than ten
years ago. As is generally known, a large number of business rules used to be (and to some extent is
still) embedded in COBOL programs. After business rules have been extracted from computer
programs or newly created, the problem is how to represent them in a structured way. To this end,
quite a few techniques for representing business rules have emerged. However, only a few of them
connect business rules’ modelling to the modelling of business processes and even fewer techniques
do this in a precise and traceable way. As a part of the integration between business rules and
processes, each business rule needs to be attached to a specific actor. Since business rules generally
access data, their integration with information and data models is self-evident. Finally, the event part
of a business rule, which is structured in the Event-Condition-Action manner, serves as an interaction-
related component of the rule. In addition to enabling simulation of business processes, executable
business models achieved this way provide an invaluable support for business process automation
which is gaining momentum.

 9

TABLE OF CONTENTS

ABSTRACT... 5

KOKKUVÕTE.. 6

ACKNOWLEDGEMENTS ... 7

PREFACE.. 8

1. INTRODUCTION .. 12
1.1. BACKGROUND ... 12

1.1.1. Business Rules .. 12
1.1.2. Agent-Oriented Information Systems ... 13

1.2. PROBLEM STATEMENT.. 14
1.3. OUTLINE OF THE THESIS ... 14
1.4. BUSINESS RULES AND PROCESSES .. 16

1.4.1. Definitions and Classification of Business Rules .. 16
1.4.1.1. Business Rules at the Business Level ..16
1.4.1.2. Business Rules and Goals ..17
1.4.1.3. Business Rules at the Level of an Information System ...18

1.4.2. Business Processes ... 18
1.5. BUSINESS MODELLING FRAMEWORKS .. 20

1.5.1. Perspectives on Business Modelling .. 20
1.5.2. The Information Systems Architecture (ISA) Framework ... 20
1.5.3. The Enterprise Model ... 22
1.5.4. Conceptual Framework for Process Modelling by Curtis et al .. 23
1.5.5. Evaluation and Comparison of the Frameworks... 24
1.5.6. Views of Agent-Oriented Modelling... 25
1.5.7. Position of Business Rules in Agent-Oriented Modelling ... 26

1.6. RESEARCH OBJECTIVE .. 26
1.7. RESEARCH SCOPE ... 27
1.8. RESEARCH APPROACH .. 28

2. COMPARATIVE EVALUATION OF BUSINESS MODELLING TECHNIQUES................................. 29
2.1. MODELLING LANGUAGES AND NOTATIONS FOR BUSINESS MODELLING............................... 29

2.1.1. Ross Notation and Proteus ... 29
2.1.1.1. Classification of Rules..29
2.1.1.2. Evaluation...30

2.1.2. Eriksson-Penker Extensions to UML ... 31
2.1.2.1. Modelling of Business Rules..32
2.1.2.2. Evaluation...32

2.1.3. Role Activity Diagrams .. 33
2.1.3.1. Identification of Roles ..33
2.1.3.2. Notation ..33
2.1.3.3. Evaluation...34

2.1.4. i* and Tropos.. 35
2.1.4.1. Analysis of Dependencies ..35
2.1.4.2. Means-Ends Analysis ...36
2.1.4.3. Evaluation...36

2.1.5. CIMOSA.. 37
2.1.5.1. Modelling of Business Rules and Processes..37
2.1.5.2. Evaluation...38

2.2. METHODOLOGIES FOR BUSINESS MODELLING ... 39
2.2.1. Business Rule-Oriented Conceptual Modelling... 39

2.2.1.1. Evaluation...40
2.2.2. Enterprise Knowledge Development (EKD).. 41

2.2.2.1. Evaluation...42
2.2.3. Gaia... 43

2.2.3.1. Evaluation...45
2.3. COMPARISON OF THE BUSINESS MODELLING TECHNIQUES ... 46
2.4. OTHER RELATED WORK.. 47

 10

3. DESCRIPTION OF THE BUSINESS AGENTS’ APPROACH... 50
3.1. THE CASE STUDY OF A CAR RENTAL COMPANY.. 50
3.2. LEVELS OF BUSINESS MODELLING.. 51
3.3. THE METAMODEL OF THE BUSINESS AGENTS’ APPROACH.. 52

3.3.1. Organization Modelling ... 52
3.3.2. Function and Motivation Modelling .. 52
3.3.3. Information Modelling ... 54
3.3.4. Interaction Modelling... 54
3.3.5. Behaviour Modelling .. 54

3.4. OVERVIEW OF THE AGENT-OBJECT-RELATIONSHIP (AOR) MODELLING 55
3.4.1. Object and Agent Types.. 55
3.4.2. Actions and Events ... 56
3.4.3. Commitments and Claims... 56
3.4.4. External AOR Models... 57

3.4.4.1. Reaction Rules and Interaction Pattern Diagrams ...58
3.4.5. A UML Profile of the AOR Metamodel.. 60

3.5. INCORPORATING THE OBJECT CONSTRAINT LANGUAGE .. 62
3.6. EXTENDING AOR MODELLING BY ACTIVITY DIAGRAMS ... 63

3.6.1. Introduction of Activity Diagrams ... 63
3.6.2. Preconditions and Goals of Activities.. 65
3.6.3. The Schema of a Reaction Rule.. 66
3.6.4. Visualization of Preconditions ... 68
3.6.5. Specification and Visualization of Mental Effects ... 69
3.6.6. Operational Semantics of Activity Diagrams .. 72
3.6.7. Activity Modelling Language ... 76

3.7. ANALYSIS UTILIZING USE CASES WITH GOALS... 79
3.7.1. Adaptation of Goal-Based Use Cases to Agent-Oriented Modelling.. 79
3.7.2. Applying Goal-Based Use Cases to the Example of Car Rental ... 81

3.8. DESIGN BY EXTENDED AOR MODELLING.. 88
3.8.1. Organization Modelling ... 88
3.8.2. Information Modelling ... 91

3.8.2.1. Modelling of Derivation Rules...92
3.8.2.2. Modelling of Integrity Constraints...93
3.8.2.3. Extensions to Agent Diagrams...94

3.8.3. Interaction Modelling... 97
3.8.3.1. Representation of Action Event Types ..98
3.8.3.2. Introducing achieve-Construct Type ..98
3.8.3.3. Interaction Ontology...99
3.8.3.4. Example of an Interaction Frame Diagram..100

3.8.4. Function and Motivation Modelling .. 102
3.8.4.1. Describing Activity Types ...102
3.8.4.2. Defining Preconditions and Goals ...104

3.8.5. Behaviour Modelling .. 106
3.8.5.1. Plans of Activity Types ..106
3.8.5.2. Complementing Activity Diagrams ...107
3.8.5.3. Behavioural Patterns...111

3.8.6. Mapping Activity Diagrams to the Constructs of JADE.. 122
3.8.6.1. Organizational and Informational View ..123
3.8.6.2. Interactional View ..124
3.8.6.3. Functional and Behavioural Views ..125

4. CASE STUDIES.. 128
4.1. THE CASE STUDY OF A CERAMIC FACTORY.. 128

4.1.1. Overview of Tallinn Ceramic Factory Ltd... 128
4.1.2. Goals of the Case Study.. 129
4.1.3. Principles of Reactive Scheduling.. 130
4.1.4. Analysis with Goal-Based Use Cases .. 132
4.1.5. Design By Extended AOR Modelling ... 142

4.1.5.1. Organization Modelling ...142
4.1.5.2. Information Modelling ...144
Principles of Creating Scheduling Ontologies ..144
The Scheduling Ontology of the Ceramic Factory ...145
4.1.5.3. Interaction Modelling ...149
4.1.5.4. Function and Goal Modelling ..151
4.1.5.5. Behaviour Modelling..157

 11

4.1.5.6. Simulation of the Models on the JADE Agent Platform ...159
Organizational and Informational View..159
Interactional View ...160
Functional and Behavioural Views ...160

4.2. THE CASE STUDY OF ADVERTISING .. 163
4.2.1. Overview of the Domain... 163
4.2.2. Goals of the Case Study.. 163
4.2.3. Analysis with Goal-Based Use Cases .. 164
4.2.4. Design By Extended AOR Modelling ... 174

4.2.4.1. Organization and Information Modelling ..174
4.2.4.2. Interaction Modelling ...176
4.2.4.3. Function and Goal Modelling ..178
4.2.4.4. Behaviour Modelling..185

5. CONCLUSIONS AND OUTLOOK ... 187
5.1. SUMMARY... 187
5.2. COMPARISON TO OTHER APPROACHES ... 188
5.3. SUMMARY OF CONTRIBUTIONS ... 189
5.4. LIMITATIONS AND OPEN ISSUES .. 190
5.5. ONGOING RESEARCH WORK.. 190
5.6. FUTURE RESEARCH WORK AND APPLICATION AREAS.. 193

REFERENCES.. 194

APPENDIX A. THE GRAMMAR FOR THE PROPOSED MODIFICATION OF OCL.................................. 201

APPENDIX B. THE ACTIVITY MODELLING LANGUAGE ... 204

APPENDIX C. DERIVATION RULES FOR THE CASE STUDY OF CAR RENTAL................................... 205

APPENDIX D. DERIVATION RULES FOR THE CASE STUDY OF THE CERAMIC FACTORY 206

APPENDIX E. AOR ACTIVITY DIAGRAMS FOR THE CASE STUDY OF CAR RENTAL 208

APPENDIX F. AOR ACTIVITY DIAGRAMS FOR THE CASE STUDY OF THE CERAMIC FACTORY 211

APPENDIX G. AOR ACTIVITY DIAGRAMS FOR THE CASE STUDY OF ADVERTISING 226

APPENDIX H. PUBLICATIONS .. 244

 12

1. INTRODUCTION

1.1. BACKGROUND

1.1.1. Business Rules

According to [Zave97a], requirements engineering must address the contextual goals why software is
needed, the functionalities the software has to accomplish to achieve those goals, and the constraints
restricting how the software accomplishing those functions is to be designed and implemented. As it
can be seen, in the center of requirements are functional requirements which are based on
organizational goals and determine and restrict the design and implementation of the software. It is
claimed in [Gottesdiener99] that the true essence of functional requirements is made up of business
rules which “exist only to support the goals of the business”. This opinion is also supported in
[Sandy99], where it is stated that an important reason for the failure of poorly designed systems to
satisfy important organizational requirements is a lack of explicit analysis of the organizational rules.
Also numerous other sources, like [Loucopoulos91], [Moriarty93], [Herbst97], [BR00], and [Ross03],
emphasize the importance of business rules in requirements acquisition.
 Historically, most of the research and development work in the area of business rules is connected
to active databases. It originated in 1988 when Dayal proposed in [Dayal88] the notion of Event-
Condition-Action (ECA) rule in the context of active databases. Later on, this line of research has been
continued in [Bussler94], [Halpin96], [Herbst97], [Ross97], [Berndtsson97], and [Kappel98], among
others. A few months later than the paper [Dayal88] appeared, Van Assche proposed in
[VanAssche88] independently When-If-Then rules which, upon close inspection, are the same as
Dayal’s ECA rules. The difference between them is that ECA rules are defined from a data point of
view, while the perspective of When-If-Then rules is more process-oriented. The research direction of
When-If-Then rules has been continued in [Loucopoulos91] and more recently in [Kardasis03]. The
rules in approaches of both kinds form elements of a centralized business rules repository and are thus
not attached to any organizational agents (actors).
 According to [Sandy99], North-American and European views on business rules can be
distinguished. The most notable representatives of the North-American view are Halpin [Halpin96],
Ross [Ross97], and the GUIDE project [BR00]. Within the North-American view, business rules are
defined as constraints upon creation, updating, and removal of persistent data. The European view is
best represented by Herbst [Herbst97]. This view structures rules directly according to the Event-
Condition-Action technique used in active database research. It has been concluded in [Hurlbut98] that
under the North-American view each rule is decomposed into component pieces with accompanying
graphical notation, such as constraints and attributes, while the European view treats rules in a
behavioural context, such as Event-Condition-Action statements. It is thus an interesting observation
that just like at the birth of the notion of business rule, the European view on business rules is still
more process-oriented than the North-American one.
 In [Bussler94] and [Kappel98], ECA rules associated with an active database were used for agent
coordination in a workflow management system. In both works, a business process is characterized by
functional, behavioural, informational, and organizational aspects where agents (either human or
artificial) are the basic elements of an organization. The activities performed by the agents are
coordinated and synchronized by centralized ECA rules.

The level of abstraction of the notion of ECA rule is too low to employ it in the process of
requirements acquisition, because, according to [Zave97b], there should be nothing in the
requirements that could be considered as an implementation bias (like the association of an ECA rule
with an active database). To the best of our knowledge, Wagner was the first one who brought ECA
rules to a higher level of abstraction by defining in [Wagner96] and [Wagner98] a generalized
reaction rule as a rule determining the behaviour of an agent (actor) in response to environment events
perceived by the agent and to communication events created by communication acts of other agents. A
few years later, in a paper by Odell [Odell99], a business rule of a reactive agent was expressed in the
WHEN event IF condition(s) THEN action form, and it was claimed that reactive agent behaviour can be
described using such business rules.
 In [Berndtsson97], a methodology of generating ECA rules from models of high-level speech acts
by state diagrams for a specific active database system associated with an agent was proposed. As far
as we know, this was to be the first work in the active database community where ECA rules were
attached to agents. However, the work described in [Berndtsson97] also had the implementation bias
towards active database systems that was mentioned earlier.

 13

1.1.2. Agent-Oriented Information Systems

We claim that business rules can be most naturally described and defined using an agent-oriented
approach. Agent is an emerging abstraction that the field of business information systems may also
benefit from. Agent is understood as an active entity, possessing the features of autonomy,
proactiveness, responsiveness, and social behaviour [Jennings98] in contrast to a passive entity meant
for representing information – object. Agents thus promote autonomous action and decision-making
which enables peer-to-peer interaction, while objects are better suited to the more rigid client-server
model [Barbuceanu99].

According to [Wagner03a], there are several approaches to defining agents in the literature, only
two of them being relevant for the purposes of this thesis:

1. The software engineering approach emphasizes the significance of application-independent
high-level agent-to-agent communication as a basis for general software interoperability. E.g.,
in [Genesereth94], the following definition of agents is proposed: “An entity is a software
agent if and only if it communicates correctly in an agent communication language.”

2. The mentalistic approach, based on the knowledge representation paradigm of AI, points out
that the state of an agent consists of mental components such as beliefs, perceptions, memory,
commitments, expectations, goals, and intentions, and its behaviour is the result of the
concurrent operation of its perception (or event handling) system, its knowledge system
(comprising an update and an inference operation), and its action system (responsible for
epistemic, communicative, and physical actions and reactions). E.g., in the approach of
[Shoham93], “an agent is an entity whose state is viewed as consisting of mental components
such as beliefs, capabilities, choices, and commitments.”

One of the cornerstones of the emerging paradigm of Agent-Orientation is an ontological
distinction between agents and objects, according to which agents are active entities that can perceive
events, perform actions, communicate, or make commitments. Ordinary objects are passive entities
with no such capacities.

Agent-Orientation offers a range of high-level abstractions that facilitate the conceptual and
technical integration of communication and interaction with established information system
technology. Agent-Orientation is highly significant for business information systems since business
processes are driven by and directed towards agents (or actors1), and hence have to comply with the
physical and social dynamics of interacting individuals and institutions. Agent-Orientation emphasizes
the fundamental role of agents and their mental state, and of communication and interaction, for
analyzing and designing organizations and organizational information systems. This turns out to be
crucial for a proper understanding of business rules. Since these rules define and constrain the
interactions among business agents, they have to refer to the components of their mental state, such as
the knowledge/information and the commitments of an organization.

An agent is thus not just a technological building block (software agent) like it is sometimes
understood [Jennings00], but also an important modelling abstraction that can be used at all logical
levels (e.g., according to the ISA framework) in the development of an information system.

As it is stated in the AOIS Glossary included in [AOIS00], agent-oriented information systems
(AOIS) represent a new information system paradigm where communication between different
(software-controlled) systems and between systems and humans is understood as communication
between agents whose state consists of mental components (such as beliefs, perceptions, memory,
goals, commitments, etc.). In enterprise information systems, for instance, the AOIS paradigm implies
that business agents are treated as first class citizens along with business objects.

We add to this our own definition stating that an agent-oriented information system is an
information system where the abstraction of an agent is used at least at the levels of business and
information system models, but possibly also at the levels of the technology model and
implementation.

AOIS are closely related to another, yet broader emerging paradigm: the paradigm of Cooperative
Information Systems (CIS), according to which information systems are viewed as consisting of
agents who relate to each other as a social organization. Agents cooperate when they share goals and
work together to fulfill those goals [DeMichelis97].

For the development and maintenance of agent-oriented information systems, a set of suitable
business modelling techniques is required. We term a modelling approach comprising the appropriate

1 We use the terms ‘actor’ and ‘agent’ as synonyms.

 14

modelling techniques agent-oriented modelling. We claim that agent-oriented modelling enables to
capture more semantics of the dynamic aspects of business modelling, such as the events and actions
related to the ongoing business processes of an enterprise, than traditional approaches like, e.g. UML
[OMG03a].

1.2. PROBLEM STATEMENT

In our work, we avoid the implementation bias mentioned in section 1.1.1 by attaching business rules
to abstract actors (agents) which are not associated with any software systems. However, this is just
the first step towards realizing the full potential of business rules in business modelling which has not
been achieved prior to this work. In our opinion, the real promise of agent-oriented modelling lies in
the creation of executable models. Such models can be used for simulation of business and/or
manufacturing processes. Moreover, the transition from executable models of business and/or
manufacturing processes to the specifications of the software that partly or fully automates theses
processes is straightforward. This is especially true in cases where automation is accomplished
through the use of artificial (e.g. software) agents, even though an agent-oriented business modelling
techniques should not impose it in any way.
 This presents a challenge to create a modelling notation and methodology that (1) could be used for
the creation of business models of different perspectives like of the informational, interact ional, and
behavioural perspectives and that (2) could be used at all stages of business modelling like analysis
and design and their substages. The modelling steps of such a methodology would lead to executable
business process models that could serve as a basis for business or manufacturing process automation
using appropriate software solutions. Hopefully this thesis manages to create the first version of such a
methodology.

1.3. OUTLINE OF THE THESIS

In this Chapter 1 of the thesis, which presents the background of the study, we first provide our own
definitions and classifications of business rules and processes and present an overview of the existing
business modelling frameworks. Thereafter we argue for the need to introduce views (perspectives) of
agent-oriented modelling, propose such views, and discuss the position of business rules in agent-
oriented modelling. We conclude Chapter 1 by setting the research objectives, determining the scope
of the research, and describing the research approach.
 In Chapter 2, the literature review is presented in the form of comparative evaluation of five
business modelling languages and notations for business modelling and three business modelling
methodologies with respect to the six views of agent-oriented modelling. As a result of the
comparison, the need for a distinctive multi-perspective technique and methodology of agent-oriented
modelling is argued for. Other related work is also briefly described in Chapter 2.
 In Chapter 3, we first present the running example of car rental to be used throughout the chapter.
We then introduce a distinction between the Agent Layer and Object Layer of business modelling.
After that, we define the metamodel of the Business Agents’ Approach and propose to use for agent-
oriented modelling based on it a combination of the Agent-Object-Relationship Modelling Language
(AORML) and the Object Constraint Language (OCL) of UML. We also briefly describe both
AORML and OCL. Next, we extend AORML by activity diagrams by relating them to the notions of
AORML and OCL and explaining their functioning. We also provide an operational semantics for
activity diagrams and define a semi-formal activity modelling language equivalent to activity
diagrams. Thereafter we propose a multi-perspective modelling methodology and process that are
based on the metamodel of the Business Agents’ Approach. We describe the modelling under each
view of agent-oriented modelling by using the running example of car rental. Finally, we describe how
activity diagrams can be “executed” on the JADE agent platform.
 In Chapter 4, the methodology worked out is applied to the case studies of the ceramic factory and
advertising. The purposes of the first case study are simulation of the factory and preparing for the
creation of a semiautomatic manufacturing control system for the factory. The second case study is
aimed at automation of inter-enterprise business processes related to advertising. For both case studies,
the applying of the methodology under each view is described.
 In the final chapter, Chapter 5, we present the summary and an overview of the main contributions
of the thesis. We also discussion the results of the study and describe both the ongoing research work
and the proposals for future research work.

 15

 Appendix A defines the grammar for the modification of OCL proposed in the thesis. Appendix B
presents the EBNF grammar of the activity modelling language that is introduced in Chapter 3.
Appendixes C and D define derivation rules for the case studies of car rental and ceramic factory,
respectively. Appendix E consists of those extended AORML activity diagrams of the case study of
car rental that are not included by Chapter 3. Appendixes F and G present activity diagrams of the
extended AORML for the case studies of ceramic factory and advertising. Finally, Appendix H lists
the publications where some results reported in this dissertation have appeared.

 16

1.4. BUSINESS RULES AND PROCESSES

Our definitions of business rules and processes and classifications of business rules given below were
first presented in [Taveter01c].

1.4.1. Definitions and Classification of Business Rules

The term business rule can be understood both at the level of a business domain and at the operational
level of an information system. The more fundamental concepts are business rules at the level of a
business domain. In certain cases, they can be automated by implementing them in an information
system, preferably in the form of an executable specification. It should be the goal of advanced
information system technology to provide more support for business rules in the form of high-level
machine-executable declarative specifications, similar to the SQL concepts of assertions and triggers.

1.4.1.1. Business Rules at the Business Level

At the business level, business rules are defined in the literature as
• statements describing something affecting the enterprise that limits the actions that can be

taken [Bubenko93];
• statements that define or constrain some aspect of the business [BR00];
• statements about how the business is done, i.e., about guidelines and restrictions with respect to

states and processes in an organization [Herbst97];
• laws or customs that guide the behaviour or actions of the actors connected to the organization

[VanAssche88];
• declarations of policy or conditions that must be satisfied [OMG92].
As pointed out in [Gottesdiener99], business rules are at the core of functional requirements. As the

essential ingredient of functional requirements, business rules deserve direct, explicit attention. When
the rules are not explicit, and if developers encode them by guessing, the essential business rules may
be discovered as missing or wrong during latter phases.

Business rules can be enforced on the business from the outside environment by regulations or
laws, or they can be defined within the business to achieve the goals of the business. A business rule is
based on a business policy. An example of a business policy in a car rental company is ”only cars in
legal, roadworthy condition can be rented to customers” [BR00]. According to [Martin98], business
rules allow user experts to specify policies in small, standalone units using explicit statements.
Business rules are declarative statements: they describe what has to be done or what has to hold, but
not how.

We define business rules as follows: Business rules are statements that express (certain parts of) a
business policy, such as defining business terms, defining deontic assignments (of powers, rights
and duties), and defining or constraining the operations of an enterprise, in a declarative manner
(not describing/prescribing every detail of their implementation).

According to [BR00] and [MDC99], business rules can be divided into ‘structural assertions’ (or
‘term rules’ and ‘fact rules’), ‘action rules’, and ‘derivation rules’.2 Similarly, Bubenko et al
[Bubenko01] categorize business rules into ‘constraint rules’, ‘event-action rules’, and ‘derivation
rules’, while Martin and Odell [Martin98] group rules into two broad classes, ‘constraint rules’ and
‘derivation rules’ (remarkably, they subsume ‘stimulus response rules’ – which we call reaction rules
– under ‘constraint rules’). [Herbst97] distinguishes between ‘integrity rules’ (that are further divided
into static and dynamic integrity constraints) and ‘automation rules’.

In [BR00], a further class of business rules, called ‘authorizations’, is proposed. They represent a
particular type of deontic assignments. However, the term ‘authorization’ is ambiguous. In many
cases, it is synonymous to right (and permission). But in some cases it rather denotes an institutional
power. Rights define the privileges of an agent (type) with respect to certain (types of) actions.
Complementary to rights, we also consider duties.

In summary, three basic types of business rules have been identified in the literature: integrity
constraints (also called ‘constraint rules’ or ‘integrity rules’), derivation rules, and reaction rules (also

2 ‘Structural assertions’ introduce the definitions of business entities and describe the connections between them.
Since they can be captured by a conceptual model of the problem domain, e.g. by an Entity-Relationship (ER) or
a UML class model, we do not consider them as business rules but rather as forming the business vocabulary (or
ontology).

 17

called ‘stimulus response rules’, ‘action rules’, ‘event-action rules’, or ‘automation rules’). A fourth
type, deontic assignments, has only been partially identified (in the proposal of considering
‘authorizations’ as business rules).

An integrity constraint is an assertion that must be satisfied in all evolving states and state
transition histories of an enterprise viewed as a discrete dynamic system. There are state constraints
and process constraints. State constraints must hold at any point in time. An example of a state
constraint is: “a customer of the car rental company EU-Rent must be at least 25 years old”. Process
constraints refer to the dynamic integrity of a system; they restrict the admissible transitions from one
state of the system to another. A process constraint may, for example, declare that the admissible state
changes of a RentalOrder object are defined by the following transition path: isReserved →
isAllocated → isEffective → isDroppedOff.

A derivation rule is a statement of knowledge that is derived from other knowledge by an inference
or a mathematical calculation. Derivation rules capture terminological and heuristic domain
knowledge that need not to be stored explicitly because it can be derived from existing or other
derived information on demand. An example of a derivation rules is: “the rental rate of a rental is
inferred from the rental rate of the group of the car assigned to the rental”.

Reaction rules are concerned with the invocation and sequencing of actions in response to events.
They state the conditions under which actions must be taken; this includes triggering event conditions,
pre-conditions, and post-conditions (effects). An example of a reaction rule from the domain of car
rental is: “when receiving from a customer a request to reserve a car of some specified car group, the
branch checks with the headquarters to make sure that the customer is not blacklisted”.

The triggering event conditions in the definitions of reaction rules in [BR00], [Herbst97],
[Bubenko01], and [MDC99] are either explicitly or implicitly bound to update events in databases.
Depending on some condition on the database state, they may lead to an update action and to system-
specific procedure calls. In contrast to this, we choose the more general concept of a reaction rule as
proposed in [Wagner98]. Reaction rules define the behaviour of an agent in response to environment
events (perceived by the agent), and to communication events (created by communication acts of other
agents).

Deontic assignments of powers, rights and duties to (types of) internal agents define the deontic
structure of an organization, guiding and constraining the actions of internal agents. An example of a
deontic assignment statement is: “only the branch manager has the right to grant special discounts to
customers”.

1.4.1.2. Business Rules and Goals

Business rules may also serve to operationalize business goals. In the EKD framework [Bubenko01]
which is based on the enterprise model [Bubenko93] [Bubenko94], the Goals Model focuses on
describing the goals of the enterprise. It states what the enterprise and its employees want to achieve,
or to avoid, and when. The Goals Models usually clarify questions, such as: where should the
organization be moving, what are the goals of importance for the organization, criticality, and
priorities of these goals, how are goals related to each other, and which problems are hindering
achievement of goals. The Business Rule Model of EKD is used to define and maintain explicitly
formulated business rules, consistent with the Goals Model. Business rules may be seen as
operationalisations or limits of goals. Business rules may be in the form of:

• precise statements that describe the way that the business has chosen to achieve its goals and to
implement its policies or,

• the various externally imposed rules on the business, such as regulations and laws.
The Business Rules Group offers even a more refined operationalization of business goals into

business rules in its Business Rule Motivation Model [OBP00]. There are two major areas of the
Business Rule Motivation Model:

• The first is the ends and means of business plans. Among the ends are things the enterprise
wishes to achieve — for example, goals and objectives. Among the means are things the
enterprise will employ to achieve those ends — for example, strategies, tactics, business
policies, and business rules.

• The second is the influences that shape the elements of the business plans, and the assessments
made about the impacts of such influences on ends and means (i.e., strengths, weaknesses,
opportunities, and threats).

 18

A business rule within this context is a directive, intended to influence or guide business
behaviour, in support of a business policy that has been formulated in response to an opportunity,
threat, strength, or weakness.

1.4.1.3. Business Rules at the Level of an Information System

In certain cases, business rules expressed at the business level can be automated by mapping them to
executable code at the information system level as shown in Table 1-1. This mapping is, however, not
one-to-one, since programming languages and database management systems offer only limited
support for it. While general purpose programming languages do not support any of the three types of
expressions (with the exception of the object-oriented language Eiffel that supports integrity
constraints in the form of ‘invariants’ for object classes), SQL has some built-in support for
constraints, derivation rules (views), and limited forms of reaction rules (triggers).
Table 1-1. Mapping of business rules from the business level to the information system level using currently
available technology.

Concept Implementation

Constraints
if-then statements in programming languages;
DOMAIN, CHECK, and CONSTRAINT clauses in
SQL table definitions;
CREATE ASSERTION statements in SQL database
schema definitions

Derivation Rules
deductive database (or Prolog) rules;
SQL CREATE VIEW statements

Reaction Rules
if-then statements in programming languages;
CREATE TRIGGER statements in SQL;
production rules in ‘expert systems’

Permission Rules role-based access rights

Prohibition Rules (not available)

Duty Assignments (not available)

Empowerment Rules (not available)

1.4.2. Business Processes

Business rules define and control business processes. A widely accepted definition of a business
process is [Davenport93]: ”A business process can be defined as a collection of activities that takes
one or more kinds of input, and creates an output that is of value to the customer”. In [Hammer93] this
definition is paraphrased by stating: ”A [business] process is simply a structured set of activities
designed to produce a specified output for a particular customer or market”. A business process
describes from start to finish the sequence of events required to produce the product or service
[Yourdon96]. These definitions are criticized in [Smith03] as not capable ones of explaining the true
nature of collaborative and transactional business processes of today. The following new definition is
proposed in their place: “A business process is the complete and dynamically coordinated set of
collaborative and transactional activities that deliver value to customers”. Business processes typically
involve several different functional organization units. Often business processes also cross
organizational boundaries.

We prefer to adopt a more general perspective and consider a business process as a special kind of
a social interaction process. Unlike physical or chemical processes, social interaction processes are
based on communication acts that may create commitments and are governed by norms. We
distinguish between an interaction process type and a concrete interaction process (instance), while in
the literature the term ‘business process’ is ambiguously used both at the type and the instance level.

We thus refine and extend the definitions of [Smith03], [Yourdon96], [Hammer93], and
[Davenport93]: a business process is a social interaction process for the purpose of doing business.
We view a social interaction process as a temporally ordered, coherent set of dynamically
coordinated events and actions, involving one or more communication acts, perceived and performed
by agents, and following a set of rules, or protocol, that is governed by norms, and that specifies the

 19

type of the interaction process. Notice that we did not choose activities as the basic elements of a
process. While an action happens at a time point (i.e., it is immediate), an activity is being performed
during a time interval (i.e., it has duration), and consists of a set of actions. However, in section 3.6 we
will provide modelling constructs for the modelling of both actions and activities.

 20

1.5. BUSINESS MODELLING FRAMEWORKS

1.5.1. Perspectives on Business Modelling

Traditional business modelling can be described by the so-called “triangle” model [Nilsson98]. The
“triangle” consists of three interrelated components: data model of the problem domain, relevant
events taking place in the domain, and functions of the domain that are triggered by the corresponding
events and operate on the instances of entity types (object classes) of the data model (v. Figure 1-1).
As it can be seen from Figure 1-1, objects, processes, and transactions can be represented as
combinations of data and functions, functions and events, and events and data, respectively.

Data Events

Functions

Transactions

Objects Processes

Figure 1-1. The “triangle” model.

1.5.2. The Information Systems Architecture (ISA) Framework

According to [Zachman87] and [Sowa92], different aspects that should be addressed in business
modelling and information systems development are data (what?), function (how?), network
(where?), actors (who?), time (when?), and motivation (why?). The aspects mentioned are
represented as the six columns of the framework for information systems architecture (ISA framework)
[Zachman87] presented in Table 1-2. The ISA framework was originally proposed in [Zachman87]
and extended in [Sowa92].

The data (or concepts) aspect describes things important to the business. It clarifies what concepts
or subjects the business is about and how are they defined. Each of the concepts has one or more
relationships that link it to other concepts. The representation of all the concepts and their relationships
to other concepts constitutes the total data of the working system [Sowa00].

The function aspect describes the activities and processes performed within the business. Each
activity takes one or more concept types as arguments [Sowa00]. A business process can be defined as
a collection of activities that takes one or more kinds of input, and creates an output that is of value to
the customer [Hammer93]. A business process describes from start to finish the sequence of events
required to produce the product or service [Yourdon96].

 21

Table 1-2. The Information Systems Architecture (ISA) framework

 Data
(What?)

Function
(How?)

Network
(Where?)

Actors
(Who?)

Time
(When?)

Motivation
(Why?)

Scope

List of
things

important
to the

business

List of
processes

the
business
performs

List of
locations in
which the
business
operates

List of
organization
units of the
business

List of
events

significant
to the

business

List of
business
goals and
strategies

Model
of the

Business

ER-
diagram

(including
m:m, n-ary
attributed
relation-
ships)

Business
process
model

(process
flow

diagram)

Logistics
network

(nodes and
links)

Organization
chart with
roles, skill
sets, and
authori-
zations

Business
master

schedule

Business
plan with
objectives

and
strategies

Model of
the Infor-
mation
System

Data model
(1:m

relation-
ships, fully

normalized)

Data flow
diagram;

application
architecture

Distributed
system

architecture

Human
interface

architecture
(roles, data,

access)

Depen-
dency

diagram,
entity life
history

Business
rules’ model

Techno-
logy

Model

Data
architecture
(tables and
columns);

mapping to
legacy data

System
design:

structure
chart,

pseudo-
code

System
architecture
(hardware,
software
types)

User
interface
(how the

system will
behave);
security
design

"Control
flow"

diagram
(control

structure)

Business
rules’ design

Compo-
nents

Physical
data

storage
design

Detailed
program
design

Network
architecture

and
protocols

Screens,
security

architecture
(who can see

what?)

Timing
model

Specification
of business

rules in
program

logic
Func-

tioning
System

Converted
data

Executable
programs

Com-
munication

facilities

Trained
people

Business
events

Enforced
 business

rules

The network aspect is concerned with the geographical distribution of the activities of the business.
At the most general level, it is simply a list of locations in which the business operates. At a lower
level of abstraction, it becomes a more detailed communications chart, describing how the various
locations interact with each other [Hay97]. Each location has one or more links that connect it to other
locations [Sowa00].

The actors aspect describes who is performing which processes and activities. This aspect has to do
with the allocation of work and the structure of authority and responsibility [Sowa92], i.e. with the
design of the organization. The actors include humans, such as employees and customers, and
computerized agents that operate automatically. Each actor has associated activities, tasks, or work
that he/she/it performs [Sowa00].

The time aspect describes events significant to the business. Here time is abstracted out of the real
world to design the event-to-event relationships that establish the performance criteria and quantitative
levels of enterprise resources [Sowa92]. Each event occurs on some cycle, which may be periodic,
such as a billing cycle, or irregular, such as demand-driven events initiated by various actors. The
totality of events and cycles determines the schedule [Sowa00].

The time aspect also includes coordination relationships between different events performed by
different actors as described e.g. in [Singh00]. Since it is difficult to address this aspect in isolation
from the others, especially from the function aspect, many business modelling methodologies,
including Eriksson-Penker extensions to UML [Eriksson99] and EKD [Bubenko01], combine the time
aspect with the function aspect.

 22

The motivation aspect describes the goals of the enterprise. Goals can be decomposed into sub
goals and allocated to individual actors, activities, or processes. The motivation aspect also concerns
the translation of business goals into specific ends. Each end has an associated means by which it may
be accomplished [Sowa00]. The means is expressed as one or more explicitly formulated business
rules. The totality of all ends and means constitutes the strategy [Sowa00].

Some business modelling methodologies, such as EKD [Bubenko01] and Eriksson-Penker
extensions to UML [Eriksson00], divide the motivation aspect into the models of goals and business
rules.

The aspects described can be viewed from different perspectives at different logical levels. These
logical levels together with their corresponding perspectives are represented as rows of Table 1-2.
According to Zachman [Zachman87], the six logical levels in the development of an information
system and the corresponding perspectives (given in parenthesis) are:

• Scope (the perspective of planner). It corresponds to an executive summary for a planner or
investor who wants an estimate of the scope of the information system, its purpose, what it
would cost, and how it would perform.

• Enterprise or business model (owner). Constitutes the design of the business and shows the
business entities and processes and how they interact. The entities at the enterprise level are the
actors, resources, products, and tasks of the business [Sowa00].

• System model (designer). Describes the information system as designed by a systems analyst
who must determine the data elements and functions that represent business entities and
processes.

• Technology model (builder). A model that must adapt the information system model to the
details of the programming languages, input/output devices, or other technology.

• Models of components (subcontractor). Detailed specifications that are given to programmers
who code individual modules without being concerned with the overall context, purpose, or
structure of the system.

• Functioning system (user). The view of the completed information system that is made part of
an organization.

1.5.3. The Enterprise Model

The enterprise model was first proposed in [Bubenko93] and refined in [Bubenko94]. According to
[Bubenko93], the enterprise model has to answer the following questions:

• Why is the information system built? What is its justification?
• Which are the business processes, and which of these are to be supported by the

information system?
• Which are the actors of the organization performing the processes?
• What concepts are they processing or talking about; which are their information needs?
• Which initial objectives and requirements can be stated regarding the information system to be

developed?
The enterprise model includes the following interrelated sub models, as shown in Figure 1-2,

adopted from [Bubenko94]:
• The objectives sub model. It is intended for describing and discussing the reason or motivation

for activities, actors, and concepts of the other sub models – it addresses the “why”-perspective
of the enterprise and development of the information system for it [Bubenko93]. Goals and
business rules for a particular enterprise activity (or a set of activities), existing, to be modified,
or to be designed, are stated, and their relationships analyzed [Bubenko94].

• The concepts sub model. The concepts sub model is used to define the “ontology” of the
“universe of discourse” of interest, i.e. the set of object types, relationships, and object
properties of the problem domain we are talking about. In this sub model business rules of the
objectives model are also further refined into static as well as dynamic rules for the states of the
concepts sub model as well as for permissible state changes [Bubenko94].

• The actors sub model. This sub model is used to discuss and define the set of actors of each
studied activity (individuals, groups, job-roles/positions, organizational units, machines, etc.),
and their inter-relationships, such as part-of, reports-to, etc. [Bubenko94].

• The activities and usage sub model. In this part of a requirements specification, the particular
organizational activity (in a wide sense), existing, to be modified, or to be developed, is defined

 23

and described from the point of view of activities, tasks, processes, and the information and
material flows between them [Bubenko94].

Information system requirements, related to the above models, are described by the following two
sub models [Bubenko94]:

• The functional requirements sub model. This part of the requirements specification elaborates
the specific objectives and requirements that are put on the information system to support the
activities and objectives of the enterprise listed previously.

• The non-functional (NF) requirements sub model. NF requirements can be of several
different kinds, such as standards for interfacing other systems, restrictions concerning the use
of hardware and/or software, accuracy of information, timeliness of information, security,
access rights, economic limits of the development project, etc. NF requirements are primarily
related to the activity and usage sub model, and indirectly to the objectives sub model, as
activities are normally motivated by the objectives sub model.

• The information system is described conceptually by the information system’s sub-model. By
this we mean the complete, formal specification of the information system such that designated
activities and processes in the activities and usage sub-model, as well as the functional and NF
requirements are supported (to a higher or lesser degree).

Figure 1-2. The enterprise model and its interrelated submodels

1.5.4. Conceptual Framework for Process Modelling by Curtis et al

Separately from the ISA framework and the enterprise model, Curtis et al [Curtis92] defined a
conceptual framework for process modelling. They claim that the constructs that collectively form the
essential basis of a process model are:

• Agent – an actor (human or machine) who performs a process element.
• Role – a coherent set of process elements to be assigned to an agent as a unit of functional

responsibility.
• Artifact – a product created or modified by the enactment of a process element.
The authors state in [Curtis92] that “among the forms of information that people ordinarily want to

extract from a process model are what is going to be done, who is going to do it, when and where will
it be done, how and why will it be done, and who is dependent on its being done”. They define the
following most commonly represented perspectives:

 24

• Functional perspective represents what process elements are being performed, and what flows
of informational entities (e.g., data, artifacts, products) are relevant to these process elements.

• Behavioural perspective represents when process elements are performed (e.g., sequencing),
as well as aspects of how they are performed through feedback loops, iteration, complex
decision-making conditions, entry and exit criteria, and so forth.

• Organizational perspective represents where and by whom (which agents) in the organization
process elements are performed, the physical communication mechanisms used for transfer of
entities, and the physical media and locations used for storing entities.

• Informational perspective represents the informational entities produced or manipulated by a
process; these entities include data, artifacts, intermediate and end products, and objects; this
perspective includes both the structure of informational entities and the relationships among
them.

According to [Curtis92], these perspectives underlie separate yet interrelated representations for
analyzing and presenting process information.

Curtis et al also analyze the applicability of different language types and modelling approaches for
process modelling. The results of their survey are given in Table 1-3.
Table 1-3. Applicability of different language types and modelling approaches for process modelling

 Perspectives

 Functional Behavioural Organizational Informational

Procedural programming languages + + +
Systems analysis and design + + +
AI languages and approaches + +
Events and triggers +
State transitions and Petri nets + + +
Control flow +
Functional languages +
Formal languages +
Data modelling +
Object modelling +3 + +
Precedence networks +

1.5.5. Evaluation and Comparison of the Frameworks
The main shortcoming of the “triangle”-based business modelling, introduced in Section 1.5.1,
including object-oriented modelling, is that it doesn’t explicitly deal with actors that perform different
business functions. For example, the data flow diagram, which is one of the most popular ways of
modelling the vertex of functions of the “triangle” model, views functions as transformers of data
flows that are not attached to any actors performing these functions. True, on workflow diagrams
functions are attached to actors, but these actors are not included by the business model.

Actors are often represented as instances of entity types of the data model, but there they are
passive entities to be manipulated with rather than active performers of business functions. This is
reflected by the existing methodologies of modelling and designing object-oriented systems like e.g.
UML [OMG03a]. In the UML, the customers and the employees of a company would have to be
modelled as ‘objects’ in the same way as rental cars and bank accounts.

It has also been noticed by the others [Wagner99] that in the UML actors are only considered as
users of the system’s services in “use cases”, but otherwise remain external to the system model. Due
to this business rules defining and constraining the functions of the business remain up in the “air” and
are not attached to any processors/executors.

3 The behavioural perspective covered by object modelling (object life history) must have forgotten in
[Curtis92].

 25

Table 1-4. Comparison of frameworks for conceptual modelling

 ISA
frame-
work

 Data Function Network Actors Time Motivation

 Objectives +

Enterprise Concepts +

model Actors + +

 Activities and
usage

+ + +

Conceptual Functional +

framework Behavioural + +

by Organizational + +

Curtis et al Informational +

Organizational perspective and actors are present in the three other frameworks reviewed. In Table
1-4 the enterprise model and the conceptual framework for process modelling by Curtis et al are
compared to the ISA framework, as to ”a richest theoretical framework in use” [Kirikova00]. As Table
1-4 shows, the sub models of the enterprise model can be more or less precisely mapped to the ISA
framework. However, the enterprise model does not explicitly include a sub model that would
correspond to the time aspect of the ISA framework. Therefore the mapping of the activities and usage
sub model of the enterprise model to the time aspect of the ISA framework is guessed by the author of
this thesis.

The functional, behavioural, and informational perspectives of the framework by Curtis et al
respectively correspond to the function, time, and data aspects of the ISA framework. The behavioural
perspective also includes some constructs that traditionally belong to the function aspect of the ISA
framework like feedback loops, iteration, complex decision-making conditions, and entry and exit
criteria.

The organizational perspective of the framework by Curtis et al is covered by the network and
actors aspects. The motivation aspect of the ISA framework does not have a counterpart in the
framework by Curtis et al.

1.5.6. Views of Agent-Oriented Modelling

Any of the three frameworks for conceptual modelling compared in Table 1-4 can serve as a
background framework of agent-oriented modelling, because all of them have an important place for
actors. Moreover, one of the clear advantages of the ISA framework and the enterprise model that
makes them especially suitable for such a purpose is that they do not prescribe a particular model for
reflection of the requirements specification [Kirikova00]. The same also applies to the conceptual
framework by Curtis et al. However, since the modelling of interactions in the frameworks mentioned
is divided between different aspects / sub models / perspectives, we have identified on the basis of
these frameworks six views of agent-oriented business modelling:

• Informational view, concerns the modelling of passive, informational entities, i.e. objects and
relationships between them.

• Functional view, concerns the modelling of activities the agents are engaged in.
• Behavioural view, concerns the modelling of the order in which the activities are to be

performed, as well as of the agents’ reactions to the events perceived by them.
• Organizational view, concerns the modelling of active entities, i.e. agents and agent types.

 26

• Interactional view, concerns the modelling of interactions and communication between the
agents.

• Motivational view, concerns the modelling of the goals attached to the activities that the
agents are trying to achieve.

We will follow the six views that were presented in our modelling methodology to be described in
Chapter 3.

1.5.7. Position of Business Rules in Agent-Oriented Modelling

As it can be seen in Figure 1-2, the motivation aspect / the objectives sub model4, that the motivational
view defined in section 1.5.6 is based on, serves as the glue that connects all the other aspects / sub
models. At the higher level of abstraction, the motivational view describes the goals of the enterprise.
Goals are decomposed into sub-goals and allocated to individual actors, activities, and processes. At
the lower level of abstraction, as we saw in section 1.4.1.2, each goal is expressed as a combination of
one or more business rules.

Business rules of the type integrity constraints clearly belong to the informational view, as they
have to do with the states of the body of concepts at any point in time and restrict the admissible
transitions from one state of the body of concepts to another.

Since derivation rules derive a new knowledge from existing knowledge that lies within the
informational view, derivation rules also belong to the informational view.

Business rules of the type deontic assignments belong to the organizational view because they
determine agents’ rights and duties to perform the actions that activities consists of.

Reaction rules have a direct connection to the interactional, informational, functional, behavioural,
and organizational views of agent-oriented modelling.

Firstly, reaction rules are means of responding to various business events which occur during
interactions between agents. Events can be internal or external in relation to the enterprise.

Secondly, reaction rules access the body of concepts, possibly by making use of derivation rules,
and determine necessary state transitions of the body of concepts consisting of informational entities.

Thirdly, reaction rules start activities and processes, i.e. functions of the enterprise, and control
their behaviour.

Since activities and processes are driven by and directed towards actors, a business rule is always
attached to some human or automated actor.

And last but not least, activities are associated with the goals that the corresponding actors are
trying to achieve.

Consequently, business rules span all six views of agent-oriented modelling. Since reaction rules
are directly related to five out of six views of agent-oriented modelling, they seem to be the most
important type of business rules. At the same time, reactive behaviour of agents is the most dominant
one in a business domain. We can thus conclude that reaction rules are those business rules where an
agent-oriented approach is most promising.

1.6. RESEARCH OBJECTIVE

Table 1-4 reveals that no one of the different language types and modelling approaches examined
there covers more than three modelling perspectives proposed in [Curtis92]. It is additionally stated in
[Curtis92] that “an approach that integrates multiple representational paradigms is currently
considered necessary for effective software process modelling5”.

This finding is also supported by the claim in [Nilsson98], according to which no one of the
business modelling methodologies available covers equally all three vertexes of the triangle in Figure
1-1.

The approach that has been taken to meet the need expressed above in, for example, UML
[OMG03a] is loose integration of various modelling perspectives and paradigms. However, this is not
always satisfactory, as the modeler is forced to use different modelling techniques in parallel which is
confusing. To be more specific, e.g. in [Lubell02] it is stated with regard to manufacturing or business
process modelling: “Unfortunately for process modelers, no single type of UML diagram captures all
of the information needed to describe a process. UML activity diagrams do a good job modelling

4 The corresponding perspective is not present in the conceptual framework for process modelling by Curtis et al.
5 The paper [Curtis92] is specifically about software development processes but it can also be applied to business
processes.

 27

complicated sequences and parallelism. However, activity diagrams are not the best choice for
representing the relationships between activities and objects. UML interaction diagrams do a much
better job describing how actions and objects collaborate.”

Some development in the ability of modelling tools to support different kinds of models has been
noticed in [Gates03]: “There is a common theme that can be seen across all new data modelling tools –
more focus on business process modelling”.

With this background, there seems to be a need for the modelling approach that would
simultaneously provide support for different views of agent-oriented modelling defined in section
1.5.6. Therefore a natural research objective for this thesis is to work out and apply a modelling
notation and methodology that would conform to the following requirements:

• enables to create and integrate business models of different perspectives;
• can be used at the analysis and design stages of business modelling;
• lends itself to the creation of executable business process models.
Since, as we showed in section 1.5.7, reaction rules span all six views of agent-oriented modelling,

it seems natural to associate the methodology and modelling notation to be created with reaction rules.
This is compatible with our definition of business processes that was presented in section 1.4.2 where
we defined a business process as a social interaction process that is specified and controlled by
business rules. Consequently, business processes as well as business rules span all six views of agent-
oriented modelling.

Another objective of this dissertation springs from the need expressed in [DeMichelis97] and
[AOIS00] for a systematic approach to the development of agent-oriented and cooperative information
systems in terms of requirements acquisition, design, and implementation. For this reason, the second
objective of this thesis is to propose a systematic approach to the development of AOIS and CIS.

According to [DeMichelis97], in a cooperative information system, once captured organizational
objectives and systems requirements must also be “kept alive” and remain a part of the running
system, due to ongoing evolution of the system. An adequate objectives’ and requirements’
representation language should support a declarative style of specification which offers the possibility
to model requirements adopting an aerial view perspective. For example: “the borrowing of a book
should be followed by its return within the next three weeks” [DeMichelis97]. In our opinion,
representing organizational objectives and systems requirements as business rules that define and
constrain actions of business agents is a step towards this kind of language.

1.7. RESEARCH SCOPE

The logical levels in business modelling and information systems development are best formulated in
[Zachman87]. The same levels also apply to agent-oriented modelling. Since this thesis aims at
technology-independent analysis and design of information systems, the level addressed by the agent-
oriented business modelling methodology proposed in the thesis is the level of enterprise or business
model (the perspective of owner) which was briefly described in section 1.5.2. We divide this level
into two sublevels: analysis, where actors (agents) of the problem domain are sketched and each actor
is defined in terms of services it provides to other actors, and design where the focus agent(s) that an
information system is to be created for are described within their environment, consisting of other
agents. We understand the term ‘design’ here in the sense of designing a socio-technical system, i.e., a
system composed of technical and social subsystems [Pernice95], rather than a purely technical
system. At the level of designing a socio-technical system addressed in this work, we aim to model the
functioning and interactions of institutional actors in a precise and executable way, which lends itself
to simulation, without necessarily distinguishing between the tasks that are performed by human and
automated agents. This conforms to our understanding of a business process as of a social interaction
process stated in section 1.4.2.

In accordance with [Wagner03a], at the level of enterprise or business model we adopt the
perspective of an external observer who is observing the (prototypical) agents and their interactions in
the problem domain under consideration. At the level of information system model, which is addressed
by the third row of the ISA framework represented in Table 1-2, we adopt the internal (first-person)
view of a particular agent to be modelled. However, as was pointed out above, the level of information
system model is not treated in this work.

Since modelling of business goals and transforming them into business rules is a wide topic in its
own right, we have limited our research objective to the modelling of business rules and business

 28

processes. We thus assume that each business rule is already justified by some business goal. The
modelling of business goals has, for example, been treated in [Yu95a], [OBP00], and [Bubenko01].
The present work is confined to the modelling of the goals that are attached to the activities performed
by individual agents.

Out of the four types of business rules that were defined in section 1.4.1.1, we concentrate on
reaction rules, which were in section 1.5.7 deemed to form the most important type of business rules,
and derivation rules accessed by them, and treat the modelling by using integrity constraints just
marginally.

1.8. RESEARCH APPROACH

The research approach has been from particular to more general. We have been developing our
modelling technique by applying it to the case study of car rental which will be described in section
3.1. For example, at the earlier stage of our work described in [Taveter02a], we have employed i*,
which is described in section 2.1.4, at the analysis step of the proposed modelling methodology. Later
on, we have abandoned this approach in favor of goal-based use cases because of the obvious
complexity of the i*-to-AOR conversion for an ordinary user.

 29

2. COMPARATIVE EVALUATION OF BUSINESS MODELLING TECHNIQUES

From among a large number of modelling languages, notations, and methodologies for business
modelling, we selected for overview and comparative evaluation the techniques in which agents/actors
and/or business rules of the types defined in section 1.4.1.1 explicitly or implicitly play a prominent
role.

2.1. MODELLING LANGUAGES AND NOTATIONS FOR BUSINESS MODELLING

2.1.1. Ross Notation and Proteus

The Ross Notation [Ross97] is proposed for formalizing and visualizing constraints, conditions, and
derivation rules. A business rule is understood in [Ross97] as “a constraint or a test exercised for the
purpose of maintaining the integrity (i.e., correctness) of data”. According to [Ross97], the purpose of
a rule generally is to control the updating of persistent (i.e., stored) data – in other words, the results
that the execution of actions (processes) are permitted to leave behind. A rule embodies a business
rule statement which is a formal, implementable expression of some “user requirement”, usually stated
in textual form using a natural language (e.g., structured English).

Within the Ross Notation, events are understood as update events in a database. Every rule can be
decomposed into two or more update events. A business rule, however, usually need not – and should
not – make any reference to these update events or triggers.

2.1.1.1. Classification of Rules

According to [Ross03], the Ross Notation divides business rules into the following basic rule types:
• Rejector: any rule that tends to disallow (that is, reject) an event if a violation of the rule would

result.
• Projector: any rule that tends to take some action (other than rejection) when a relevant event

occurs.
• Producer: any rule that neither rejects nor projects events but simply computes or derives a

value based on some mathematical function(s).
Two varieties of rules are distinguished between in [Ross97]:
• An integrity constraint is a rule that must always yield true (or unvalued). It has enforcement

power because it never is permitted to yield false.
• A condition is a rule that may yield either true or false (unvalued). Since it is permitted to yield

false, it lacks direct enforcement power. Its usefulness arises in providing a test for the
enforcement (or testing) of one or more other rules that are enforced (or tested) only while the
condition yields true.

Integrity constraints and conditions are given distinct graphic symbols. According to the Ross
Notation, each business rule consists of an anchor, rule symbol, and correspondent. Anchor is a data
type or another rule for whose instances a rule is specified. In the graphical representation of the Ross
Notation, the anchor connection exits the anchor and enters the rule symbol. Correspondent is a data
type, another rule, or action whose instances are subject to the test exercised by the rule. In the
graphical representation of the Ross Notation, the correspondent connection exits the rule symbol and
enters the correspondent. Both the anchor connection and correspondent connection are dashed.

rental-carrental-ordercustomer

blacklisted

picked-up

reserved allocated

car-of

REA

customer-of

X

R1

R2

effective

MEstatus

Figure 2-1. Representation of business rules by the Ross Notation.

 30

The example represented in Figure 2-1 includes two integrity constraints: a rejector R1 of the type
“Mandatory” with the meaning “Must have” and a projector R2 of the type “Enabled-with-reversal”
which creates (i.e., enables, or switches “on”) instances of the correspondent when an instance of the
rule’s anchor is created and “reverses” the state of the instances of the correspondent when the
instance of the anchor is deleted. The rule R1 thus states: “A customer attached to a rental-order may not
have the status blacklisted”. The meaning of the rule R2 is: a rental-order has the status effective if and
until a rental-car related to it has the status picked-up. The symbol ME in Figure 2-1 means that the
statuses reserved, allocated, and effective are mutually exclusive.
The Ross Notation is a key deliverable of Proteus, the business rule methodology of Business Rule
Solutions (BRS), LLC. In [Ross03] it is claimed that the Proteus methodology addresses the six
different aspects of business modelling of the ISA framework, which were reviewed in section 1.5.2,
in the following way:

• The motivation aspect is addressed by creating a Policy Charter which outlines the appropriate
ends (e.g., business goals) and means (e.g., tactics) for solving the business problem.

• The function aspect is addressed by developing business process models that sequence the
flow of tasks. According to [Ross03], the functional view is addressed by developing scripts
which loosely integrate declarative business rules. A script is a procedure consisting of a series
of requests for action to software components and/or humans with no embedded business rules
[Ross03].

• The data aspect is addressed by developing the standard business vocabulary of the targeted
business area, consisting of core concepts of the area. These definitions are organized into a
Concepts Catalog, which is essentially a glossary of terms, and a fact model which
complements it with relationships between the concepts.

• The people aspect is addressed by defining organizational roles and responsibilities, and the
work relationships between them.

• The time aspect is addressed by examining the regimens needed to organize the aging of core
concepts.

• The location aspect is addressed by building a Business Connectivity Map indicating business
sites and their communication/transport links from the business perspective.

2.1.1.2. Evaluation

The Ross Notation is one of the most comprehensive representation formats for modelling business
rules. Since the Ross Notation is largely a data- and database-oriented notation, it provides a very
strong support for the informational view of business modelling. However, even though it is claimed
in [Ross03] that the BRS business rules methodology also addresses all the other aspects listed above,
the coverage of the functional view by the Ross Notation is weak. Also Hurlbut remarks in
[Hurlbut98] that “the primary deficiency of the Ross Notation is its inability to model process aspects,
due to its fundamental restriction of only considering persistent data as a basis for business rules”. In
[Ross03] it is claimed that loose scripts are sufficient for modelling business processes. However,
there is neither syntax nor semantics included for such scripts in [Ross03]. This excludes a support for
the behavioural view.

The motivational view is strongly supported due to using the Business Rule Motivation Model
which was briefly described in section 1.4.1.2. However, the relationship between business goals and
rules is not always clear in that model.

The organizational view is only present in scripts where a human actor can perform actions and
also make requests for action to software components and to other actors.

Within the Ross Notation, events of the interactional view are understood as update events in a
database and not events in a broader sense – business events. This also excludes proper treatment of
interaction and communication between roles and actors.

In conclusion, we can claim that the Ross Notation and the Proteus methodology provide a very
strong support for the informational view, a strong support for the motivational view, a weak support
for the organizational and functional views, and virtually no support for the behavioural and
interactional views.

The Ross Notation has also problems of a more fundamental nature. For example, it defines a
‘condition’ as a rule while it really is a precondition for a reaction rule and not a rule independently.
The Ross Notation also calls a projection controller an ‘integrity constraint’ while it really seems to be
a kind of derivation rule.

 31

2.1.2. Eriksson-Penker Extensions to UML

According to the adaptation of the Unified Modelling Language (UML) for business modelling
described in [Eriksson99] and [Eriksson00], called Eriksson-Penker Business Extensions, the primary
concepts used when defining the business system are:

• Goals. The purpose of the business and/or the outcome the business as a whole is trying to
achieve. Goals can be broken down into sub-goals and allocated to individual parts of the
business, such as processes or objects. Goals express the desired states of resources and are
achieved by processes. Goals can be expressed as one or more rules.

• Resources. The objects within the business, such as people, material, information, and products
that are used or produced in the business. The resources are arranged in structures and have
relationships with each other. Resources are manipulated (used, consumed, refined, or
produced) through processes. Resources can be categorized into physical, abstract, and
informational resources.

• Rules. Statements that define or constrain some aspect of the business, and represent business
knowledge. They govern how the business should be run (i.e., how the processes should
execute) or how resources may be structured and related to each other.

• Processes. The activities performed within the business in which the state of business resources
changes. Processes describe how the work is done within the business. Processes are governed
by rules.

These concepts are captured by four different views of a business used by the Eriksson-Penker
Business Extensions. Business Vision View describes a goal structure for the company, and illustrates
problems that must be solved in order to reach those goals. Business Process View illustrates the
interaction between the processes and resources in order to achieve the goal of each process, as well as
the interaction between different processes. Business Structural View describes the structures among
the resources in the business, such as the organization of the business or the structure of the products
created. Business Behavioural View models the individual behaviour of each important resource and
process in the business model and how they interact with each other.

In the Eriksson-Penker Business Extensions, each view is expressed in one or more UML
diagrams. The diagrams can be of different types, dependent upon the specific structure or situation in
the business to be depicted. In particular, the goal/problem model of the Business Vision View is a
UML object diagram that breaks down the major goals of the business into sub-goals, and indicates
the problems that stand in the way of achieving those goals and actions required for achieving the
goals. The conceptual model of the Business Vision View is a UML class diagram that defines
important concepts and relationships in the business to create a common set of terminology. Figure 2-
2, adapted from [Eriksson99], shows a process diagram based on a UML activity diagram with
stereotypes from the Eriksson-Penker Business Extensions where the relationships between different
processes are shown. This diagram also makes use of swim lanes, which are used to show the
organization units involved in the process. Within the Business Structural View, organizational
structure of the company is modelled by using class and object diagrams of UML. Finally, the
Behavioural View makes use of UML state chart diagrams, sequence diagrams and collaboration
diagrams for modelling each of the involved objects in more detail.

Figure 2-2. A process diagram based on an activity diagram with swimlanes.

 32

2.1.2.1. Modelling of Business Rules

Eriksson and Penker, in [Eriksson00], follow [Martin98] in their classification of business rules, but
add a third top-level category: ‘existence rules’ that define “under what circumstances something can
exist”.

Eriksson and Penker propose to express business rules using the Object Constraint Language
(OCL) which is a part of the UML standard [OMG03a]. While this proposal seems natural for
integrity constraints, its feasibility in the form it is expressed in [Eriksson00] is less clear for the other
types of business rules.

For derivation rules, no general method how to express them in OCL is presented. In one example
in [Eriksson00], a derivation rule for a derived Boolean attribute highRisk is expressed as a
postcondition for the corresponding operation highRisk(). In another example, a derivation rule is
expressed as an implication by means of the OCL implies connective. In still another example, a
constraint is confused with a derivation rule.

Eriksson and Penker admit that ‘stimulus/response’ (i.e. reaction) rules cannot be defined in OCL
because OCL cannot be used to define actions. They propose, instead, to define this type of rules in
UML activity or state chart diagrams. Again, no general method is presented and only vague and
somewhat confused indications are given (e.g., specifying the event condition of a ‘stimulus/response’
rule as guards in an activity diagram).

Finally, Eriksson and Penker argue that there are business rules which are best formalized using
concepts from fuzzy logic. An example of such a rule would be one that defines a customer target
group in terms of middle-aged persons with a high salary. According to [Eriksson00], both concepts
are best captured by means of fuzzy-set-valued attributes.

2.1.2.2. Evaluation

In terms of the six views of agent-oriented modelling which we proposed in section 1.5.6, the
Eriksson-Penker Business Extensions provide a strong modelling support for the informational view
by object class diagrams and OCL expressions for integrity checking. However, Eriksson and Penker
do not present a general method how to express derivation rules in a class diagram.
 The Eriksson-Penker Business Extensions provide a strong support for the functional view and for
the closely related to it behavioural view by employing (modifications of) activity diagrams and state
chart diagrams. Eriksson and Penker claim that business processes can be modelled by UML activity
diagrams as sequences of activities. But, as it has been noticed in [Eshuis02a]: “To ensure that every
activity diagram can be translated into a state chart, UML 1.4 only allows activity diagrams in which
each fork is eventually followed by a join and in which multiple layers of forks and joins are well
nested”. According to [Eshuis02a], such hierarchy constraints rule out certain forms of concurrency.
UML 2.0, which is currently under development, will not adopt this constraint, but has other problems
like separating data flow and control flow which may thus become inconsistent.

The Eriksson-Penker Business Extensions also support to the same extent the organizational view
by representing organization models as class diagrams and organizations as object diagrams based on
them. However, in the proposal by Eriksson and Penker, there is no specific treatment of agents. They
are subsumed, together with “material, information, and products”, under the concept of resources.
This unfortunate subsumption of institutional and human agents under the traditional ‘resource’
metaphor prevents a proper treatment of many agent-related concepts such as commitments, deontic
assignments, and communication/interaction.

Because agents/actors are not treated as first-class citizens, the representation of the interactional
view is weak in the Eriksson-Penker Business Extensions. Another reason for the weakness of the
interactional view is that it is questionable to model the invocations of activities in the spheres of
responsibility of different “actor objects” as state transitions as it is done between ‘swim lanes’ in
activity diagrams because the “actor objects” are in principle autonomous and independent of each
other. The communication between different actors/agents should be modelled as a protocol instead
[Sladek96]. To the limited extent, communication and interaction modelling is possible by using
interaction diagrams of UML.

The motivational view is supported by the goal/problem model, which is essentially an object
diagram, in the Eriksson-Penker Business Extensions. In spite of the claim in [Eriksson99] that in
UML goals can be expressed as one or more business rules, it is not clear how the goal/problem model
can be transformed into specific business rules.

 33

2.1.3. Role Activity Diagrams

Role Activity Diagrams were proposed in [Ould95]. A Role Activity Diagram shows the roles, their
component activities, and their interactions together with external events and the logic that determines
what activities are carried out when [Ould95]. Role Activity Diagrams are based on Petri Nets which
are described e.g. in [Aalst00].

2.1.3.1. Identification of Roles

In [Ould95], a role is defined as “an area of responsibility for some contribution to a process, carried
out through a set of partially ordered activities which share a single role body or set of resources”.
According to [Ould95], roles can take many forms:

• A unique functional group, e.g. accounts department.
• A unique functional position or post, e.g. managing director.
• A rank or job title, e.g. principal systems analyst.
• A replicated functional group, e.g. department, branch.
• A replicated functional position or post, e.g. head of department, branch manager.
• A class of person, e.g. customer, supplier.
• An abstraction, e.g. project managing.
A role can have a number of instances at any one moment, and a role instance exists independently

of the existence of an agent to play the role. The agent can change and at a given instant no one and
nothing might be playing a given role instance [Ould95]. The key characteristics of the role forms
presented above are summarized in Table 2-1 adopted from [Ould95].
Table 2-1. Characteristics of role forms.

Role form Number of instances Permanent instances? Can actor change?
Unique functional group 1 + +
Unique post 1 + +
Job title >1 - -
Replicated functional group >1 - +
Replicated post >1 + +
Class of person >1 - -
Abstract role >1 - +

2.1.3.2. Notation

The notation for Role Activity Diagrams is presented in Figure 2-3. As Figure 2-3 shows, each role in
the process is represented by the contents of a shaded block. Within each role, there are a number of
activities indicated by black boxes, the annotation against each black box describing the activity
succinctly using a verb. Activities are what agents do as individuals in their roles. An instance of an
activity type is created when the organization’s business process is in a particular condition that we
call the activating or triggering condition for the activity. This is a sufficient condition for the activity
instance to start. There may be other necessary conditions that are also true when an activity is started.
These are collectively referred as the activity’s precondition. Similarly, each activity will have some
post condition which describes the state of the world at the time the activity stops.

In the notation for Role Activity Diagrams depicted in Figure 2-3, states or conditions which a role
can be in are represented by the vertical lines between activities within the role. The goal of a process
is some point in the activity of a particular role where the state of the process is “goal achieved”. In the
notation for Role Activity Diagrams, the process goal is represented by putting a “magnifying glass”
on the state line and annotating it, as can be seen in Figure 2-3.

An interaction between roles is shown as a white box in one role connected by a horizontal line to
a white box in another role as is depicted in Figure 2-3. An interaction can involve any number of
roles. Interactions in Role Activity Diagrams are modelled as synchronous: that is, all role instances
must be ready for the interaction to take place before it can start, it starts at the same moment for each
party, and it completes at the same moment for each party at which point they enter their respective
new states.

In some situations it is useful to show which party to an interaction takes the lead or is responsible
for making the interaction happen. Such a party is pointed out by shading in the interaction the white
box for the driving role as is shown in Figure 2-3.

 34

Alternative courses of action are represented with the notation shown in Figure 2-3 for case
refinement. The two-way case refinement depicted in Figure 2-3 generalizes quite naturally to N-way
case refinements.

Starting a number of separate threads of activity that can be carried out concurrently is represented
by the structure shown in Figure 2-3 for part refinement.

An iteration is captured with the part refinement structure where the replication is indicated with an
asterisk as can be seen in Figure 2-3.

An external event is shown by an arrow placed on the state line, as is shown in Figure 2-3. An
external event may also represent calendar or clock time or the passage of time.

 Pick-Up Branch

Car arrives

y n

A role

State

State description

An activity

External event occurs

Alternative paths
depending on
the condition

(case refinement)

An interaction
between two roles

Driving party in
an interaction

Allocate
a car

Rental order
satisfied

Enough cars?

*
For each rental

reservation

Concurrent paths
(part refinement)

Figure 2-3. The notation for Role Activity Diagrams.

2.1.3.3. Evaluation

In terms of the views of agent-oriented modelling which were presented in section 1.5.6, Role Activity
Diagrams provide a very strong support for the functional view and a strong support for the
organizational view. At the same time, Role Activity Diagrams do not support to any extent the
informational view. This conclusion is shared in [Curtis92], where it is stated: “Role Activity
Diagrams are strong in representing roles, dependencies, and process elements but its representation of
artifacts is weak”. The lack of support for the informational view causes the weakness of the
motivational view because there is no vocabulary in which process goals could be precisely
represented. The mentioned deficiency is also reflected on the behavioural view because behavioural
constructs like part refinement can not be connected to data elements and data flow. For this reason,
the Role Activity Diagrams do not enable precise behaviour modelling.

According to [Curtis92], when a process has been represented using Role Activity Diagrams, a new
notion of teams emerges, built on dependencies among roles. Where interactions among roles are
frequent, a clustering of roles forms a de facto team. The support for the organizational view by Role
Activity Diagrams, however, lacks the means for representing static organization structures which
include relationships between organizational units like aggregation.

Another shortcoming of Role Activity Diagrams related to the interactional view is their inability to
model asynchronous communication. This prevents the use of Role Activity Diagrams for modelling
numerous real-life communication situations, including the situations where software agents or other
automated systems with message buffering capability are involved.

 35

2.1.4. i* and Tropos

The i* framework was proposed in [Yu95a] and [Yu95b]. The i* (which stands for “distributed
intentionality”) framework provides understanding of the motivation of social actors that depend on
each other for goals to be achieved, tasks to be performed, and resources to be furnished. The
framework consists of a Strategic Dependency (SD) model and a Strategic Rationale (SR) model.
The SD model provides an intentional description of a (business) process in terms of a network of
dependency relationships among actors. The SR model provides an intentional description of a
(business) process in terms of process elements and the rationales behind them [Yu95a].

2.1.4.1. Analysis of Dependencies

Four types of dependencies are distinguished among actors, based on the type of dependum. In a goal
dependency, a depender depends on the dependee to bring about a certain state in the world. The
dependee is given the freedom to choose how to do it. Under goal dependency, the dependee is free to,
and is expected to, make whatever decisions that are necessary to achieve the goal. In a task
dependency, a depender depends on the dependee to carry out an activity. A task dependency specifies
how the task is to be performed, but not why. The depender’s goals are not given to the dependee. In a
resource dependency, the depender depends on the dependee for the availability of an entity (physical
or informational). By establishing this dependency, the depender gains the ability to use this entity as a
resource. Under resource dependency, it is assumed that there are no open decisions to be addressed
by the dependee. In a softgoal dependency, a depender depends on the dependee to perform some task
that meets a softgoal. The meaning of the softgoal is not clear-cut. It is specified in terms of the
methods that are chosen in the course of pursuing the goal.

The intentional dependencies of the domain of car rental are represented in Figure 2-4.

Smooth
service

Customer happy

A car
transferred

Information on
blacklistedness

Information on
another car

A car
serviced

Payment

Information on
pick-ups

A car
rented

Return
the car

Goal
dependency

Task
dependency

Resource
dependency

Softgoal
dependency

Actor

Actor
boundary

Drop-Off
Branch

Pick-Up
Branch

Branch-
Proposer

Effective
rental order

Customer Head-
quarter

Automotive
Service
Station

Extend
the rental

EU-
Rent

Figure 2-4. The Strategic Dependency Model for the domain of car rental.

 36

2.1.4.2. Means-Ends Analysis

The SR model provides an intentional description of a (business) process in terms of process elements
and the rationales behind them. While the SD model represents only the external relationships between
actors, the SR model describes the intentional relationships that are internal to actors, such as means-
ends relationships.

There are two main classes of links: means-ends links and task decomposition links. A means-ends
link indicates a relationship between an end – which can be a goal to be achieved, a task to be
accomplished, a resource to be used, or a softgoal to be satisfied – and a means for attaining it. The
means is usually expressed in the form of a task, since the notion of task embodies how to do
something.

A task node is linked to its component nodes by task decomposition links. There are four types of
task decomposition links – sub-goal, subtask, resourceFor, and softgoalFor – corresponding to the
four types of nodes. These links can also connect up with dependency links in SD model(s), when the
reasoning goes beyond an actor’s boundary.

For example, the SR model for the Pick-Up Branch shows that the Pick-Up Branch is able to achieve
the goal “A car rented” that the Customer depends on by running the task “Rent a car”, whose goal is
to provide the Customer with a car. This task consists of four components: the subtasks “Receive
rental order” and “Manage rental reservation”, the sub-goal “A car allocated” (a car is allocated to
the rental order 12 hours before the pick-up time), and the subtask “Deliver the car”. The model also
includes the alternative means how to achieve the sub-goal “A car allocated” depending on the
availability of cars.

The i* notation is accompanied by the Tropos methodology [Mylopoulos01] which consists of the
following steps: early requirements acquisition with i*, resulting in SD and SR models of the kind
described above, definition of late requirements in i*, where the system-to-be is described within its
operational environment, architectural design using i*, where the system’s global architecture is
defined in terms of subsystems, and detailed design where the behaviour of each architectural
component is defined in further detail.

In the example of the car rental, the phase of defining late requirements in i* produces revised SD
and SR models which include a computerized agent-based system for the car rental. The system is
represented as one or more actors participating in a SD model, along with other actors from the
system’s operational environment. At this stage, the system is also decomposed into several sub-actors
using the same kind of means-ends analysis as in the early requirements acquisition described above.
At the stage of architectural design, a proper architectural style of the agent-based system is selected
from among alternative ones like e.g. flat structure, pyramid, joint venture, and structure-in-5. The
analysis involves refining the desired qualities of the system, represented as softgoals, to sub-goals
that are more specific and more precise and then evaluating alternative architectural styles against
them. Finally, at the stage of detailed design, the SD and SR models are transformed into Agent Class
Diagrams, Sequence Diagrams, Collaboration Diagrams, and Plan Diagrams by using AUML
[Odell00].

2.1.4.3. Evaluation

The i* is targeted at early requirements engineering. It emphasizes the motivational view of agent-
oriented modelling and provides a strong support for the organizational and functional views and some
support for the informational view. Within the organizational view, other kinds of relationships
between organizational units besides dependencies, like aggregation, are not analyzed. The functional
and informational views are supported through representing tasks and informational resources,
respectively. The i* also supports to some extent the interactional view because representing
intentional dependencies can be viewed as an early stage of interaction modelling.

The SR diagram notation of i* represents a sequence of tasks (activities) to be performed by an
individual agent, but it is imprecise with regard to representing models of choices between alternative
courses of tasks, models of concurrent threads of tasks, and iteration models of tasks. For example, it
is not possible to specify whether the subtask in a task decomposition link has to be performed once or
several times. In other words, i* does not support the behavioural view of agent-oriented modelling.
Some authors have suggested using SR diagram annotations to cope with the deficiencies mentioned.
E.g., in [Wang01], two types of annotations are defined: composition annotations and link annotations
corresponding to the operators of the ConGolog specification language [Lesperance99] and having the
same meaning.

 37

The Tropos methodology focuses on the organizational and motivational views and introduces a
business vocabulary (ontology) of the informational view only at the stage of detailed design. In our
opinion, in order not to run into inconsistencies between models of different views, the modelling of
objects of the problem domain and relationships between them should be started at least at the
beginning of the design phase.

We have also discovered that in modelling real-life situations, it can be really confusing to
distinguish between goal and task dependencies. For example, in case of a car rental company, if a
customer’s interface to the company is well-defined, we can model the dependency between the
customer and the company as a task dependency. Otherwise, we should model it as a goal dependency.

2.1.5. CIMOSA

CIMOSA is an open system architecture which has been developed for integration in manufacturing
but which is widely applicable to integration of any type of enterprises [AMICE93]. CIMOSA is the
result of a joint research and development effort by more than 30 European companies over the period
1985–1994 funded in-half by EU.

One of the major achievements of the AMICE Consortium was the development of the CIMOSA
language for enterprise modelling. This language complies with the enterprise modelling principles,
generally represented by a cubic structure. According to [Berio99], the foundations of all generic
architectures, represented by the CIMOSA Cube, show that any approach for enterprise modelling
must at least deal with three fundamental types of flows within or across enterprises (material flows,
information flows, decision/control flows), four modelling views (function view, information view,
resource view, organization view), and three modelling levels (requirements definition, design
specification, implementation description). The CIMOSA modelling language [Vernadat98] provides
constructs for function, information, resource and organization aspects in a unified formalism. The
language uses an event-driven process-based approach described in [Vernadat98]. According to
[Berio99], in the CIMOSA language, an enterprise is composed into a set of domains which are
functional areas of the enterprise. A domain process is a complete chain of activities flowing through
the enterprise irrespective of organizational boundaries. It is triggered by one or more events and
terminates when it produces a definite desired end-result. A domain process is made up of sub-
processes, called business processes, which, in turn, consist of enterprise activities. Domain and
business processes and enterprise activities are subject to objectives and/or constraints. Enterprise
activities require resources and time to transform states of enterprise objects into different states.
These states are called object views.

CIMOSA differentiates active resources (called functional entities), which have capabilities and
can provide services, as opposed to inactive resources (called components) which are utilized by
functional entities. Three types of functional entities are distinguished in CIMOSA: humans,
machines, and applications. A functional entity provides a capability set which is required by one or
more enterprise activities.

The organizational view of CIMOSA enables to model the organization units of the enterprise and
their relationships, as well as distribution of responsibilities and authorities between them.

According to [Reyneri99], in CIMOSA Petri nets are used for modelling resource behaviour, while
in [Berio99] it is suggested to use state-transition diagrams and especially statecharts for the same
purpose, because “the concept of states is a fundamental feature of resources” [Berio99]. Moreover,
according to [Berio99] “statecharts can be used to model the behaviour of a single resource or the
interaction between several interacting resources”. For less structured resource interactions, such as for
the modelling of human agent communication in team-working, it is proposed in [Berio99] to use the
Speech–Act Perspective as suggested by Medina-Mora et al. [Medina-Mora92].

2.1.5.1. Modelling of Business Rules and Processes

Functional modelling in CIMOSA addresses both enterprise functionality described in terms of
enterprise activities and hierarchy of functions and enterprise behaviour described in terms of business
processes.

According to [Berio99], business processes are usually defined in the form of a workflow or
partially ordered set of process steps, which in fine is equivalent to a network of enterprise activities.
The workflow represents the control flow of the process and is defined by means of a set of connectors
which can be junction boxes, behavioural rules, or temporal logic operators. These connectors are used

 38

to define control structures in the workflow (such as process start, sequence, branching, spawning,
rendezvous, loop, and process end).

A restricted form of reaction rules, called ‘procedural rules’ (and more recently ‘behavioural
rules’), is used in CIMOSA to specify control structures for business processes. These rules have the
form

WHEN event DO action

where the event expression typically refers to the ending status of some activity, such as in the
following rule

WHEN ES(ea1) = ok DO ea2.

specifying that the enterprise activity ea2 is started when the ending status of the enterprise activity
ea1 is ‘ok’.

The reaction rules of CIMOSA also enable to model nondeterministic enterprise behaviour where
there are choices in the control flow of a business process left open to an external agent. The CIMOSA
constructs for modelling nondeterministic enterprise behaviour correspond to the general behavioural
construct “Deferred choice”, which is described in [Patterns03].

According to [Berio99], CIMOSA provides four ways for synchronization of business processes:
• synchronization by events (one activity in a process P1 generates an event Ev1 which triggers

another process P2, either in the same domain or in another domain);
• synchronization by object availability: the output of an activity of process P1 can be the input

of an activity of process P2;
• synchronization by resource availability (resources are allocated to processes on the basis of

schedules or priority rules);
• synchronization by message passing.
In CIMOSA, both synchronous or asynchronous communications between activities are allowed.

They are made by message passing using the following pre-defined functional operations where m is a
message and a an activity:

• send (a, m): to send a message m to activity a;
• receive (a, m): to receive a message m from activity a;
• acknowledge (a): to let activity a know that the message was received;
• broadcast (m): to send a message m to anyone who wants to read it.

2.1.5.2. Evaluation

CIMOSA provides a strongest support for the functional and behavioural views of agent-oriented
modelling. It also supports strongly the informational view, which, however, does not include
constructs corresponding to derivation rules, and provides some support for the motivational view.
The support for the organizational and interactional views is weakened by the incorrect and
unsystematic treatment of actors/agents. Like in Eriksson-Penker extensions to UML (v. section
2.1.2), in CIMOSA agents are understood as “active resources, able to perform a number of atomic
actions, called functional operations”. This definition is made even fuzzier in [Reyneri99], where
actors are defined as “all elementary elements [of a domain model]: enterprise activities, organization
units, humans, single machines, information elements…”. It is hard to imagine something in common
between the things mentioned.

The applicability of Petri Nets for modelling resource behaviour mentioned in [Reyneri99] is
questionable in case of open systems, because, according to [Eshuis02a] “all changes in Petri nets
occur because of the firing of some transitions in the net that represent activity of some part of the
system itself, rather than some activity in the system’s environment”. In other words, Petri nets are
suitable for modelling active systems, rather than reactive ones.

Interaction modelling by statecharts proposed in [Berio99] suffers from the same problem as
activity diagrams of UML 1.4 which is formulated in [Sladek96] with regard to the case of inter-
organizational business processes studied in the paper: “It was incorrect to model the task activation
across the organizational boundaries as a state transition because it meant that the requesting
organization was loosing the control and thus its autonomy also. To alleviate the problem, the inter-
organizational communication should be modelled as a protocol”. This applies to interactions between
different units, e.g. departments, of an organization, as well as to interactions between different
organizations.

 39

In CIMOSA, events accepted by internal behaviours of a business process are represented as
occurrences of different ending statuses of the process [Berio99]. It is confessed in [Berio99]:
“Obviously, this constrains the interface between the process instance and its execution environment”.
Modelling of interactions by speech acts is mentioned in [Berio99], but it is not made clear how this
kind of interaction modelling can be integrated into statechart-based modelling. The representation of
the interactional view is thus weak in CIMOSA.

2.2. METHODOLOGIES FOR BUSINESS MODELLING

2.2.1. Business Rule-Oriented Conceptual Modelling

Business Rule-Oriented COnceptual Modelling (BROCOM) was proposed in [Herbst95] and
[Herbst97]. The BROCOM approach emphasizes the use of business rules for the specification of all
dynamic properties relevant to the universe of discourse, i.e., of processes and integrity constraints.
The methodology is based on the metamodel that consists of the following sub models: ‘Business
Rule’, ‘Data Model Components’, ‘Processor’, ‘Origin’, ‘Organizational Unit’, and ‘Process’.

The sub model ‘Business Rule’ consists of the four meta entity types: Business rule, Event,
Condition, and Action. Every business rule has exactly one event, at most one condition, and one or
two actions (THEN / ELSE). Events and conditions may be composite and therefore have recursive
M:N relationship types. Actions of business rules may raise events. In the metamodel, this is
represented by the relationship is_raised_by between the meta entity types Action and Event.

To illustrate the scope and different types of business rules, some examples which may be relevant
in an order processing system are introduced in [Herbst95]. In the following business rules, after the
customer has specified an order, the order is only accepted if the total amount of the order does not
exceed the actual credit limit of the customer. The acceptance of the order results in triggering the
tasks of assembling and delivering the order:

 [BR2] ON order specified
IF (credit-limit of customer > order-total)
THEN registrate order, ⇒ EVENT ‘order registrated’

SET order-state := ‘accepted’
SET credit-limit := credit-limit - order-total

ELSE reject order, ⇒ EVENT ‘order rejected’
 [BR4] ON order registered

THEN assemble order, ⇒ EVENT ‘order assembled’

[BR6] ON order assembled
THEN deliver order, ⇒ EVENT ‘order delivered’

The sub model ‘Data Model Components’ encompasses the meta entity types for a conceptual data
model. In accordance with the Entity Relationship Model, the meta entity types Entity type,
Relationship type, and Attribute are incorporated into this sub model. The allowed semantics of
references relationship between components of business rules and data model components is put
together in Table 2-2, adopted from [Herbst97]. For example, the impact of the rule [BR2] on data
model components is insertion of a new order and modification of the order state. And the other way
round, the data model component (entity type) ‘Order’ is referenced by the rule [BR2].
Table 2-2. Relationship between business rules and modelling constructs.

Relationship from Retrieval Modification
Event ⇒ Data model component No No
Condition ⇒ Data model component Yes No
Action ⇒ Data model component Yes Yes

The sub model ‘Processor’ links rule components to specific processors who/which execute them,
i.e., who/which detect the occurrence of events, evaluate conditions, and perform actions. A
‘Processor’ can be a human actor, machine, or software program. A ‘Processor’ raises 0 to N events,
evaluates 1 to N conditions, and performs 0 to N actions.

Business rules may originate outside or inside an organization which is addressed by the sub model
‘Origin’. Externally originating rules can be further divided into natural facts which are eternally

 40

fixed and (e.g., legal) norms which are specified by the society and may change. Internal origins can
be either primary or secondary; an origin is primary if its content is originally described in a source
document, whereas a secondary origin has previously been derived from another source.

Within the sub model ‘Organizational Unit’, the assignment of business rule components to the
organizational units, which are responsible for processing the components, leads to intra and inter
unit rules. This classification may help to support the administration of business rules in an
organization. Organizational units own origins and encompass processors of business rules.

Within the sub model ‘Process’, actions of business rules can be related to events resulting in ECA-
chains describing the dynamic of processes like the example depicted in Figure 2-5, adopted from
[Herbst95], which also includes the example rules [BR2], [BR4], and [BR6], presented above.
Processes can thus be specified by means of business rules. In the context of the metamodel only the
behaviour of a business process is considered. Additional properties like process goals, values, and
process owners are not further discussed.

Figure 2-5. Order processing described by business rules

In [Herbst97], the following five modelling steps are proposed:
1. Specification of the process structure.
2. Specification of the processes by using business rules.
3. Specification of the conceptual data model.
4. Specification of integrity constraints by using business rules.
5. Validation.
Steps one and two concern process specific business rules and steps three and four process

independent business rules.

2.2.1.1. Evaluation

The BROCOM approach as a database-oriented methodology provides a very strong support for the
informational view of agent-oriented modelling. It also integrates the informational view with the
functional and organizational views. The functional and organizational view are thus supported
strongly but the behavioural view only weakly, because BROCOM does not include any explicit
behavioural constructs, even though some of them can be simulated. There is no support for the
motivational view for the reason that, even though process goals are mentioned in [Herbst97], in
reality they are not represented in BROCOM.

The BROCOM’s sub model ’Processor’ includes both human and automated actors. However, the
BROCOM approach does not include the notion of communication/interaction, even though it
acknowledges that actions performed by actors raise events. For example, raising the event ‘order
assembled’ by the rule [BR4], which occurs in the storage department, and the reaction to this event

 41

by the rule [BR6] performed in the sales department could be more naturally modelled as sending a
message from the storage department to the sales department, especially if they lie in different
geographical locations. Likewise, raising the event ‘order delivered’ within the business rule [BR6]
could be modelled as an interaction (providing the commodity requested) between the sales
department and the customer.
2.2.2. Enterprise Knowledge Development (EKD)

The Enterprise Knowledge Development (EKD) methodology is comprehensively presented in
[Bubenko01], according to which the purpose of applying EKD is to provide a clear, unambiguous
picture of how the enterprise functions currently, what are the requirements and the reasons for
change, what alternatives could be devised to meet these requirements, and what are the criteria and
arguments for evaluating these alternatives. Basic contents of the EKD framework include: a set of
description techniques, explanation of stakeholder participation, and a set of guidelines for working.
EKD application process is supported by a set of software tools.

The deliverables of the EKD process are a number of conceptual models that examine an enterprise
and its requirements from a number of interrelated perspectives. These models are based on the
refinement of the enterprise model that was discussed in Section 1.5.3. The refined enterprise model is
depicted in Figure 2-6 which is adapted from [Bubenko01]. As the figure shows, it contains a number
of sub models which are connected to each other by inter-model relationships. Each of the models
represents some aspect of the enterprise.

The Goals Model is used for describing the goals of the enterprise along with the issues associated
with achieving these goals. Component types of the Goals Model are goal, problem, cause, constraint,
and opportunity. The link types between the components of the Goals Model are supports, hinders,
and conflicts.

The Concepts Model is used to define the concepts of the problem domain and the attributes that
characterize them. Concepts can be related to each other by means of binary relationships,
generalization/specialization relationships, and aggregation relationships.

The Business Rules Model has the central position among other types of conceptual models in
Figure 2-6. It is used to define and maintain explicitly formulated business rules, consistent with the
Goals Model. Business rules are defined in EKD as “the rules that control the enterprise in a way that
they define and constrain which actions may be taken in the various situations that may arise”
[Bubenko01]. According to [Bubenko01], business rules may be in the form of precise statements that
describe the way that the business has chosen to achieve its goals and to implement its policies, or the
various externally imposed rules on the business, such as regulations and laws.

Figure 2-6. The submodels comprising the refined Enterprise Model.

 42

In [Bubenko01], business rules are categorized into derivation rules, event-action rules, and
constraint rules corresponding to derivation rules, reaction rules, and integrity constraints which were
defined by us in section 1.4.1.1. Event-action rules in the Business Rules Model should be expressed
in the following way: When {event} If {preconditions on entities} then {processes}. In Figure 2-7, adapted
from [Bubenko01], a business rule of the library case study corresponding to the above pattern is
visualized jointly with the concepts of the Concepts Model it refers to and processes of the Business
Processes Model it motivates or is supported by. In the same way, business rules are also related to
goals of the Goals Model.

The Business Processes Model is designed for analyzing the processes and flows of information
and material in the enterprise. Processes can be decomposed into subprocesses. The Business Process
Model also enables to model control flows using AND-join, OR-join, and OR-split constructs.

The Actors and Resources Model of EKD distinguishes between actors of the following kinds:
individuals, organizational units, and roles. Within the same model, non-human resources are
understood as types of machines, systems of different kinds, equipment, etc. Binary relationships,
generalization/specialization relationships, and aggregation relationships between actors and/or non-
human resources are also a part of the Actors and Resources Model.

In [Kavakli98], actor-role diagrams were proposed for analyzing relations between business goals
and business processes. An actor-role diagram presents a high-level view of the association between
actors and their different roles, like the actor Customer Service Section and its role Service Administrative
Handling. Actor-role diagrams enable to represent textually goals assigned to roles, like “Deal with
contractual and financial matters” of the role Administrative Handling, and graphically different kinds of
dependencies between roles, like authorization and co-ordination dependencies.

Figure 2-7. Rules refer to concepts in the Concepts Model and are supported by processes in Business Processes

Model.

2.2.2.1. Evaluation

The EKD methodology provides a strong support for the informational, functional, organizational, and
motivational views of agent-oriented modelling. As in i*, which was discussed in section 2.1.4, the
interactional view is supported only indirectly and weakly through various dependency relationships
between the actor types involved. Since the number of behavioural constructs in EKD is very limited,
the support provided for the behavioural view is also weak.

 43

Visualization of conceptual models in EKD is quite simplistic (by boxes). With the exception of
role-activity diagrams, the EKD approach does not include any notation for more specific graphical
representation of the components of one or another sub model and especially of the links between the
components, as well as of the links between different sub models.

The EKD approach does not address the conceptual models and dependencies between them at the
design level. Therefore it can only be used only at the requirements’ analysis stage, while other, more
precise techniques, should be used at the design stage.

2.2.3. Gaia

In Gaia [Wooldridge00], agents are understood as “coarse-grained computational systems, each
making use of significant computational resources”. Gaia is thus intended to be a software engineering
technique, rather than a business modelling methodology. However, developing business process
management systems as one of its application areas indicates that Gaia can (should) be used to some
extent for business modelling, as well.

According to [Wooldridge00], Gaia includes a number of analysis and design models which are
based on the notion of role. A role in Gaia is defined by four attributes: responsibilities, permissions,
activities, and protocols. Responsibilities define the functionality of a role. They are divided into two
types: liveness properties and safety properties. These notions have been borrowed from the theory of
reactive systems presented in [Manna92]. Liveness properties intuitively state that “something good
happens”. They describe those states of affairs that an agent must bring about, given certain
environmental conditions. In contrast, safety properties are invariants. Intuitively, a safety property
states that “nothing bad happens”, i.e. that an acceptable state of affairs is maintained across all states
of execution.

In order to realize its responsibilities, a role has a set of permissions which are the “rights”
associated with a role. The permissions of a role thus identify the (information) resources that are
available to that role in order to realize its responsibilities. For example, a role might have associated
with it the ability to read a particular item of information, or to modify another piece of information. A
role can also have the ability to generate information. The activities of a role are computations
associated with the role that may be carried out by the agent without interacting with other agents.
Activities are thus “private” actions, in the sense of [Shoham93]. Finally, a role is also identified with
a number of protocols, which define the way that it can interact with other roles. For example, a
“seller” role might have the protocols “Dutch auction” and “English auction” associated with it.

According to [Wooldridge00], the objective of the analysis stage is to develop an understanding of
the system and its structure (without reference to any implementation detail). This understanding is
captured in the system’s organization. The organization model in Gaia is comprised of the roles model
and the interaction model.

The roles model in Gaia is comprised of a set of role schemata, one for each role in the system.
An example of a role schema is provided in Figure 2-8 which is adapted from [Wooldridge00]. This
schema models the role CoffeeFiller whose purpose is to ensure that a coffee pot is kept full of coffee
for a group of workers.

As can be seen in Figure 2-8, Gaia makes use of a formal notation for expressing permissions. For
example, in Figure 2-8 two permissions are defined: the first says that the agent carrying out the role
CoffeeFiller has permission to read the coffeeMaker parameter (that indicates which coffee machine
the role is intended to keep filled). The agent has also permission to access the value coffeeStatus (that
indicates whether the machine is full or empty) and to both read and modify the value coffeeStock.

 In Gaia, liveness properties of a role are specified via a liveness expression, which defines the “life-
cycle” of the role. The liveness expressions in Gaia are essentially regular expressions with an
additional operator, “ω ” for infinite repetition. For example, the liveness expression, which specifies
in Figure 2-8 the responsibilities of the CoffeeFiller role, says that CoffeeFiller consists of executing the
protocol Fill, followed by the protocol InformWorkers, followed by the activity CheckStock and the
protocol AwaitEmpty. The sequential execution of these protocols and activities is then repeated
infinitely often.
 Safety properties in Gaia are specified by means of a list of predicates. These predicates are
typically expressed over the variables listed in a role’s permissions attributes. For example, the role
schema depicted in Figure 2-8 includes the safety property coffeeStock > 0 which must be true across
all states of the system’s execution.

 44

Role Schema: CoffeeFiller
Description:

This role involves ensuring that the coffee pot is kept filled, and
informing the workers when fresh coffee has been brewed.

Protocols and Activities:
Fill, InformWorkers, CheckStock, AwaitEmpty

Permissions:
reads supplied coffeeMaker // name of coffee maker

coffeeStatus // full or empty
changes coffeeStock // stock level of coffee

Responsibilities
Liveness:

CoffeeFiller = (Fill.lnformWorkers.CheckStock. AwaitEmpty)ω
Safety:

coffeeStock > 0
Figure 2-8. Schema for the role CoffeeFiller.

The interaction model in Gaia represents dependencies and relationships between the various roles
in a multi-agent organization. This model consists of a set of protocol definitions, one for each type of
inter-role interaction. According to [Wooldridge00], here a protocol is understood as a pattern of
interaction that is abstracted away from any particular sequence of execution steps, like the precise
ordering of particular message exchanges. For example, the Fill protocol, which forms a part of the
CoffeeFiller role modelled in Figure 2-8, specifies that it involves CoffeeFiller putting coffee in the
machine named coffeeMaker, and results in CoffeeMachine being informed about the value of
coffeeStock.

Once all the roles and their interactions are captured, the design process can start. The aim of
design in Gaia is to transform the analysis models into a sufficiently low level of abstraction that
traditional modelling techniques (including object-oriented techniques) may be applied in order to
implement agents. The Gaia design process involves generating three models: the agent model, the
services model, and the acquaintance model.

The purpose of the Gaia agent model is to identify the various agent types that will make up the
system under development, and the agent instances that will realize these agent types at run-time. The
agent model is defined using a simple agent type tree mapping roles into agent types, in which leaf
nodes correspond to roles (as defined in the roles model), and other nodes correspond to agent types.
The agent model also specifies the number of instances of each agent type that will appear in a system.
For example, the agent model of the coffee brewing example expresses that the agent role CoffeeFiller
is mapped to the agent type FillerAgent, of which there are zero or more instances.

The services model describes the services associated with an agent role which are essentially the
main functions that are required to realize the agent role. For each service that may be performed by an
agent, its inputs, outputs, preconditions, and postconditions are identified. For example, in the coffee
brewing example, there are four activities and protocols associated with the CoffeeFiller role: Fill,
InformWorkers, CheckStock, and AwaitEmpty. In general, there will be at least one service associated with
each protocol. In the case of CheckStock, for example, the service (which may have the same name),
will take as input the stock level and some threshold value, and will simply compare the two. The pre-
and postconditions will both state that the coffee stock level is greater than 0. This condition is one of
the safety properties of the role CoffeeFiller.

Finally, acquaintance models simply define the communication links that exist between agent
types. They do not define what messages are sent or when messages are sent – they simply indicate
that communication pathways exist. Agent acquaintance models are directed graphs, and so an arc a
→ b indicates that a will send messages to b, but not necessarily that b will send messages to a. For
example, the acquaintance model defined for the coffee brewing example states that the FillerAgent
exchanges messages with the Machine Agent which, in turn, exchanges messages with the WorkerAgent.

 45

2.2.3.1. Evaluation

In Gaia, the main emphasis of domain modelling is on the organizational, interactional, and functional
views of agent-oriented modelling which are addressed by role and interaction models. However, in
role modelling, Gaia does not provide any means for expressing other kinds of relationships between
the roles apart from interactions, like generalization, aggregation, and control (subordination), which
makes the overall support for the organizational view weak. This is not a surprise given that Gaia is
aimed at developing agent-based software systems and not for modelling of business domains. The
support for the interactional view is also not the best possible one because Gaia does not enable to
model the types and contents of agent messages in agent protocols like “Dutch auction” and “English
auction”. Neither supports Gaia the modelling of the order in which agent messages are exchanged.

The purpose of Gaia (developing software systems) does not explain the lack of explicit modelling
of agents’ private and common knowledge in it, because a system of software agents also needs a
common framework of knowledge – ontology. At present, the knowledge maintained by agents can be
modelled by using role variables like coffeeStatus and coffeeStock and safety properties which is not
sufficient for covering the informational view.
 Gaia provides a strong support for the functional view through the permissions’ and
responsibilities’ modelling at the stage of analysis and the modelling of inputs, outputs, and pre- and
postconditions at the design stage. While the liveness expressions enable to specify the order in which
protocols and activities are executed and their repetitions, they do not provide any means for
expressing more complicated behavioural constructs where the number of repetitions depends on the
value of one or more data items, like “Exclusive choice” and loops. This again reflects the insufficient
support for the informational view of agent-oriented modelling by Gaia. Since, as we will see in
section 3.6.2, postconditions are subsumed by goals, Gaia also provides some support for the
motivational view of agent-oriented modelling.

We can conclude by saying that many deficiencies of Gaia that were discussed stem from the
purpose of Gaia which is developing agent-based software systems rather than developing information
systems based on business modelling.

 46

2.3. COMPARISON OF THE BUSINESS MODELLING TECHNIQUES

In sections 2.1 and 2.2, five modelling languages and notations for business modelling and three
business modelling methodologies were reviewed and evaluated with respect to the six views of agent-
oriented modelling proposed by us in section 1.5.6. The results of the evaluation have been
summarized in Table 2-3 where the following legend is used:

• - : no support;

• + : a weak (some) support;

• ++ : a strong support;

• +++ : a very strong support.

Table 2-3. Comparative evaluation of the business modelling techniques.

 Informational Organiza-
tional

Interactional Functional Motivational Behavioural

Ross
Notation

+++ + - + ++ -

Eriksson-
Penker
Business
Extensions

++ ++ + ++ ++ ++

Role Activity
Diagrams

- ++ ++ +++ + ++

i* + ++ + ++ +++ -

CIMOSA ++ ++ + +++ + +++

BROCOM +++ ++ - ++ - +

EKD ++ ++ + ++ ++ +

GAIA + + ++ +++ + +

As Table 2-3 reveals, no one of the business modelling techniques studied in sections 2.1 and 2.2
provides a sufficient support for all views of agent-oriented modelling. Especially can be noticed the
weakness of the interactional view in the modelling techniques and methodologies analyzed. This can
be explained by the fact that up to the latest time business modelling has been aimed at creating
monolithic information systems consisting of a thick server and many thin clients as opposed to truly
distributed information systems consisting of subsystems which interact and communicate in a peer-
to-peer manner. The results of the comparison have thus convinced us of the need to devise a business
modelling notation and the relevant methodology that would be aimed at creating highly distributed
agent-oriented and cooperative information systems. The technique, which we have named the
Business Agents’ Approach, will be presented in Chapter 3 of this thesis.

 47

2.4. OTHER RELATED WORK

Lately, a variety of XML-based techniques and notations for creating executable business process
specifications based on Web Services (WS) [WS], such as BPEL4WS [BPEL] and BPML [BPML],
have emerged.

According to [BPEL], BPEL4WS allows specifying business processes and how they relate to Web
Services which are described by e.g. WSDL [WSDL]. This includes specifying how a business
process makes use of Web Services to achieve its goal, as well as specifying Web Services that are
provided by a business process. Business processes specified in BPEL are fully executable and
portable between BPEL-conformant environments. A BPEL business process interoperates with the
Web Services of its partners, whether or not these Web Services are implemented based on BPEL.
Finally, BPEL supports the specification of business protocols between partners and views on complex
internal business processes.

As it is described in [BPML], BPML provides an abstracted execution model for collaborative and
transactional business processes, and considers e-Business processes as made of a common public
interface and as many private implementations as process participants. The execution model of BPML
is based on a mathematical language that uses the pi-calculus model. BPML represents business
processes as the interleaving of control flow, data flow, and event flow, while adding orthogonal
design capabilities for business rules, security roles, and transaction contexts. BPML also offers
explicit support for synchronous and asynchronous distributed transactions, and therefore can be used
as an execution model for embedding existing applications within e-Business processes as process
components. BPML is accompanied by a BPMN – Business Process Modelling Notation.

According to [Smith03], BPML provides unification of data, computation, and interaction which
has the same flavor as the modelling technique supporting multiple perspectives suggested by us. In
general, with regard to standard proposals, such as BPEL4WS and BPML, we agree with the statement
that has been made in [Aalst03b], “Although there are well-established process modelling techniques
combining expressiveness, simplicity and formal semantics (cf. Petri nets and process algebras); the
software industry has chosen to ignore these techniques. As a result, the world is confronted with too
many standards which are mainly driven by concrete products and/or commercial interests”.
 The UN/CEFACT Modelling Methodology (UMM) presented in [UMM] is an incremental
business process and information model construction methodology that intends to create business
documents that are exchanged between business partners based on business process models. UMM is
affiliated to the ebXML (Electronic Business using eXtensible Markup Language) initiative [ebXML].
According to the UMM Meta Model, which defines the UMM modelling language, a commercial
trading agreement is modelled as a business collaboration model. The UMM Meta Model is defined as
an extension of the UML Meta Model by extending the UML stereotype syntax and semantics with the
syntax and semantics of the business collaboration domain.
 In [UMM], business processes are modelled as “business process use cases” which are refined into
activity diagrams of UML. In this sense, UMM is similar to the Business Agents’ Approach as we will
see in section 3. However, agents and objects are not distinguished between in UMM. With regard to
using UML activity diagrams, we agree with [EDO99] where it is argued that UML activity diagrams
are more suitable for modelling computation processes than for business modelling, and that business
process semantics needs another kind of behaviour specification.
 Object-oriented Process, Environment, and Notation (OPEN) [OPEN] is a methodological
approach that was designed for the development of software intensive applications, and particularly
for the design and implementation of object-oriented and component-based software. OPEN was
created and is maintained by the non-profit OPEN Consortium, an international group of over 35
methodologists, academics, CASE tool vendors and developers. OPEN provides strong support for the
full lifecycle of a software application, including business process modelling.
 According to [OPEN], OPEN is defined as a process framework, known as the OPF (OPEN
Process Framework). This is a process metamodel from which can be generated an organization-
specific process (instance). The metaclasses in the OPF are divided into five groups: Work Units,
Work Products, Producers, Stages, and Languages. These form a component library for OPEN from
which individual instances are selected and put together, in a constructor set fashion, to create a
specific instance of OPEN.
 OPEN includes the modelling notion of agent in the form of Producer. OPEN also distinguishes
between human agents, agent roles, and institutional agents. Consequently, OPEN can in principle be
used in agent-oriented modelling. This is reflected by the latest extension of OPEN to support agent-

 48

oriented software development approaches which are reported about in [OPEN]. It is emphasized in
[OPEN] that a modelling notation of one’s choice can be used to document the work products, e.g.
information systems, that the OPEN process produces. All this implies that the extended AORML
diagrams could be incorporated into OPEN.
 In the works such as [Dignum95] and [Weigand97], deontic logic is applied to the modelling of
communication between autonomous cooperative systems and business process modelling. Deontic
logic of obligation described e.g. in [Balzer00] and [Dignum99] offers notions such as responsibilities
(obligations, duties) and authorizations (rights) that are attached to roles played by agents.
Responsibilities of an agent that are directed towards other agents are termed ‘commitments’ in
deontic logic.
 In the paper [Dignum95], firstly the logical language for modelling communication based on
speech acts and deontic logic is defined. The language is illustrated by an example about ordering
products where each of the message types between the customer and the company is modelled with a
logical formula. Thereafter it is shown how the formulas describing the exchange between the
customer and the company can be represented in the formal specification language CoLa. According
to [Dignum95], the communication protocols that are specified in CoLa are independent from the
applications, but in contrast to traditional communication protocols, they capture the complete
communication logic, not just an ordered set of messages.
 Some elements of deontic logic are already used in AORML, based on [Wagner03a] where the first
sketch of the deontic logic of AOR modelling is made. The main shortcomings of deontic logic’
approaches from the perspective of information systems are that they are either of more philosophical
nature like the one presented in [Balzer00], or, as it is stated in [Dignum97], “lack axiomatization or
even a set of inference rules”, and are therefore hard to use in practice.
 The work reported on in [Barbuceanu99] concentrates on the interaction aspects of agents in the
domain of integrated supply chain management, and particularly on the agents’ mutual obligations and
interdictions. It enables to define agent roles with the obligations, interdictions, and permissions
attached to them. Such roles can then be used for e.g. coordinating the behaviours of the agents. The
models in [Barbuceanu99] are, however, at a rather low level of abstraction and do not include models
of information/knowledge possessed by agents.
 The Action Workflow approach [Medina-Mora92] involves commitments in loops representing a
four-step exchange between a customer and a performer. The main shortcomings of this approach are
that it considers only two actors at a time and cannot easily model “run-time” modifications of the
commitments.
 According to [Karageorgos02], methodologies for engineering multi-agent systems can be divided
into the following categories: methodologies aligned with object-oriented software engineering,
extensions to knowledge engineering methodologies, methodologies based on information systems
methodologies, and methodologies highly coupled with specific agent-based system building toolkits.
Within the context of this thesis, we are naturally mostly interested in the methodologies based on
information systems engineering. Out of them, Tropos [Mylopoulos01] has been reviewed in sections
2.1.4.2 and 2.1.4.3. We will now briefly describe two other methodologies which can be regarded as
based on information systems engineering.
 Firstly, the work [Elammari99] describes a design methodology which allows the development of
agent based systems from user requirements. The models produced by the modelling approach are
high-level model of the system, internal agent models, agent relationship models, conversational
models, and contract models. The methodology provides a means of both visualizing the behaviour of
systems of agents based on agent roles and contracts between them, and defining how the behaviour is
achieved. It also includes an approach for generating from high-level designs implementable system
definitions. The methodology does not, however, provide a graphical modelling language of its own.
The approach has been applied to an intranet telephony application.
 Secondly, in [Kendall96] a methodology for engineering agent-based systems is outlined. The
methodology is based on the IDEF approach for workflow modelling and analysis [IDEF], the
CIMOSA enterprise modelling framework [AMICE93], and the use case driven approach to object
oriented software engineering. With the methodology proposed, agents can be identified along with
their plans, goals, beliefs, sensors, and effectors based on function models represented using IDEF.
The methodology also addresses the modelling of agent collaboration through scripts based on use
cases and use case abstraction. The methodology does not, however, include explicit models of

 49

information/knowledge possessed by agents. The methodology is illustrated by using a case study of
discrete parts’ manufacturing.
 The UML Profile for Enterprise Distributed Object Computing [EDO99] defines a set of new
modelling elements and relationships between them for the modelling of business processes. These
constructs are based on the existing UML modelling concepts. It is argued that the modelling of the
behaviour of business roles by business rules represents an alternative and/or complementary way of
modelling the enterprise.
 In [Odell00], an agent-oriented extension of UML, called AUML, has been proposed. It mainly
concerns the expressivity of UML sequence and activity diagrams. However, AUML does not
distinguish between agents and objects. In fact, UML class diagrams are not modified at all in AUML.
Neither does it provide any support for business rules and business process modelling.
 The RAMASD method described in [Karageorgos02] is a method for semiautomatic design of
agent organizations based on the concept of role models as first-class design constructs. Role models
represent agent behaviour, and the design of the agent system is done by systematically allocating
roles to agents. Simple types of business rules can also be specified for roles. The core of the method
is a formal model of basic relations between roles, termed role algebra. RAMASD thus focuses on the
organizational view of agent-oriented modelling.

The informational view of agent-oriented modelling has a central position in the DESIRE
methodology [Brazier97], where concepts and relations between them are defined in hierarchies for
modelling multi-agent systems. That approach also includes rules that are allegedly used for automatic
generation of prototype agent applications directly from their specifications.

 50

3. DESCRIPTION OF THE BUSINESS AGENTS’ APPROACH

3.1. THE CASE STUDY OF A CAR RENTAL COMPANY

For describing our approach, we will be making use of the case study of a fictitious car rental
company by Model Systems, Ltd. called EU-Rent that is described in [BR00].

EU-Rent is a car rental company owned by EU-Corporation. EU-Rent has 1000 branches in towns
in several countries. At each branch cars, classified by car group, are available for rental. Each branch
has a manager and booking clerks who handle rentals.

Most rentals are by advance reservation; the rental period and the car group are specified at the
time of reservation. EU-Rent will also accept immediate (‘walk-in’) rentals, if cars are available.

At the end of each day cars are assigned to reservations for the following day. If more cars have
been requested than are available in a group at a branch, the branch manager may ask other branches if
they have cars they can transfer to him/her.

Cars rented from one branch of EU-Rent may be returned to a different branch. The renting branch
must ensure that the car has been returned to some branch at the end of the rental period. If a car is
returned to a branch other than the one that rented it, ownership of the car is assigned to the new
branch.

EU-Rent also has service stations, each serving several branches. Cars may be booked for
maintenance at any time provided that the service station has capacity on the day in question. For
simplicity, only one booking per car per day is allowed. A rental or service may cover several days.

A customer can have several reservations but only one car rented at a time. EU-Rent keeps records
of customers, their rentals and bad experiences such as late return, problems with payment, and
damage to cars. This information is used to decide whether to approve a rental.

In Figure 3-1, a simplified version of the organizational structure of the EU-Rent car rental
company is depicted, showing only three branches, the headquarters, and just one automotive service
station, serving the branches.

 Automotive
 Service

MessagesMessages

Messages

 Station

Database of
Rentals and
Customers

Branch 2Branch 1 Branch 3
Messages Messages

Drop-off

Messages

Pick-up
Reservation

Headquarter

Customer

Messages

BankPaying

Paying information

Figure 3-1. The EU-Rent car rental company

 51

3.2. LEVELS OF BUSINESS MODELLING

Business rules have a global nature, i. e. they possibly involve objects of several object types. This
doesn’t fit into the principle of encapsulation that we have in object-oriented modelling. For example,
the rule “product of the type A should never be cheaper than product of the type B” involves two
different object types: it cannot be expressed within just one type. The rule “when the payment of a
bill is two weeks overdue, it is required to send a reminder to the customer” involves several object
types, an action, and time, and cannot therefore be encapsulated within one specific object type
[Høydalsvik93].

There have been proposals to express business rules in an object-oriented fashion by using
metamodelling in [Blanchard95] and [Odell95], but we are not aware of their any further applications.
Many of the business modelling techniques that were described in Chapter 2 enable to model global
business rules in a natural way. But in these techniques business rules are not properly connected to
either actors (Ross Notation, Eriksson-Penker Extensions to UML, CIMOSA, BROCOM) or
actions/activities (Eriksson-Penker Extensions to UML).

In [Metsker97], it is claimed that new, ontologically-oriented modelling and programming
languages are needed that would allow “thinking about objects”. In particular, according to
[Metsker97], event though behaviours often occur as transactions, such as passing money between
accounts, handing off material from a robot to an input conveyor, and lancing a boil, transaction
processing is well understood, but barely supported in today’s languages. An ontologically-oriented
language will support the notion of transactions as structures of behaviour [Metsker97]. We are of the
opinion that such transactions can be represented using business rules.

Conceptually, our solution to the problem of representing global business rules is adding the Agent
Layer to the top of the Object Layer, like is shown in Figure 3-2. We understand the Object Layer in a
wide sense of the term as either a relational, object-relational, or object-oriented database, Enterprise
Resource Planning (ERP) or Enterprise Application Integration (EAI) system, or some object-oriented
framework such as COM™ or CORBA™.

Agents of the Agent Layer communicate with each other by exchanging high-level typed messages,
such as “ASK”, “TELL”, “REQUEST”, and “PROPOSE”. Following [Oja01], the communication
between an agent on the Agent Layer and an object on the Object Layer is defined as a manipulation.
This term was coined to express the fact that objects are submitted to agents. Each agent has an object
scope consisting of all object types whose instances are manipulated by it [Oja01].

We thus view data as agents’ beliefs, and express business rules on the Agent Layer in terms of
agents’ beliefs and actions. This constitutes a powerful paradigm for the modelling, design, and
implementation of business information systems.

Different modelling techniques like Gaia, which was described in section 2.2.3, can be applied to
the modelling of agents understood this way. However, most of these modelling techniques, including
Gaia, do not include information (knowledge) models. The only exception seems to be Agent-Object-
Relationship (AOR) modelling proposed in [Wagner00a], [Wagner01], and [Wagner03a]. In this
thesis, we make use of and extend the AOR Modelling Language (AORML) in combination with the
Object Constraint Language (OCL) which is a part of the UML standard described in [OMG03a]. This
combination of modelling techniques enables full-scale modelling and simulation of business
processes based on business rules.

Figure 3-2. Adding the Agent Layer to the top of the Object Layer.

 52

3.3. THE METAMODEL OF THE BUSINESS AGENTS’ APPROACH

The metamodel of the Business Agents’ Approach reflects the organizational, functional, motivational,
informational, interactional, and behavioural views of agent-oriented modelling which were defined in
section 1.5.6. It thus serves as a general metamodel of agent-oriented modelling. The metamodel
depicted in Figure 3-3 also shows how the views of agent-oriented modelling are conceptually related
to each other. All the entities in Figure 3-3 are types like in any object class model.

3.3.1. Organization Modelling

Following the definition presented in [Kieser92], we consider an organization as a social unit which
lastingly strives to achieve common organization goals, as is reflected by Figure 3-3, and has a formal
structure which coordinates the activities of all its members in order to achieve the goals. As Figure 3-
3 shows, an organization consists of one or more functional organization units. A functional
organization unit in Figure 3-3 (we term it simply organization unit hereafter) can be defined as an
entity for managing the performance of activities to achieve one or more business goals of the
organization [Uschold98]. Each organization unit maintains knowledge about a certain functional
subfield of the problem domain that has common business rules and goals [Farhoodi96]. In our
example case study of a car rental company, such organization units are the branch, headquarters, and
automotive service station.

Business rules that an organization unit is responsible for and organization goals supported by them
are attached to the organization unit through a number of its internal agents which can be biological
agents (humans), artificial agents or other institutional agents. As Figure 3-3 reflects, an internal agent
of an organization or organization unit can also be a role. A role is an abstract characterization of the
behaviour of a social actor within some specialized context or domain of endeavor [Yu95a]. In
[Zambonelli01], the following definition of a role is provided: “The role is what the agent is expected
to do in the organization: both in cooperation with the other agents and in respect to the organization
itself”. Analogously, Curtis et al define a role as a coherent set of process elements to be assigned to
an agent as a unit of functional responsibility [Curtis92]. In the example of a car rental company, the
agent type branch includes the institutional roles pick-up branch and drop-off branch.

As Figure 3-3 reflects, organization and organization unit form subtypes of institutional agent.
According to Figure 3-3, an institutional agent may, in turn, include one or more roles. Both
institutional agent and role are subtypes of agent.

3.3.2. Function and Motivation Modelling

In the metamodel of Figure 3-3, each agent may include one or more prototypical job functions –
activities – in an organization. The type of an activity (task in [Yu95a]) specifies a particular way of
doing something [Yu95a]. For example, in a car rental company, activities of the types “Manage car
reservation” and “Manage pick-up” are included by the role pick-up branch. An activity may consist
of subactivities like an activity of the type “Manage car reservation” consists of subactivities of the
types “Check the customer for blacklistedness”, “Create rental reservation”, and “Allocate a car”.
 As Figure 3-3 shows, an activity is started by an activity starting action which is invoked by a
reaction rule in response to perceiving an event which can be a communicative or non-communicative
(i.e. a physical) action event (i.e. an event that is created by an action) by other agent or a non-action
event, particularly an end of activity event which is associated with the end of the previous activity.

According to Figure 3-3, an activity may be associated with an agent goal. An agent goal is a
condition or state of affairs in the world that the agent would like to achieve [Yu95a]. As Figure 3-3
reflects, an agent goal is expressed in terms of domain predicates – informational entity types,
relationship types, and attributes, and predicates of the problem domain defined by derivation rules.
In order to achieve its goal, an agent performs an activity associated with that goal. In the example of
car rental, a pick-up branch performs an activity of the type “Allocate a car” in order to achieve its
agent goal which is expressed informally as “A car is allocated to the rental order”.

As Figure 3-3 reflects, in function models an activity can be associated with one or more epistemic
actions and/or action events (i.e. actions that are perceived by other agent(s) as events) performed by
the corresponding agent. An action is an atomic unit of work done by an agent. As in [Shoham93], we
view an agent’s action in a broader sense as something that the agent does while e.g. in the “triangle”
model of Figure 1-1 an action is understood narrowly as something that changes the state of a data
object.

53

Activity

<is associated with

1..*

Derivation
RuleEvent0..*

Domain
Predicate

Epistemic
Action

Agent
Goal

0..*

Agent
0..*

invokes>

<affects

has>
1

is attached to>

<has

0..*

1..*

0..1

<raises

Reaction
Rule

Organization
Goal Organization

Organization
Unit

1..*

0..*

Action Event Non-Action
Event

Start-Of-
Activity-
Event

End-Of-
Activity-
Event

1

Internal
Action

Comm.
Action Event

Business
Process is linked to><is governed by

1..*

0..1

1..*

0..*

<is controlled by0..*

1

<is expressed in terms of

1..*

1..* 0..*

1

1

Informational
Entity
Type

Relationship
Type

0..*

0..*

Institutional
Agent

Commitment/
Claim0..*

1

1..*

1

Role

includes>

Integrity
Constraint con-

strains>

1

1..*

Business
Rule

0..*

1..*

0..*

1

0..*
0..*

supports>

performs>

<towards/
against

0..*

Activity
Starting
Action

starts>

1

0..*

is attached to>

triggers>

evaluates>

1

0..* 0..* 1

<raises

1

0..*

Pre-
condition

0..1

0..*
<refers to

to-do
Commitment/

Claim

stit-
Commitment/

Claim

1

1..*

has>

Attribute

<invokes

1

0..*
Conclusion

1..*

1

defines>

11

is perceived by>

<is expressed in terms of

0..*

0..* 1<includes

0..*Condition 0..1

1

1

1

0..*

<is associated with

0..*

Activity
Border
Event

Non-Comm.
Action Event

refers to> 0..*

refers to>

0..*

0..*

Figure 3-3. The metamodel of the Business Agents’ Approach.

54

 Actions performed by an agent can be divided into epistemic, communicative, and physical
actions. Example actions of the respective three types in the car rental company are “Create an
instance of RentalOrder with the status isPreliminary”, “Ask another agent to transfer a car”, and “Pick
up the car”.

3.3.3. Information Modelling

As Figure 3-3 reflects, an epistemic action affects one or more domain predicates. There are three
kinds of domain predicates: informational entity types, relationship types, and attributes.
Informational entity types are object types and representations of other agent types within agents.
According to Figure 3-3, additional domain predicates may be defined by derivation rules which will
be treated in section 3.8.2.1. Figure 3-3 also shows that a derivation rule consists of one or more
conditions, each of which may refer to other derivation rules, and a conclusion about an instance of
the informational entity type appearing in the conclusion. For example, a derivation rule about an
instance of the object type RentalCar states: “A car is available for rental (conclusion) if it is physically
present, is not assigned to any rental order, is not scheduled for service, and does not require service”.
The conditions of this derivation rule refer to the object type RentalOrder and other derivation rules –
status predicates isPresent, isScheduledForService, and requiresService of RentalCar.

Instances of domain predicates may be constrained by one or more integrity constraints, as is
shown in Figure 3-3. An example of an integrity constraint is “A customer of the car rental company
must be at least 25 years old”.

3.3.4. Interaction Modelling

Agents interact with each other. Communicative and physical actions of one agent are respectively
perceived as communicative and non-communicative action events (i.e. events that are created by
actions) by other agent(s). An agent may have one or more commitments towards and claims against
other agents. In the metamodel presented in Figure 3-3, commitments and claims are subsumed under
the notion commitment/claim because a commitment of one agent towards another agent is seen as a
claim by the latter and the other way round. There are two kinds of commitments: commitments to
perform actions of certain types, such as a commitment of one branch of the car rental company
towards another to transfer a car, and see-to-it-that commitments to see to it that some domain
predicate holds, such as a commitment to create a rental reservation. An action event may be coupled
with a to-do-commitment. Analogously, there are claims against other agents that actions of certain
kinds will be performed, such as a claim against a customer that he/she will pay for the rental, and
claims to see to it that some condition holds, such as a claim to have the car serviced.
3.3.5. Behaviour Modelling

According to Figure 3-3, an event may trigger one or more reaction rules. Reaction rules were defined
in section 1.4.1.1 as kinds of business rules that are concerned with the invocation and sequencing of
actions and/or activities in response to events. As Figure 3-3 shows, after a reaction rule has been
triggered by one or more triggering events, each of which possibly consists of other events, it may
evaluate a precondition, which possibly refers to one or more derivation rules. Then a reaction rule
may invoke one or more internal actions and/or one or more action events. An internal action is either
an epistemic action or an activity starting action. An example of a reaction rule from the domain of car
rental is: “When receiving from a customer the request to reserve a car of some specified car group
(triggering action event), and there is enough capacity in the requested car group in the pick-up
branch on the pick-up day (precondition referring to the derivation rule about an instance of the object
type CarGroup), the branch checks the customer for blacklistedness (starting an activity consisting of a
set of actions)”.

There are two kinds of implicit activity border events which form special types of non-action
events: a start of activity event and an end of activity event which are respectively associated with the
start and end of an activity. As Figure 3-3 shows, performing an activity raises exactly one event of
both kinds.

Figure 3-3 shows that a business process is governed by one or more reaction rules and linked to
one or more organization units.

According to Figure 3-3, derivation rules, integrity constraints, and reaction rules form subtypes of
business rules. Figure 3-3 also reflects that a business rule is always attached to an agent and each
business rule supports one or more organization goals.

55

3.4. OVERVIEW OF THE AGENT-OBJECT-RELATIONSHIP (AOR) MODELLING

In this section we describe, by using the example of car rental (v. section 3.1), how Agent-Object-
Relationship (AOR) diagrams can be applied to the business modelling at two levels like it was
suggested in section 3.2. The AOR diagrams were proposed in [Wagner00a], [Wagner01], and
[Wagner03a] as an agent-oriented extension of Entity-Relationship-style or UML-style class diagrams.
AOR modelling suggests that the semantics of business transactions can be more adequately captured
if the specific business agents associated with the involved events and actions are explicitly
represented in organizational information systems in addition to passive business objects. While both
objects and agents are represented in the system, only agents interact with it, and the possible
interactions may have to be represented in the system as well.

According to [Wagner03a], in AOR modelling, an entity is either an agent, an event, an action, a
claim, a commitment, or an ordinary object. Only agents can communicate, perceive, act, make
commitments and satisfy claims. Objects do not communicate, cannot perceive anything, are unable to
act, and do not have any commitments or claims. Being entities, agents and objects share a number of
attributes representing their properties or characteristics. So, in AOR modelling, there are the same
notions as in ER modelling (such as entity types, relationship types, attributes, etc.).

Sections 3.4.1, 3.4.2, 3.4.3, and 3.4.4 are based on [Wagner03a] with the exception of the
subsection 3.4.4.1 which is based on [Taveter01c]. Section 3.4.5 is largely based on [Wagner02].
3.4.1. Object and Agent Types

According to [Wagner03a], object types, such as sales orders or product items, are visualized as
rectangles essentially in the same way like entity types in ER diagrams, or object classes in UML class
diagrams. They may participate in association, generalization, or aggregation/composition
relationships with other object types, and in association or aggregation/composition relationships with
agent types.

Association types are represented by connection lines. The multiplicity constraints of an
association are specified like in the UML (by means of declarations such as 0..1 or 1..* at the
respective association end).

It is distinguished between biological agents, institutional agents, and artificial agents. For our
purposes, humans form the only relevant subclass of biological agents. Examples of human agent
types are Person, Employee, Student, Nurse, or Patient. Examples of institutional agents are
organizations, such as a bank or a hospital, or organization units.

In certain application domains, there may also be artificial agent types, such as software agents
(e.g., involved in electronic commerce transactions), embedded systems (such as automated teller
machines), or robots. For instance, in an automated contract negotiation or in an automated purchase
decision, a legal entity may be represented by an artificial agent. Typically, an artificial agent is
owned, and is run, by a legal entity that is responsible for its actions.

In AOR diagrams, an agent type is visualized as a rectangle with rounded corners. Icons indicating
a single human, a group, or a robot may be used for visualizing the distinction between human,
institutional, and artificial agent. An agent type may be defined as a subclass of another agent type,
thus inheriting all of its attributes (and operations). For example, Employee of EU-Rent is a subclass of
Person.

Agents may be related to other entities by means of ordinary domain relationships (associations). In
addition to the designated relationship types generalization and composition of ER/OO modelling,
there are further designated relationship types relating agents with events, actions and commitments.
They are discussed below.

An organization is viewed as a complex institutional agent defining the rights and duties of its
internal agents that act on behalf of it, being involved in a number of interactions with external agents.
Internal agents may be humans, artificial agents (such as software agents, agent information systems,
robots or agent embedded systems), or institutional agents (such as organization units). An
institutional agent consists of a number of internal agents that perceive events and perform actions on
behalf of it, by playing certain roles. Internal agents, by virtue of their contractual status (or ownership
status, in the case of artificial internal agents), have certain rights and duties, and assume a certain
position within the subordination hierarchy of the institution they belong to.

As in the UML, instances of a type are graphically rendered by a respective rectangle with the
underlined name of the particular instance as its title, possibly followed by a colon and its type, like

56

EU-Rent: Organization where Organization is another agent type. The same notation for instances also
applies to objects, actions/events, and commitments/claims.

3.4.2. Actions and Events

According to [Wagner03a], in a business domain, there are various types of actions performed by
agents, and there are various types of state changes, including the progression of time, that occur in the
environment of the agents. For an external observer, both actions and environmental state changes
constitute events. In the internal perspective of an agent that acts in the business domain, only the
actions of other agents count as events.

Actions create events, but not all events are created by actions. Those events that are created by
actions, such as delivering a product to a customer, are called action events. Examples of business
events that are not created by actions are the fall of a particular stock value below a certain threshold,
the sinking of a ship in a storm, or a timeout in an auction. Such events are called non-action events.

We make a distinction between communicative and non-communicative actions and events. Many
typical business events, such as receiving a purchase order or a sales quotation, are communicative
events. Business communication may be viewed as asynchronous point-to-point message passing.
The expressions receiving a message and sending a message may be considered to be synonyms of
perceiving a communicative event and performing a communicative action.

As opposed to the low-level (and rather technical) concept of messages in object-oriented
programming, AOR modelling assumes the high-level semantics of speech-act-based Agent
Communication Language (ACL) messages (see [KQML, FIPA]).

3.4.3. Commitments and Claims

According to [Wagner03a], commitments and claims are fundamental components of business
interaction processes. Consequently, a proper representation and handling of commitments and claims
is vital for automating business processes.

Representing and processing commitments and claims in information systems explicitly helps to
achieve coherent behaviour in (semi-)automated interaction processes. In [Singh99], the social
dimension of coherent behaviour is emphasized, and commitments are treated as ternary relationships
between two agents and a ‘context group’ they both belong to. For simplicity, we treat commitments
as binary relationships between two agents.

Commitments to perform certain actions, or to see to it that certain conditions hold, typically arise
from certain communication acts. For instance, sending a sales quotation to a customer commits the
vendor to reserve adequate stocks of the quoted item for some time. Likewise, acknowledging a sales
order implies the creation of a commitment to deliver the ordered items on or before the specified
delivery date.

There are two kinds of commitments: commitments to do an action and commitments to see to it
that some condition holds. The former are called to-do commitments, and the latter see-to-it-that
commitments. Formally, a to-do commitment of agent a1 towards agent a2 may be expressed as a
quadruple,

〈a1, a2, α(c1, …, cn), TimeSpec〉

where α denotes an action type, c1, …, cn is a suitable list of parameters, and TimeSpec specifies, e.g.
in the form of a deadline, the time constraints for the fulfilment of the commitment. A see-to-it-that
commitment is expressed in the same form, but now α(c1, …, cn) represents a proposition (logical
sentence) instead of an action term. The AOR modelling includes only to-do commitments because
they are more fundamental. However, since, as we will show in section 3.8.3.2, it is not possible to
create adequate business models without see-to-it-that commitments, in section 3.8.3.2 we will extend
the AOR modelling language with them.

Commitment and claim processing (that is, the operational semantics of commitments and claims)
includes the following operations:

• the creation of a commitment/claim through the performance of certain actions or the
occurrence of certain events,

• the cancellation of a commitment by the debtor,
• waiving a claim by the creditor (or releasing the debtor from the corresponding commitment),
• the delegation of a commitment by the debtor to another agent who becomes the new debtor,
• assigning a claim by the creditor to another agent who becomes the new creditor,

57

• fulfilling a commitment.

3.4.4. External AOR Models

According to [Wagner03a], in an external AOR model, we adopt the view of an external observer who
is observing the (prototypical) agents and their interactions in the problem domain under
consideration. Typically, an external AOR model has a focus that is an agent, or a group of agents, for
which we would like to develop a state and behaviour model. In this external-observer-view, ‘the
world’ (i.e., the application domain) consists of various types of

1. agents,
2. communicative and non-communicative action events,
3. non-action events,
4. commitments/claims between two agent types,
5. ordinary objects,
6. various designated relationships, such as sends and does,
7. ordinary associations.
In the view of an external observer, actions are also events, and commitments are also claims,

exactly like two sides of the same coin. Therefore, an external AOR model contains, besides the agent
and object types of interest, the action event types and commitment/claim types that are needed to
describe the interaction between the focus agent(s) and the other types of agents. These meta-entity
types of external AOR modelling are shown in Figure 3-4.

Entity

Agent Commitment /
Claim ObjectEvent

Action Event Non-Action
Event

Biological
Agent

Institutional
Agent

Artificial
Agent

internal agent

Comm.
Action Event

Non-Comm.
Action Event

0..1

1

1..*

*

Figure 3-4. The meta-entity types of external AOR modelling.

Agent Type

Message Type

Non-Communicative
Action Event Type

Non-Action
Event Type

Commitment/Claim
Type

sends

does
Internal
Object Type

External
Object Type receives

perceives

perceives

Action Event Type

Figure 3-5. The core elements of external AOR modelling.

58

An external AOR model does not include any software artifacts. It rather represents a conceptual
analysis view of the problem domain and may also contain elements which are merely descriptive and
not executable by a computer program (as required for enterprise modelling).

The core elements of external AOR modelling are shown in Figure 3-5. An agent diagram of AOR
modelling depicts the agents and agent types of a problem domain, together with their internal agents
and agent types, their beliefs about objects and the relationships among them. The agent diagram of
the domain of car rental is depicted in Figure 3-13.

According to [Wagner03a], in an external AOR model, the interactions between the focus agent(s)
and the other types of agents are visualized in an interaction frame diagram. In an interaction frame
diagram, an action event type is graphically rendered by a special arrow rectangle where one side is an
incoming arrow linked to the agent (or agent type) that performs this type of action, and the other side
is an outgoing arrow linked to the agent (or agent type) that perceives this type of event.
Communicative action event rectangles have a dot-dashed line. In the case of a non-action event, the
corresponding event rectangle does not have an outgoing arrow (see Figure 3-6).

In an external AOR model, a commitment of agent a1 towards agent a2 to perform an action of a
certain type (such as a commitment to return a car) can also be viewed as a claim of a2 against a1 that
an action of that kind will be performed. Commitments/claims are conceptually coupled with the type
of action event they refer to (such as provideCar action event in Figure 3-7). This is graphically
rendered by an arrow rectangle with a dotted line on top of the action event rectangle it refers to, as
depicted in Figure 3-6.

In an external AOR model, there are four types of designated relationships between agents and
action events: sends and receives are relationship types that relate an agent with communicative action
events, while does and perceives are relationship types that relate an agent with non-communicative
action events. In addition, there are two types of designated relationships between agents and
commitments/claims: hasCommitment and hasClaim. These designated relationship types are visualized
with particular connector types as shown in Figure 3-6.

An interaction frame diagram, in an external AOR model, thus describes the possible interactions
between two (types of) agents. It consists of various types of

1. communicative action events,
2. non-communicative action events,
3. commitments/claims (coupled with the corresponding types of action events), and
4. non-action events.

Agent Non-Action Eventperceives

Agent1 Non-Communicative
Action Event

does
Agent2< perceives

Agent1 Message
sends

Agent2< receives

Agent1 Commitment /
Claim

hasCommitment
Agent2< hasClaim

Action Event

Figure 3-6. The designated relationship types sends, receives, does, perceives, hasCommitment, and
hasClaim.

Figure 3-16 depicts the interaction frames between Customer and Branch, Branch and Headquarters,
and Branch and AutomotiveServiceStation.
3.4.4.1. Reaction Rules and Interaction Pattern Diagrams

In [Taveter01c], we described the modelling of interaction process types by identifying interaction
patterns and expressing them by means of reaction rules and interaction pattern diagrams. Reaction
rules may be used both for describing the reactive behaviour of all kinds of agents, and when possible,
for the executable specification of the reaction patterns of an agent.

59

An example of a reaction rule is the following: When a branch of the car rental company receives
a request to reserve a car of some car group for a certain rental period from a customer, it first checks
whether that car group has sufficient capacity during the rental period requested, and if this is the
case, the branch sends a query to the headquarters to make sure that the customer is not blacklisted.
Otherwise, the branch sends a refusal to the customer. This rule is visualized as rule R1 in Figure 3-7.

A reaction rule is visualized as a circle with incoming and outgoing arrows drawn within the agent
rectangle whose reaction pattern it represents. Each reaction rule has exactly one incoming arrow with
a solid arrowhead: it represents the triggering event condition which is also responsible for
instantiating the reaction rule (binding its variables to certain values). In addition, there may be
ordinary incoming arrows representing conditions (referring to corresponding instances of other
informational entity types) making up a precondition. There are two kinds of outgoing arrows. An
outgoing arrow with an empty arrowhead denotes a mental effect referring to a change of beliefs
and/or commitments. An outgoing connector to an action event type denotes the performance of an
action of that type.

Reaction rules may also be represented in textual template form. For, instance, R1 and R3 could be
expressed as in Table 3-1. In symbolic form, a reaction rule is defined as a quadruple

ε, C → α, F

where ε denotes the triggering event term, C denotes the precondition formula, α denotes the resulting
action term, and F denotes the mental effect formula. Both C and F are formulas from a logical
language corresponding to the (mental state) schema of the agent whose reaction pattern is specified
by the rule [Wagner98]. It is required that all free variables in F occur also in C.

EU-Rent

Customer

Headquarter

Branch

CarGroupRentalOrder

RentalCar

R1

hasCapacity
(Rental
Period)

R3

isReserved

RR triggering
event
status

condition

status
change

outgoing
message

Legend for reaction rules

action

R2

Customer

isBlacklisted request provideCar
(?CarGroup

?RentalPeriod)

refuse provideCar
(?CarGroup

?RentalPeriod)

agree provideCar
(?RentalID ...)

provideCar
(?RentalID)

provideCar
(?RentalID)

query-if
(blacklisted

(?Customer))

inform
(not(blacklisted
(?Customer)))

Figure 3-7. An interaction pattern diagram describing the process type where a customer requests a rental
reservation from a branch of the car rental company EU-Rent, and where the capacity of the requested car group
is first checked within the branch and after that the blacklistedness of the customer is checked with the
headquarters. If there is enough capacity and the customer is not blacklisted, the rental reservation is created, and
a confirmation is sent to the customer.

60

Table 3-1. The reaction rules R1 and R3 of Figure 3-7 in textual template form.

ON Event RECEIVE request provideCar(?CarGroup ?RentalPeriod)
FROM ?Customer

IF Condition ?CarGroup.hasCapacity(?RentalPeriod)
THEN Action SEND query-if(isBlacklisted(?Customer)) TO

?Headquarters
ELSE Action SEND refuse provideCar(?CarGroup ?RentalPeriod) TO

?Customer
ON Event RECEIVE inform(not(isBlacklisted(?Customer))) FROM

?Headquarters
THEN Effect COMPUTE ?RentalID = getNewRentalID()

CREATE BELIEF RentalOrder(?RentalID, ?Customer,
isPreliminary, . . .)
CREATE COMMITMENT TOWARDS ?Customer TO
provideCar(?RentalID) BY . . .

 Action SEND agree provideCar(?RentalID) TO ?Customer

Notice that in an interaction pattern diagram, the actions performed by one agent may be at the
same time the events perceived by another agent. An interaction pattern can therefore visualize the
reaction chains that arise by one reaction triggering another one.

3.4.5. A UML Profile of the AOR Metamodel

The Agent-Object-Relationship Modelling Language (AORML), which was described in sections
3.4.1 through 3.4.4, can be viewed as an extension to UML [OMG03a]. It is stated in [Wagner02] that
AORML, by virtue of its agent-oriented categorization of different classes, allows more adequate
models of organizations and organizational information systems than plain UML.

In [Wagner02] the AOR metamodel is represented as a UML profile. According to [Wagner02],
this allows AOR models to be notated using standard UML notation. This means that most UML tools
(specifically the ones that support the extension mechanisms of UML, such as stereotypes and tagged
values) can be used to define AOR models. Standard practice for defining UML profiles has been
adopted. A mapping of AOR metamodel classes to their base UML classes, with accompanying
stereotypes, tagged values, and constraints is presented. An implementation of this mapping can be
used, for example, to generate XMI metadata conforming to the AOR metamodel from models notated
using the UML profile. Specialized AOR tools will more likely directly use the AOR metamodel
rather than the UML profile as a basis for storing and manipulating models [Wagner02].

The only notion of AORML that can not be represented by means of a UML profile is reaction rule
because such a notion is not compatible with UML.

A summary of the stereotypes of external AOR modelling together with the extensions to be
proposed by us in the following sections is presented in Table 3-2. The table has been adopted from
[Wagner02] and extended by the additional stereotypes Activity, AutomaticActivity, HumanActivity, and
SemiautomaticActivity to be explained in section 3.8.5.1. Restricted generalization means that whenever
a generalization relationship involves a class of that stereotype as either subclass or superclass, the
other class involved must also be of that stereotype. No aggregation means that classes of that
stereotype must not participate in any aggregation.

As Table 3-2 shows, in addition to the stereotypes Agent and Object, also the stereotype ActionEvent
along with its subclasses CommunicativeActionEvent and NonCommunicativeActionEvent extends the
metaclass Class. According to [OMG03a], the attributes that are defined for a stereotype are
instantiated for any UML class that the stereotype is applied to. In such a way, the value of the String-
type attribute performative defined for the stereotype CommunicativeActionEvent specifies the
performative type pertaining to a communicative action event type like “request”.

Analogously, the subclass ToDoCommitmentClaim of the stereotype CommitmentClaim defines the
attribute actionEventTypeName of the type String. When the stereotype is applied to a to-do-
commitment/claim type, this attribute refers to the name of the action event type that the
commitment/claim type is coupled with. Another subclass STITCommitmentClaim of the stereotype
CommitmentClaim does not introduce any new attributes. It is applied to stit-commitment/claim types
which are anonymous classes [OMG03b] distinguished by the types of propositions included by them.

61

Table 3-2. Stereotypes of the extended AOR modelling.

Stereotype Base Class Parent Constraints
AORModel Model NA
Agent Class NA Restricted generalization.
BiologicalAgent Class Agent Restricted generalization.
HumanAgent Class BiologicalAgent Restricted generalization.
ArtificialAgent Class Agent Restricted generalization.
SoftwareAgent Class ArtificialAgent Restricted generalization.
Robot Class ArtificialAgent Restricted generalization.
EmbeddedSystem Class ArtificialAgent Restricted generalization.
InstitutionalAgent Class Agent Restricted generalization.
Organization Class InstitutionalAgent Restricted generalization.
OrganizationalUnit Class InstitutionalAgent Restricted generalization.
Object Class NA Restricted generalization.
Event Class NA Restricted generalization. No aggregation.
ActionEvent Class Event Restricted generalization. No aggregation.
Communicative
Action Event

Class Action
Event

Restricted generalization. No aggregation.

NonCommunicative
Action Event

Class Action
Event

Restricted generalization. No aggregation.

NonActionEvent Class Event Restricted generalization. No aggregation.
CommitmentClaim Class NA Restricted generalization. No aggregation.
ToDo
CommitmentClaim

Class CommitmentClaim Restricted generalization. No aggregation.

STIT
CommitmentClaim

Class CommitmentClaim Restricted generalization. No aggregation.

Activity Class NA Restricted generalization. No aggregation.
AutomaticActivity Class Activity Restricted generalization. No aggregation.
HumanActivity Class Activity Restricted generalization. No aggregation.
Semiautomatic
Activity

Class Activity Restricted generalization. No aggregation.

does Association NA The domain class must be an agent type and
the range class must be a non-communicative
action event type. Multiplicity is one-to-many.

perceives Association NA The domain class must be an agent type and
the range class must be a non-communicative
action event type or a non-action event type.
Multiplicity is one-to-many.

sends Association NA The domain class must be an agent type and
the range class must be a communicative
action event type. Multiplicity is one-to-many.

receives Association NA The domain class must be an agent type and
the range class must be a communicative
action event type. Multiplicity is one-to-many.

hasClaim Association NA The domain class must be an agent type and
the range class must be a commitment/claim
type. Multiplicity is one-to-many.

hasCommitment Association NA The domain class must be an agent type and
the range class must be a commitment/claim
type. Multiplicity is one-to-many.

performs Association NA The domain class must be an agent type and
the range class must be an activity type.
Multiplicity is one-to-many.

62

3.5. INCORPORATING THE OBJECT CONSTRAINT LANGUAGE

The Object Constraint Language (OCL), which is now a part of the UML standard [OMG03a], is a
formal language used to express integrity constraints (called ‘invariants’) as well as preconditions and
postconditions for operations on the basis of a vocabulary defined by a UML model.

OCL is a pure specification language; therefore, an OCL expression is guaranteed to be without
side effect. When an OCL expression is evaluated, it simply returns a value. It cannot change anything
in the model. This means that the state of the system will never change because of the evaluation of an
OCL expression, even though an OCL expression can be used to specify a state change (e.g., in a post-
condition).

OCL is a typed language, so that each OCL expression has a type. To be well formed, an OCL
expression must conform to the type conformance rules of the language. For example, you cannot
compare an Integer with a String. OCL includes a set of supplementary predefined types.

Each OCL expression is written in the context of an instance of a specific informational entity type
(i.e. an object type or a representation of an agent type). In an OCL expression, the reserved word self
is used to refer to the contextual instance. For instance, if the context is Customer, then self refers to an
instance of Customer.

Within the Business Agents’ Approach, OCL is used for the following purposes:
• To specify integrity constraints as invariants on informational entity types.
• To define derived attributes by means of OCL invariants.
• To define status predicates by means of modified OCL invariants.
• To define intensional predicates by means of operations.
• To specify input parameters of activities.
• To specify preconditions and goals (postconditions) of activities as logical expressions.
• To specify preconditions of reaction rules as logical expressions.
• To specify postconditions (mental effects) of reaction rules as logical expressions.
• As a navigation language.
For making possible the use of OCL for the purposes listed above, we will introduce a number of

modifications and extension into it. For example, we will extend OCL by allowing more than one
contextual instance.

If the constraint is shown in an agent diagram of AORML, with the proper stereotype and the
dashed lines to connect it to its contextual element, there is no need for an explicit context declaration
in the test of the constraint. The context declaration is optional.

Based on [OMG03a], starting from a specific object, we can navigate an association on the agent
diagram to refer to other informational entities and their properties. To do so, we navigate the
association in the direction of the rolename of the opposite association-end. The value of this
expression is the set of informational entities on the other side of the association. If the multiplicity of
the association-end has a maximum of one (“0..1” or “1”), then the value of this expression is an
informational entity. By default, navigation will result in a Set of informational entities. When the
association on the agent diagram is adorned with {ordered}, the navigation results in an ordered
Sequence of informational entities. When a rolename is missing at one of the ends of an association,
the name of the type at the association end, starting with a lowercase character, is used as the
rolename. If this results in an ambiguity, the rolename is mandatory. In AORML, it is also possible to
navigate from an internal agent or object type to the enclosing agent or object type.

Appendix A describes the grammar for the version of OCL that we use in combination with AOR
modelling. The grammar is based on the definitions of OCL in [OMG03a] and [OMG03b]. It also
includes a number of modifications and extensions to the standard OCL [OMG03a] that will be
described in the corresponding sections. The core of OCL is formed of logical expressions which are
used to specify invariants, status and intensional predicates, preconditions and goals (postconditions)
of activities, and pre- and postconditions (mental effects) of reaction rules.

The grammar description in Appendix A uses the EBNF syntax, where “|” and “?” respectively
stand for a choice and optionally, “*” means zero or more times, “+” means one or more times, and
expressions delimited with “/*” and “*/” are definitions described with English words or sentences. In
the description of string, the syntax for lexical tokens from the JavaCC parser generator is used.

In the sequel, we use the UML term “association” and the term “relationship” interchangeably.

63

3.6. EXTENDING AOR MODELLING BY ACTIVITY DIAGRAMS

3.6.1. Introduction of Activity Diagrams

Figure 3-7 in section 3.4.4.1 depicts an interaction pattern diagram describing a part of the business
process type of car rental. Figure 3-7 demonstrates that an interaction pattern diagram can visualize the
reaction chains that arise by one reaction triggering another one. However, for adequate modelling of
business processes interaction pattern diagrams are not sufficient because they do not enable to model
action sequences. For this reason, we need to introduce activities as a glue connecting the actions of an
agent within a business process to each other.

In [Eshuis02b], an activity is defined using workflow terminology as an uninterruptible amount of
work that is performed in a non-zero span of time by an actor. Each activity belongs to some activity
type. An activity type (task in [Yu95a]), like “Manage car reservation”, is defined as a prototypical job
function in an organization which specifies a particular way of doing something [Yu95a]. It seems
natural to allow specifying the start of an activity in the action part of a reaction rule. In other words,
an instance of an activity type is created by means of a reaction rule in response to perceiving an
event.

For graphical modelling of activity types, we are introducing an extension to AOR modelling –
activity diagrams – which combine interaction frame diagrams and interaction pattern diagrams with
the notion of activity. To enable the modelling of activities by activity diagrams, we are extending the
set of possible types of action terms α of the reaction rule quadruple ε, C → α, F defined in section
3.4.4.1 by the START ACTIVITY activityReference construct type, representing the type of an activity
starting action, where activityReference denotes a reference to the activity type whose instance is
started by the construct. We also allow both the triggering event term ε and the action term α to
consist of specifications of more than one event and action types, respectively, connected with logical
conjunction(s).

In activity diagrams, activity types are visualized as rectangles with rounded left and right sides, as
is shown in Figure 3-8. An activity can be started by a reaction rule as is shown in Figure 3-8 a) where
an activity of the type ActivityType1 is started in reaction to perceiving an action event of the type
ActionEventType1. When an activity has been started by a reaction rule, the agent is in the
corresponding activity state. Using the workflow terminology described in [Eshuis02b], in an activity
state an actor is executing an activity in an instance of a case (business process in AORML). Starting
an activity is equal to creating an instance of the corresponding activity type. In the course of
executing an activity, data relevant for the business process instance the activity is a part of is updated.
In the extended AOR modelling, this data is represented as input parameters of an activity. Input
parameters correspond to case attributes [Eshuis02b] in workflow terminology. The names and types
of input parameters of an activity are represented in an activity diagram by using the enclosed in
parentheses formalParameterList construct of OCL, which is defined in Appendix A. In the activity
diagram of Figure 3-9, an activity of the type “Manage car reservation” is started by reaction rule R1.
The parameters that are passed to the activity are specified in parenthesis following the activity name.

R3

Activity
Type2

Activity
Type1

ActionEvent
Type1

Agent
Type1

R1

Activity
Type1

ActionEvent
Type1

Agent
Type1 Activity

Type1

Activity
Type2

a)

R2

Activity
Type2

ActionEvent
Type1

Agent
Type1

Activity
Type1

b) c)

d)

R4

Activity
Type2

ActionEvent
Type1

Agent
Type1

Activity
Type1

e)
Figure 3-8. The constructs for starting of activities.

64

EU-Rent

Pick-UpBranch

agree provideCar
(?RentalOrder)

R2

Check the customer
for blacklistedness

(cust: String)

Create rental reservation
(cgroup: String, ptime: Date,
dtime: Date, pbranch: String,
dbranch: String, cust: String)

Customer

Manage car reservation
(cgroup: String, ptime: Date,
dtime: Date, pbranch: String,
dbranch: String, cust: String)

refuse provideCar
(?String1 ?Date1
?Date2 ?String2)

CarGroup

Customer

isBlacklisted

hasCar

isQualified
ForRental

request provideCar
(?String1 ?Date1
?Date2 ?String2)

R1

<<know-if>>

RentalCar

isPresent

isPickedUp

isInService

provideCar
(?RentalCar)

provideCar
(?RentalCar ?Date)

RentalOrder

isReserved

isAllocated

isEffective

isDropped-Off

rentalCharge
isCalculated

hasCapacity
(pickUpTime: Date,
dropOffTime: Date)

0..1
0..1

1

0..*

0..*

1

0..*

1Allocate cars

U

{carGroupID = cgroup and
hasCapacity(ptime, dtime)}

{personID = cust}

{cgroup = Cgroup and
ptime = Ptime and
dtime = Dtime and

dbranch = Dbranch and
cust = SenderID and

pbranch = self.agentID}

{Cgroup = ?String1 and
Ptime = ?Date1 and
Dtime = ?Date2 and
Dbranch = ?String2}

Allocate a car
(r: RentalOrder)C

C

{carGroupID = cgroup and
pickUpTime = ptime and
dropOffTime = dtime and

pickUpBranchID = pbranch and
dropOffBranchID = dbranch}

C(2)
C(3)C(1)

Figure 3-9. Activity type for the business process type of car reservation.

Each reaction rule is characterized by one or more internal logical variables which form the
schema of the reaction rule. The number and types of the internal variables of a rule are determined by
the number and types of the values that are assigned to them. When an activity is started by means of a
reaction rule, to its input parameters are assigned the values of the internal variables of the invoking
reaction rule. The internal variables, in turn, are instantiated by matching the event condition of the
reaction rule with the triggering event instance(s). In such a case, the number and types of the internal
variables are determined by the number and types of the data fields included by the triggering event(s).
In Figure 3-9 is specified the evaluation of the internal variables Cgroup, Ptime, Dtime, Dbranch, and
SenderID of reaction rule R1 and the assignment of their values to the corresponding input parameters
cgroup, ptime, dtime, dbranch, and cust of an activity instance of the type “Manage car reservation”. The
name of an internal variable of a reaction rule in an activity diagram always starts with a capital letter,
while the name of an activity’s input parameter starts with a small letter.

If there are no two or more source values of the same type, the evaluation of internal variables of a
reaction rule and the assignment of their values to e.g. the input parameters of an activity started by
the reaction rule is implicit in activity diagrams. Otherwise, it should be explicitly specified. Internal
variables of a reaction rule will be treated more thoroughly in section 3.6.3. The evaluation of the
input parameters that do not have counterparts among internal variables, like the input parameter
pbranch (the identifier of the pick-up branch) in Figure 3-9, should also be explicitly specified.

There are two activity border events implicitly associated with the beginning and end of each
activity. Through an activity border event of the type START activityTemplate, defined in Appendix B,
where activityTemplate includes the identifier of the activity type, an activity can trigger its subactivity
or internal reaction rule. If an event of this kind triggers the activity’s internal reaction rule, activityType
may also include a list of internal variables to be evaluated by the event. The triggering event type
START activityTemplate is graphically represented by an empty circle with the outgoing arrow to the
symbol for the activity type or internal reaction rule. According to the pattern shown in Figure 3-8 b),
upon the start of an activity of the type ActivityType1, its subactivity of the type ActivityType2 is started.
In Figure 3-8 c), an activity border event of the same type triggers reaction rule R2 included by the
activity. The construct depicted in Figure 3-8 c) allows to represent waiting for a message within an

65

activity: after the start of an activity of the type ActivityType1, if the agent perceives an action event of
the type ActionEventType1, a subactivity of the type ActivityType2 is started.

Additionally, each activity is associated with another implicit activity border event of the type END
activityID, defined in Appendix B, which can trigger a subsequent activity or reaction rule. This event
type is visualized by drawing a triggering arrow from the activity type symbol to either the symbol of
the next activity type or to the symbol of the reaction rule triggered by an activity of the corresponding
type. The pattern shown in Figure 3-8 d) allows to represent waiting for a message between two
activities by referring to the activity border event of the type END activityID. According to this pattern,
after the end of an activity of the type ActivityType1, if the agent perceives an action event of the type
ActionEventType1, an activity of the type ActivityType2 is started.

The pattern shown in Figure 3-8 e) allows to represent starting the next activity (which is not a
subactivity of the previous one) upon perceiving an action event. In Figure 3-8 e), reaction rule R4
within an activity of the type ActivityType1 starts a subsequent activity of the type ActivityType2 only if it
perceives an action event of the type ActionEventType1. As we will see in section 3.8.5.3, the pattern of
starting the next activity upon perceiving an action event allows to represent the behavioural pattern
“Deferred choice” which is generally hard to implement according to [Patterns03].

An activity may consist of subactivities. The activity types for which no subactivity types can or is
desired to be identified are termed elementary activity types. An elementary activity type, like the
activity type “Create rental reservation” in Figure 3-9, can contain at most one reaction rule that is
triggered by a START activityTemplate event. As any reaction rule, it can invoke a number of physical
and/or communicative actions. We thus have actions as the basic elements of a business process. An
action happens at a time point (i.e., it is immediate), while an activity is being performed during a time
interval (i.e., it has duration), and consists of a set of actions. An activity type is completely/partially
specified if all/some of its actions are specified by reaction rules. Otherwise, the activity type is
unspecified. For example, the activity type “Create rental reservation” in Figure 3-9 is completely
specified, while the activity type “Allocate cars” in the same figure is unspecified.

From the perspective of a particular agent, completely specified activities can be viewed as
transactions because a completely specified activity can be characterized by the so-called ACID-
properties [Gray93] which are paraphrased for elementary activities as follows:

• atomicity: all or none of an activity is performed;
• consistency: an activity preserves the consistency of the agent’s VKB;
• isolation: intermediate results of an activity are not visible to any other activity or agent;
• durability: when an activity concludes successfully, its effects are permanent.
For a reaction rule included by an activity type, like for rule R2 in Figure 3-9, internal variables are

determined by the input variables of the enclosing activity type and the data fields included by the
triggering event(s). For example, reaction rule R2 in Figure 3-9 contains the internal variables Cgroup,
Ptime, Dtime, Pbranch, Dbranch, and Cust that are all determined by the input parameters defined for the
activity type “Create rental reservation”. The schema of a reaction rule can also be complemented by
the rule’s precondition which will be treated in section 3.6.4.

An activity passes the names and values of its input parameters to the activities of the next level
included by it. For example, in Figure 3-9 an activity of the type “Manage car reservation” passes the
names of its input parameters cgroup, ptime, dtime, pbranch, dbranch, and cust and their values to the
activity of the type “Create rental reservation” included by it. Definitions of these input parameters are
therefore repeated for the activity type “Create rental reservation” in Figure 3-9. In the same way, an
activity of the type “Manage car reservation” passes the name and value of its input parameter cust to
the activity of the type “Check the customer for blacklistedness” started by it. An activity can thus
access the input parameters that are defined for any enclosing activity type. Re-specifying input
parameters for an enclosed activity type is not obligatory in an activity diagram.

3.6.2. Preconditions and Goals of Activities

Occurrence of the triggering event of a reaction rule, such as receiving of the
request(provideCar((?String1 ?Date1 ?Date2 ?String2)))6 agent message in Figure 3-9, or occurrence of an
activity border event of the type END Create_rental_reservation in the same figure, is a sufficient
condition for an activity instance to start. An activity may have other necessary conditions that must

6 The parameters ?String1, ?Date1, ?Date2, and ?String2 respectively stand for the identifier of the pick-up branch,
pick-up time, drop-off time, and the identifier of the drop-off branch.

66

also be true when it is started. They may refer to status or intensional predicates of informational entity
types and can be defined by means of OCL. Such conditions constitute the precondition of an activity.
For example, the precondition of an activity of the type “Allocate a car” in Figure 3-9 is the existence
of the instance of RentalOrder which has the status isReserved, is to be picked up on the following day,
and is referred to by the activity’s input parameter r of the type RentalOrder. In OCL, this precondition
is represented as follows:

RentalOrder.allInstances->exists(ro : RentalOrder | ro.isReserved and ro.pickUpTime.date = now().date + 1
and ro = r)

Each activity may also be characterized by its goal which is a condition or state of affairs in the
world that the agent would like to achieve [Yu95a]. According to the terminology introduced in
[Presley97], the goals modelled within the Business Agents’ Approach are always process goals. A
process goal is a special case of a goal which is tied to a specific activity. In this case, the assignee of
the goal is the agent that includes the activity. For example, the assignee of the goal of an activity of
the type “Manage car reservation” in Figure 3-9 is an institutional agent of the type Pick-Up Branch.

We distinguish between goal types, where goals are propositions that possibly contain uninitialized
variables, and goal instances, where all variables are initialized. Goal types are attached to activity
types which are, in turn, assigned to agent types, while instances of goals characterize activity
instances which are performed by agent instances. For the sake of simplicity, we will subsequently use
the term ‘goal’ for both goal types and instances.

Strictly speaking, there is a difference between goals and postconditions. For example, the creation
of a commitment to provide the customer with the car should not really be a part of the agent’s goal
(since it is semantically implied by social norms), but it should be a part of the postcondition of the
corresponding activity of the type “Allocate a car” shown in Figure 3-9. However, for the sake of
simplicity of the Business Agents’ Approach, our term ‘goal’ subsumes both goals and postconditions.

The precondition and goal are defined for an activity type in terms of input parameters of the
activity type. For example, the goal of an activity of the type “Manage car reservation” presented
below specifies that an instance of RentalOrder with the attribute values corresponding to the values of
the activity’s input parameters has been created, the many-to-one relationships between the RentalOrder
created and the corresponding instances of CarGroup and Customer, that are identified by the values of
the input parameters cgroup and cust, respectively, have been formed, a car has been allocated to the
rental order (i.e. the one-to-one relationship has been created between the RentalOrder and the instance
of RentalCar), the instance of RentalOrder created has the status isAllocated, and the to-do-commitment
to provide the customer with the car by the pick-up time specified in the rental order has been created:

RentalOrder.allInstances->exists(r: RentalOrder | r.carGroupID = cgroup and
r.pickUpTime = ptime and r.dropOffTime = dtime and r.pickUpBranchID = pbranch and
r.dropOffBranchID = dbranch and r.carGroup->exists(cg : CarGroup | carGroupID = cgroup and
cg->includes(r)) and r.customer->exists(c : Customer | personID = cust and c->includes(r)) and
r.rentalCar->exists(c : RentalCar | c.rentalOrder = r) and
r.isAllocated and provideCar.allInstances->exists(about = r.rentalCar and
dueTime = ptime and sourceID = pbranch and targetID = cust))

The goal defined for an unspecified activity type is visualized by one or more mental effect
arrow(s) leading from the activity type rectangle to the symbol(s) for the object and/or relationship
type(s) that the goal is related to, like the goal defined for the activity type “Allocate a car” in Figure
3-9. For a completely specified activity type, like for the elementary activity type “Create rental
reservation” in Figure 3-9, the goal is visualized as one or more mental effect arrows originating in the
reaction rule symbol included by the activity type rectangle. A mental effect arrow of a completely
specified activity type may be augmented by an OCL expression as will be described in section 3.6.5.
3.6.3. The Schema of a Reaction Rule

The internal variables of a reaction rule forming the schema of the rule can be treated as logical
variables x1, ..., xn. According to [Sterling86], a logical variable stands for an unspecified but single
entity, rather than for a store location in memory like a variable in a conventional programming
language. The internal logical variables of a reaction rule are instantiated at rule application time by
values of the following types:

• the values of the data items included by the triggering event(s);

67

• the values that can be retrieved from the agent’s VKB7 so that the reaction rule’s precondition
is satisfied in the current VKB state of the agent;

• the values of the input variables of the enclosing activity type.
For example, the internal variables within the scope of reaction rule R1 are Cgroup, Ptime, Dtime,

Dbranch, and SenderID. As is expressed in Figure 3-9, the internal variables mentioned are instantiated
so that their values are equal to the values of the data fields of the request(provideCar((?String1 ?Date1
?Date2 ?String2))) agent message, and the value of the internal variable SenderID is equal to the
identifier of the instance of Customer who sent the message. The latter is a “standard” internal variable
to which is always assigned the identifier of the agent from which the triggering action event
originates. A reaction rule that is triggered by a non-action event does not have the internal variable
SenderID. As another example, to the internal variables Cgroup, Ptime, Dtime, Pbranch, Dbranch, and Cust
of reaction rule R2 in Figure 3-9 are assigned the values of the respective input parameters of the
enclosing activity of the type “Create rental reservation”. In addition to the internal variables
mentioned, the schema of reaction rule R2 includes the internal variables corresponding to the instance
of Customer and instance of CarGroup that are retrieved from the agent’s VKB. Since the mechanism of
evaluating such internal variables is the same as the mechanism of variable binding in the Prolog
programming language, we will next describe it by using examples presented in Prolog.

The internal variables of a reaction rule can be represented in Prolog as the respective relations or
predicates such as customer and car_group. According to [Sterling86], predicates can be stated through
facts like customer(1245). Predicates can also be defined by means of Prolog rules which are statements
of the form A ← B1, B2, …, Bn where n ≥ 0, A is the head of the rule, and the Bi’s are the rule’s body.
The backward arrow ← is used to denote logical implication. Variables appearing in rules are
universally quantified, and their scope is the whole rule. In Prolog, from any universally quantified
statement P, like a rule, an instance of it Pθ can be deduced, for any variable substitution θ
[Sterling86]. More precisely: if the body of a rule has free variables, a variable substitution is retrieved
such that the rule’s body becomes an inferable logical sentence. The following rule defining the
predicate rental_order thus reads: “For all internal variables Cgroup, Ptime, Dtime, Pbranch, Dbranch, and
Cust, there exists a rental order with the attribute values Cgroup, Ptime, Dtime, Pbranch, Dbranch, and
Cust, if there is an activity of the type “Create rental reservation” whose input parameters have the
values Cgroup, Ptime, Dtime, Pbranch, Dbranch, and Cust, and the customer identified by Cust is not
blacklisted, and the car group identified by Cgroup has enough rental capacity between the pick-up
time (Ptime) and drop-off time (Dtime) requested”:

rental_order(Cgroup, Ptime, Dtime, Pbranch, Dbranch, Cust) <-
activity(create_rental_reservation(Cgroup, Ptime, Dtime, Pbranch, Dbranch, Cust)),
not is_blacklisted(customer(Cust)), has_capacity(car_group(Cgroup), Ptime, Dtime)

This rule includes the additional predicates is_blacklisted and has_capacity. The first of them is defined
through facts and the second one by means of another Prolog rule which is not specified here.

In the extended AORML, the predicate activity(create_rental_reservation(Cgroup, Ptime, Dtime, Pbranch,
Dbranch, Cust)) is represented as the activity starting event type START Create_rental_reservation(Cgroup:
String, Ptime: Date, Dtime: Date, Pbranch: String, Dbranch: String, Cust: String). The occurrence of the event
of this type evaluates the rule’s internal variables Cgroup, Ptime, Dtime, Pbranch, Dbranch, and Cust.

The only way how to model by means of OCL the retrieval from the agent’s VKB of entity
instances to be assigned to the corresponding internal variables, like the instances of Customer and
CarGroup in reaction rule R2 of Figure 3-9, seems to be through named contextual instances (recall
from section 3.5 that we allow an OCL expression to have several named contextual instances). For
example, provided that reaction rule R2 is specified in the context of the named contextual instances
customer and carGroup of the respective types, the precondition of the rule, corresponding to the
conjunction of the predicates not is_blacklisted(customer(Cust)), has_capacity (car_group(Cgroup), Ptime,
Dtime), looks like as follows:

Customer.allInstances->select(personID = Cust and not isBlacklisted)->includes(customer) and
CarGroup.allInstances->select(carGroupID = Cgroup and hasCapacity(Ptime, Dtime))->includes(carGroup)

7 An agent’s virtual knowledge base (VKB) is called “virtual” because it is not necessarily implemented as a
classical knowledge base. It can be implemented either as some relational, object-relational, or object-oriented
database, ERP- or EAI-system, or object-oriented framework such as COM™ or CORBA™.

68

Since there is just one combination of (contextual) instances of Customer and CarGroup for which the
precondition expression of reaction rule R2 evaluates to true if the customer is not blacklisted and there
is enough rental capacity in the requested car group, the internal variables of this reaction rule are
evaluated and the rule’s mental effect and action parts are performed only once.

According to [Sterling86], a relation scheme specifies the role that each position in the relation is
intended to represent. For example, the relation scheme car_group_of_rental_order(RentalOrder, CarGroup)
corresponds to the association between the object types RentalOrder and CarGroup. The following
Prolog rule specifies the creation of the association between an instance of RentalOrder and the instance
of CarGroup that is identified by the value of its identifier attribute Cgroup:

car_group_of_rental_order(RentalOrder, CarGroup) <-
rental_order(Cgroup, Ptime, Dtime, Pbranch, Dbranch, Cust), car_group(Cgroup).

This rule can be read as follows “Whenever there is a rental order with the attribute values Cgroup,
Ptime, Dtime, Pbranch, Dbranch, and Cust, where Cgroup identifies an instance of CarGroup, there is an
association between the rental order and car group”. The schema of reaction rule R2, which we are
describing, thus also includes the internal variable corresponding to the instance of RentalOrder created
by the rule that is retrieved from the agent’s VKB. Analogously, a rule specifying the creation of the
association between an instance of RentalOrder and the corresponding instance of Customer could be
defined.

The mechanism of evaluating internal variables that we have been describing enables
straightforward definition of loops. For example, the following Prolog clause for reaction rule R2 in
Figure 3-9 defines a loop where the predicate allocate_a_car, standing for the activity starting action of
the type START ACTIVITY Allocate_a_car(rentalOrder), is evaluated for each instance of RentalOrder
having the status isReserved:

allocate_a_car(rentalOrder(RentalOrderID)) <-
isReserved(rentalOrder(RentalOrderID))

In OCL, the precondition of the same loop can be defined by the following logical expression that is
evaluated in the context of an instance of RentalOrder where the stereotype name rentalOrder stands for
a contextual instance:

RentalOrder.allInstances->select(isReserved)->includes(rentalOrder)

As the corresponding Prolog predicate presented above, this precondition is evaluated for all
contextual instances of RentalOrder retrieved from the agent’s VKB that have the status isReserved.

3.6.4. Visualization of Preconditions

As we will see in section 3.8.5.2, the precondition defined for an activity type is visualized as the
precondition of the reaction rule preceding the activity type. The precondition of a reaction rule can be
visualized by one or more ordinary incoming arrows from status and/or intensional predicate(s), which
are attached to the corresponding informational entity type(s), to the reaction rule symbol. If there are
two or more incoming arrows from predicates, the target reaction rule implicitly represents a logical
conjunction for the predicates. A little cross at the beginning of an incoming arrow stands for negation.
For example, in Figure 3-9 the precondition of reaction rule R2 within the activity type “Create rental
reservation” specifies the conjunction of (1) the negation of the status predicate isBlacklisted applied to
the representation of an agent of the type Customer; (2) the intensional predicate hasCapacity applied to
an object of the type CarGroup. A precondition arrow may be augmented by a relevant OCL expression
as is demonstrated in Figure 3-9. The OCL expression attached to the precondition arrow originating
in a status predicate constitutes the equation part of the select-operation described in section 3.6.3.
For example, the equation part pertaining to the select-operation Customer.allInstances->select(personID =
Cust and not isBlacklisted)->includes(customer) consists of just one equation personID = Cust. The OCL
expression attached to the precondition arrow originating in an intensional predicate constitutes the
logical expression part of the select-operation described in section 3.6.3, like the logical expression
carGroupID = Cgroup and hasCapacity(Ptime, Dtime) pertaining to the select-operation
CarGroup.allInstances->select(carGroupID = Cgroup and hasCapacity(Ptime, Dtime))->includes(carGroup). A
precondition is defined in terms of internal variables of the reaction rule. However, as a simplification
we allow to represent a precondition in terms of input variables defined for the enclosing activity
types.

69

An incoming arrow from a predicate may also be connected to the diamond symbol with or without
the symbol ‘X’ inside respectively standing for an exclusive and inclusive disjunction of predicates.
An example is the inclusive disjunction of the status predicates hasAdSpace and hasAlternativeAdSpace
that is checked by reaction rule R34 in Appendix G.

If the precondition arrow originates in the symbol for an informational entity type instead of a
predicate, the only intention of the precondition is to retrieve from the agent’s VKB one or more
instances of the informational entity type as is determined by the OCL expression attached to the
precondition arrow.

3.6.5. Specification and Visualization of Mental Effects

Mental effects of a reaction rule are defined in terms of the rule’s internal variables. According to
Table 3-3, different categories of mental effects can be distinguished based on their types CREATE,
DELETE, and UPDATE. The source data items of a mental effect are specified in the second column of
Table 3-3. A source data item is normally an internal variable of a reaction rule. However, in order to
keep activity diagrams simple, we also allow to employ input parameters defined for the enclosing
activity types as source data items of a mental effect. The third and fourth columns of Table 3-3
respectively specify the status that the entity instance to be created or updated must have and the type
of the mental effect. The fifth column defines the mental effect as an OCL expression in terms of the
source data items and status specification, if it exists.

Mental effects can be visualized by mental effect arrows. A mental effect arrow is an arrow with
empty arrowhead which specifies a change in the agent’s beliefs and/or commitments/claims. Types of
mental effects – CREATE, DELETE, and UPDATE – are distinguished by augmenting a mental effect
arrow with the letter ‘C’, ‘D’, or ‘U’, respectively, which may be followed by the effect’s number of
order in parenthesis, as is shown in Figure 3-9. The implicit mental effect type is CREATE. The
meanings of mental effect arrows are defined in Table 3-3 where typeSpecifier, possibly followed by its
number of order, specifies the type of an informational entity affected by the mental effect and isStatus1
specifies the status that the instance to be created or updated must have. The definition of a mental
effect may include a user-defined logical OCL expression which is distinguished using italic in Table 3-
3. A user-defined expression should be represented explicitly as an augmentation of a mental effect
arrow.

There are two categories of mental effects of the type “Create an entity” defined in Table 3-3. A
mental effect of the first category specifies the creation of an instance of an informational entity type
so that the explicitly specified logical expression included by the mental effect definition is true. For
example, the following definition of a mental effect of the type “Create an entity” of reaction rule R2
in Figure 3-9 includes the user-defined OCL expression, shown in italic, which ensures that the
attributes of the instance created equal to the values of the respective source data items:

RentalOrder.allInstances->exists(r: RentalOrder | r.carGroupID = cgroup and r.pickUpTime = ptime and
r.dropOffTime = dtime and r.pickUpBranchID = pbranch and r.dropOffBranchID = dbranch and r.isAllocated)

Specification of a status change is not included by a user-defined logical expression attached to the
mental effect arrow because the status is determined by the destination of the mental effect arrow. A
mental effect of the second category differs from the first one in that it implicitly specifies copying the
attribute values of the entity to be created from the respective attributes of the source data item of the
same type.

A mental effect of the category “Update an entity” specifies analogously the update of an entity
instance so that the attributes of the instance equal to the respective attributes of the source data item
of the same type, the explicitly specified logical expression included by the mental effect, if any, is
true, and the entity instance created has the status specified, if there is any. According to Table 3-3, if
a mental effect of the category “Update an entity” specifies only a status change, the mental effect
expression may be shortened like r.isEffective, where the input parameter r refers to the corresponding
instance of RentalOrder. In such a case, the augmentation of the mental effect arrow is not needed.

In Table 3-3, two categories of mental effects of deleting an entity are defined. A mental effect of
the first category specifies the deletion of the entity that is provided as a source data item, while within
a mental effect of the second category the instance to be deleted is identified by an explicit user-
defined logical expression.

A mental effect of creating a relationship specified in Table 3-3 employs as source data items the
instances of the entity types the relationship is to be formed between. For example, the mental effect
arrows of reaction rule R2 in Figure 3-9 specify the creation of the relationships between the instance

70

of RentalOrder created by the rule and the corresponding instances of CarGroup and Customer. The
internal variables of reaction rule R2 serve as source data items of these mental effects. Deletion of a
relationship can be specified by simply negating the expression for its creation and/or augmenting the
corresponding mental effect arrow with the letter ‘D’.

As is shown in Table 3-3, mental effects of the categories “Create a to-do-commitment/claim” and
“Create a stit-commitment/claim” are instances of the corresponding commitment/claim types that
inherit their attributes from the abstract object classes ToDoCommitmentClaimType and
STITCommitmentClaimType, respectively, which will be explained in section 3.8.3.3. Since a stit-
commitment/claim type is viewed as an anonymous class [OMG03b], it can be referred to by only
navigating to it from the contextual agent instance, identified by self, in the direction of the rolename
stitCommitmentClaim, as is shown in the last row of Table 3-3 and in Figure 3-15. Deletion of a
commitment/claim is specified by negating the expression for its creation and/or augmenting the
corresponding mental effect arrow with the letter ‘D’.

It is important to notice here that if there is an ambiguity among internal variables of a reaction rule
serving as source data items of the rule’s mental effect, i.e. if there are two or more internal variables
of the same type, the mental effect must be defined explicitly in terms of the rule’s internal variables.

71

Table 3-3. Definitions of mental effect categories. Square brackets […] stand for optionality.

Description
of the

category

Source data items Status Mental
effect
type

Definition

Create an entity variable1 :
typeSpecifier1,

 ...
variableN :

typeSpecifierN

[isStatus1] CREATE typeSpecifier.allInstances->exists
(v : typeSpecifier | logical-expression-with-v

[and v.isStatus1])

Create an entity entity : typeSpecifier [isStatus1] CREATE typeSpecifier.allInstances->exists
(v : typeSpecifier |

v.attr1 = entity.attr1 and ... and
v.attrN = entity.attrN and

logical-expression-with-v [and v.isStatus1])
Update an entity entity : typeSpecifier [isStatus1] UPDATE typeSpecifier.allInstances->exists

(v : typeSpecifier | v = entity and
v.attr1 = entity.attr1 and ... and

v.attrN = entity.attrN and logical-expression-
with-v [and v.isStatus1]) OR entity.isStatus1

Delete an entity entity : typeSpecifier -

DELETE not (typeSpecifier.allInstances->exists
(v : typeSpecifier | v = entity))

Delete an entity variable1 :
typeSpecifier1,

 ...
variableN :

typeSpecifierN

-

DELETE not (typeSpecifier.allInstances->exists
(v : typeSpecifier | logical-expression-with-v))

Create a one-to-
one relationship

entity1 : typeSpecifier1,
entity2 : typeSpecifier2

- CREATE entity1.typeSpecifier2 = entity2 and
entity2.typeSpecifier1 = entity1 and

logical-expression
Create a one-to-

many relationship
entity1 : typeSpecifier1,
entity2 : typeSpecifier2

- CREATE entity1.typeSpecifier2->includes(entity2) and
entity2.typeSpecifier1 = entity1 and

logical-expression
Create a many-to-
one relationship

entity1 : typeSpecifier1,
entity2 : typeSpecifier2

- CREATE entity1.typeSpecifier2 = entity2 and
entity2.typeSpecifier1->includes(entity1) and

logical-expression
Create a many-to-
many relationship

entity1 : typeSpecifier1,
entity2 : typeSpecifier2

- CREATE entity1.typeSpecifier2->includes(entity2) and
entity2.typeSpecifier1->includes(entity1) and

logical-expression
Create a to-do-

commitment/claim
targetObject : OclAny,

dueDate : Date,
agentID1 : String,
agentID2 : String

- CREATE todoCommitmentClaimTypeSpecifier.
allInstances->exists

(c : todoCommitmentClaimTypeSpecifier |
c.about = targetObject and

c.dueBy = dueDate and
sourceID = agentID1 and

targetID = agentID2)
Create a stit-

commitment/claim
expression :

OclExpression,
dueDate : Date,

agentID1 : String,
agentID2 : String

- CREATE self.stitCommitmentClaim->exists
(achieve = expression and

dueBy = dueDate and
sourceID = agentID1 and

targetID = agentID2)

72

3.6.6. Operational Semantics of Activity Diagrams

An activity diagram of the extended AORML can be considered as a specification of a high-level state
transition system where the state of an agent consists of two parts: its mental state (beliefs, memory of
events, actions, and commitments/claims), and its activity state. Modelling by activity diagrams of the
extended AORML is thus based on the semantic framework of Knowledge-Perception-Memory-
Commitment (KPMC) agents that we will extend with the operational semantics for activities.

The concept of KPMC agents is an extension of the knowledge- and perception-based (KP) agent
model proposed in [Wagner96] and [Wagner98] and refined in [Wagner00b]. According to
[Wagner98], the logic underlying the operational semantics of KPMC agents is the logic of state
transition systems.

In the sequel, where L is a language (a set of formulas), then L0 denotes its restriction to closed
formulas (sentences). Elements of L0

Query, i.e. closed query formulas, are also called if-queries. A
query that includes free variables is called an open query.

According to [Wagner96] and [Wagner00b], in the core of a KPMC agent is an abstract knowledge
system which consists of four languages and three operations. The languages are a knowledge
representation language LKB, a query language LQuery, an input language LInput, such that LInput ⊆ LQuery,
and an answer language LAns. The operations are an inference relation├ ∈ LKB × L0

Query, such that X├ F
holds if F ∈ L0

Query can be inferred from X ∈ LKB, an update operation Upd : LKB × L0
Input → LKB, such

that the result of updating X ∈ LKB with F ∈ L0
Input is the knowledge base Upd(X, F), and an answer

operation Ans : LKB × LQuery → LAns, such that X├ F iff Ans(X, F) = yes8. An answer (c1, ..., ck) to an
open query F = F[x1, ..., xk] with free variables x1, ..., xk can be viewed as an answer substitution σ =
{x1/c1, ..., xk/ck} so that the resulting instantiation Fσ = F[c1, ..., ck] holds in the current knowledge
base state.

The schema of a KPMC agent is composed of a knowledge system described above, a
communication event language or an agent communication language (ACL) LCEvt, a perception or
environment event language LPEvt, which form together the event language LEvt = LCEvt ∪ LPEvt, and an
action language LAct. A KPMC agent consists of five components: a virtual knowledge base VKB ∈
LKB, an event queue EQ being a list of instantiated event expressions ε(U) ∈ L0

Evt, where U is suitable
list of parameters, a memory base MB ∈ LEvt ∪ LAct (recording past events and actions), a
commitment/claim base CB ∈ LKB (recording commitments/claims), and a set of reaction rules RR ⊆
(LCEvt ∪ LAct) × LInput × LEvt × LQuery (encoding the behaviour of the agent).

Reaction rules of a KPMC agent have the following general form:

(do(α) | sendMsg[η(V), i] | Eff)* ← (recvMsg[ε(U), j])+ Cond

In the notation used for expressing the above form, “|” stands for a choice and “?” stands for
optional, “*” means zero or more times, and “+” means one or more times. The event condition
recvMsg[ε(U), j] is a test whether the event queue EQ of the agent contains a perception or
communication event of the form ε(U) ∈ L0

Evt created by some perception subsystem of the agent or
sent by another agent j; the precondition Cond ∈ LQuery refers to the agent’s current knowledge state
represented in its VKB and CB; Eff ∈ LInput is an epistemic (mental) effect formula specifying
corresponding updates of the agent’s VKB, CB, and MB; sendMsg[η(V), i] sends the message η(V) ∈
LCEvt with parameters V to the receiver i; and do(α(V)), where α(V) ∈ LAct, calls a procedure realizing
the action α with parameters V. KPMC agents can thus perform epistemic, communicative, and
physical actions. We do not repeat here the operational semantics of reaction rules based on
[Manna92] which is presented in [Wagner96].

We now define the agent state of a KPMC agent as S = (X, EQ, A) where X stands for the agent’s
current knowledge state, EQ is the agent’s event queue, and A represents the agent’s activity state. The
agent’s knowledge state X is represented in its virtual knowledge base VKB, commitment/claim base
CB, and memory base MB which were introduced above. According to [Wagner98], the agent’s event
queue EQ represents the agent’s connection to the environment. It stores incoming messages from the
agent’s perception subsystems and from other agents. The stored events are consumed one by one
triggering appropriate reactions. Finally, the agent’s activity state A represents the execution of a set of

8 Because of its built-in general Closed-World Assumption, e.g. a relational database answers an if-query by
either yes or no.

73

atomic actions that has some duration. In order to represent an agent’s activity state, we complement
the schema of a KPMC agent by an activity specification language LActivity and an activity query
language L0

Activity, Query. Since elements of the latter are closed query formulas, it is only possible to
pose a query whether the agent is in a specific activity state. The agent’s activity state A may include a
number of subactivity states. It can be represented as the recursive logical term s(U, Y) ∈ LActivity
where s denotes an activity state, U is a data structure recording the names, types, and values of the
activity’s input parameters (it may be empty), and Y specifies a number of parallel subactivity states
s1(U, Y), ..., sn(U, Y) where n >= 0 and Y ∈ LActivity ∪ ∅. The agent’s outermost state s is termed its
root activity state. The agent can be in only one root activity state at a time. In other words, only one
outermost activity can be under execution at any moment of time.

Transferring an agent from one activity state to another can be specified by means of a reaction
rule. For this purpose, we are complementing the action part of a reaction rule of the form presented
above by the action terms start(β(T)) and end(β), where β(T) ∈ LActivity specifies the activity β to be
started with the input parameters T. The actions defined by these action terms make the agent
respectively to enter and exit the activity state corresponding to the activity β. In addition to the action
term start(β(T)), which transfers the agent to the root activity state s corresponding to the activity β so
that A = s(U, ∅), there is an action term startsub(β(T)) which adds to the agent’s current activity state A
= s(U, Y) the state t of the parallel subactivity specified by β(T) ∈ LActivity so that Y = Y ∪ t(V, ∅).
Entering the activity state of β creates the activity border event start-of(β) which is added to the
agent’s event queue EQ. Analogously, when an agent exits the activity state corresponding to the
activity β, the activity border event end-of(β) is generated and added to the agent’s event queue EQ.
The activity border events start-of(β) and end-of(β) are consumed from the event queue as any other
events. There are also action terms remove(β) and remove-all which respectively remove the
representation of the activity β and the representations of all activities from the logical term s(U, Y).
The latter case results in A = ∅. Reaction rules of a KPMC agent thus take the following form:

(do(α(V)) | sendMsg[η(V), i] | start(β(T)) | startsub(β(T)) | end(β) | remove(β) | remove-all | Eff)*
← (recvMsg[ε(U), j])+ (start-of(β) | end-of(β))* Cond

As the formula above reflects, one or more components of a reaction rule, with the exception of the
event condition and precondition (which may be empty, i.e. Cond = true), may be omitted from the
rule. Differently from a reaction rule without activities, the precondition Cond ∈ LQuery ∪ L0

Activity, Query
in a reaction rule of the form presented above may include an if-query on the agent’s activity state. A
reaction rule may have multiple event conditions and/or action terms that are implicitly connected with
logical conjunction(s). If the action part of a rule is empty, the rule simply does nothing.
 It is assumed that any activity concludes with the end(β) term. This enables two important features.
Firstly, it allows to create executable specifications that include unspecified “dummy” activity types,
each of which consists of just one reaction rule of the type end(β) ← start-of(β). Secondly, since an
activity can be viewed as a “black box” with a duration, it is possible to use for achieving the activity’s
goal basically any procedure or method provided that it concludes with the end(a) term.

Please notice that reaction rules specified in the above form are atomic as compared to reaction
rules represented using the language defined in Appendix B which consists of one or more atomic
reaction rules.

Semi-formally, the execution model of an extended KPMC agent consists of the following steps:
1. Get the next event from the event queue EQ, and check whether it triggers any reaction rules

by matching it with the unmatched events in event conditions of all rules in RR. If the event
matches with some event in the event condition of a rule, mark this event as a matched one. If
all events of a reaction rule have been matched, mark the reaction rule as a triggered one. If the
event condition cannot be matched with any reaction rule, repeat step 1.

2. For each of the triggered reaction rules, evaluate its epistemic condition Cond like a query. For
each answer substitution σ ∈ Ans(VKB ∪ CB ∪ A, Cond), form the corresponding action/effect
tuple by instantiating all free variables in the outgoing message expression η(V) and/or in the
action expression α(V) and/or in the activity starting expression β(T) and/or in the mental effect
formula Eff accordingly (in the case of an epistemic reaction rule, the ‘empty’ action noAct is
used to form the action/effect tuple [noAct, Effσ]).

3. For each of the resulting action/effect tuples, perform the communicative action
sendMsg[η(Vσ), i] and/or the physical action do(α(Vσ)) and/or assimilate the mental effect

74

Effσ into the agent’s VKB, CB, and MB yielding Upd(VKB ∪ CB ∪ MB, Effσ). If the tuple
contains the start(β(Tσ)) expression, create the logical term s(U, ∅) corresponding to the
activity β, copy the values of the input parameters in Tσ to the corresponding elements of the
logical term’s data structure U, equalize the agent’s activity state with the logical term so that A
= s(U, ∅), and add the activity border event start-of(β) to the agent’s event queue EQ. If the
tuple contains the startsub(β(Tσ)) term, perform the following substeps:
a) if A = ∅, create the logical term s(∅, ∅) corresponding to the implicit superactivity χ,

equalize the agent’s activity state with the logical term so that A = s(∅, ∅), and add the
activity border event start-of(χ) to the agent’s event queue;

b) create the logical term t(V, ∅) corresponding to the activity β, copy the values of the input
parameters in Tσ to the corresponding elements of the logical term’s data structure V, and
complement the logical term A = s(U, Y) so that Y = Y ∪ t(V, ∅);

c) add the activity border event start-of(β) to the agent’s event queue EQ.
If the tuple contains the end(β) term, where β is any activity, perform the following substeps:
a) remove the representation of the (sub)activity β from the logical term A = s(U, Y)

describing the agent’s activity state;
b) add the activity border event end-of(β) to the agent’s event queue EQ;
c) while there are activities where all parallel subactivities have ended, repeat recursively: if

all parallel subactivities of an activity β have ended, remove the representation of the
activity β from the logical term A = s(U, X) and add the activity border event end-of(β) to
the agent’s event queue EQ.

4. Return to step 1.
According to [Wagner00b], the temporal behaviour of an agent can be described by means of

transitions between agent states. We now modify the transition system semantics of a reactive agent
presented in [Wagner96] and [Wagner00b] by giving the following definition:
 Let S = (X, EQ, A) be an agent state, ε an event, and RRε a function that updates a knowledge state
X with all mental effects of reaction rules in RR which are triggered by ε and whose condition holds in
X and A, and also updates an activity state A as specified by reaction rules in RR which are triggered
by ε and whose condition holds in X and A. If the only applicable reaction rule of the triggered rule set
is r, we can use r instead of RRε. An empty event queue EQ or an empty activity state A is represented
by [], an event queue with head q and tail Q by q : Q, and adding an element q to an event queue Q by
Q + q. Then we have two kinds of transitions transforming an agent state S = (X, EQ, A):
 1. Perception
 (X, EQ, A) →ε (X, EQ + ε, A)
 2. Reaction
 (X, ε : EQ, A) →RRε (RRε(X), EQ, RRε(A))
 According to [Wagner96], we assume that all state transitions are atomic. That is, once an agent is
getting involved in a transition, other agents can not influence the transition or observe intermediate
points of it. In the execution model of an extended KPMC agent, the same also applies to activities:
once an agent is getting involved in a transition within some activity, other activities of the agent can
not influence the transition or observe intermediate points of it. This implies two things: a) an activity
indeed corresponds to a transaction as we suggested in section 3.6.1 b) the simultaneous execution of
actions can be serial in the following sense: if two elementary actions, say α1 and α2 are executed
concurrently, then the net effect is either that of α1 followed by α2, or α2 followed by α1. This enables
serial processing of events described by step 1 of the execution model of an extended KPMC agent.
 An execution history of an agent is a chain of state transitions S0 →τ0 S1 →τ1, … where each τi
corresponds to either a perception or reaction transition described above. A history can be finite or
infinite. By definition, a finite history ends in a state [Wagner96]. Examples of formal verification of
state transition systems by means of assertional reasoning are provided in [Wagner96].

As an example, the reaction rules modelled in Figure 3-9 can be represented as the following set of
atomic reaction rules RR = {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}:

75

r1: start(Manage_car_reservation(...)) ← recvMsg[request(provideCar(...)), customer]

r2: startsub(Check_the_customer_for_blacklistedness(...)) ← start-of(Manage_car_reservation)

r3: end(Check_the_customer_for_blacklistedness) ← start-of
(Check_the_customer_for_blacklistedness)

r4: startsub(Create_rental_reservation(...)) ← end-of(Check_the_customer_for_blacklistedness)

r5: isReserved(RentalOrder(...)), sendMsg[agree(provideCar(RentalOrder(...))), customer],
end(Create_rental_reservation) ← start-of(Create_rental_reservation), not isBlacklisted(...),
hasCapacity(...)

r6: sendMsg[refuse(provideCar(...)), customer], end(Create_rental_reservation) ←

 start-of(Create_rental_reservation), isBlacklisted(...)

r7: sendMsg[refuse(provideCar(...)), customer], end(Create_rental_reservation) ←

 start-of(Create_rental_reservation), not hasCapacity(...))

r8: startsub(Allocate_cars) ← end-of(Create rental reservation)

r9: startsub(Allocate_a_car(...)) ← start-of(Allocate_cars)

r10: end(Allocate_a_car) ← start-of(Allocate_a_car)

We are now introducing an example of an execution history of an agent of the type Pick-UpBranch.
In the interests of simplicity, in this example we omit the data structure U from the logical term A =
s(U, Y) representing the activity state A of the agent which is initially empty. When the agent receives
from the customer a request to provide him/her with a car (i.e., perceives a communicative action
event of the type request(provideCar(...))), reaction rule r1 is triggered. According to this reaction rule,
an activity of the type Manage_car_reservation is started and the agent is switched to the
corresponding root activity state. In reaction to “perceiving” the start of the activity of the type
Manage_car_reservation, reaction rule r2 starts its subactivity of the type
Check_the_customer_for_blacklistedness, and the activity state of the agent is accordingly changed to
Manage_car_reservation(Check_the_customer_for_blacklistedness). Reaction rule r3 ends the
“dummy” subactivity Check_the_customer_for_blacklistedness in reaction to its starting event. After
the subactivity of the type Check_the_customer_for_blacklistedness has ended, reaction rule r4 starts a
subactivity of the type Create_rental_reservation, changing the agent’s activity state into
Manage_car_reservation(Create_rental_reservation). Reaction rule r5 is triggered by the activity
starting event start-of(Create_rental_reservation). Since the precondition of this reaction rule is true,
a rental reservation having the status isReserved is created (for simplicity, creations of relationships
have been omitted), an agreement to provide a car accompanied by the rental order is sent to the
customer, and finally, the activity of the type Create_rental_reservation is ended. In the execution
history below, all these actions are represented by the function r5(X). In response to the end-
of(Create_rental_reservation) event, reaction rule r8 starts a subactivity of the type Allocate_cars. The
starting event of the latter, in turn, triggers reaction rule r9 which starts a “dummy” activity of the type
Allocate_a_car. The latter is ended by its only reaction rule r10. The activities Allocate_cars and
Create_rental_reservation are ended according to step 3 of the execution model of an extended
KPMC agent when all their subactivities have ended. The events end-of(Allocate_a_car), end-
of(Allocate_cars), and end-of(Manage_car_reservation) do not thus trigger any actions. The
described execution history of an agent operating on the basis of the rule set RR defined above thus
looks like as follows:

(X, EQ, []) → recvMsg[request(provideCar(...)), customer] → (X, EQ + recvMsg[request(provideCar(...)), customer],
[])

(X, recvMsg[request(provideCar(...)), customer] : EQ, []) → r1 → (X, EQ, Manage_car_reservation)

(X, EQ, Manage_car_reservation) → start-of(Manage_car_reservation) → (X, EQ + start-of
(Manage_car_reservation), Manage_car_reservation)

(X, start-of(Manage_car_reservation) : EQ, Manage_car_reservation) → r2 → (X, EQ,
Manage_car_reservation(Check_the_customer_for_blacklistedness))

76

(X, EQ, Manage_car_reservation(Check_the_customer_for_blacklistedness)) → start-of

(Check_the_customer_for_blacklistedness) → (X, EQ + start-of(Check_the_customer_for_blacklistedness),
Manage_car_reservation(Check_the_customer_for_blacklistedness))

(X, start-of(Check_the_customer_for_blacklistedness) : EQ,
Manage_car_reservation(Check_the_customer_for_blacklistedness)) → r3 → (X, EQ,
Manage_car_reservation)

(X, EQ, Manage_car_reservation) → end-of (Check_the_customer_for_blacklistedness) → (X, EQ + end-
of(Check_the_customer_for_blacklistedness), Manage_car_reservation)

(X, end-of(Check_the_customer_for_blacklistedness) : EQ, Manage_car_reservation) → r4 →
(X, EQ, Manage_car_reservation(Create_rental_reservation))

(X, EQ, Manage_car_reservation(Create_rental_reservation)) → start-of(Create_rental_reservation) → (X, EQ +
start-of(Create_rental_reservation), Manage_car_reservation(Create_rental_reservation)))

(X, start-of(Create_rental_reservation) : EQ, Manage_car_reservation(Create_rental_reservation))
→ r5 → (r5(X), EQ, Manage_car_reservation)

(X, EQ, Manage_car_reservation) → end-of (Create_rental_reservation) → (X, EQ + end-of
(Create_rental_reservation), Manage_car_reservation)

(X, end-of(Create_rental_reservation) : EQ, Manage_car_reservation) → r8 → (X, EQ,
Manage_car_reservation(Allocate_cars))

(X, EQ, Manage_car_reservation(Allocate_cars)) → start-of(Allocate_cars) → (X, EQ + start-of
(Allocate_cars), Manage_car_reservation(Allocate_cars))

(X, start-of(Allocate_cars) : EQ, Manage_car_reservation(Allocate_cars)) → r9 → (X, EQ,
Manage_car_reservation(Allocate_cars(Allocate_a_car)))

(X, EQ, Manage_car_reservation(Allocate_cars(Allocate_a_car))) → start-of(Allocate__a_car) → (X, EQ +
start-of(Allocate_a_car), Manage_car_reservation(Allocate_cars(Allocate_a_car)))

(X, start-of(Allocate_a_car) : EQ, Manage_car_reservation(Allocate_cars(Allocate_a_car))) → r10 →
(X, EQ, [])

(X, EQ, []) → end-of(Allocate_a_car) → (X, EQ + end-of (Allocate_a_car), [])

(X, end-of(Allocate_a_car) : EQ, []) → (X, EQ, [])

(X, EQ, []) → end-of(Allocate_cars) → (X, EQ + end-of (Allocate_cars), [])

(X, end-of(Allocate_cars) : EQ, []) → (X, EQ, [])

(X, EQ, []) → end-of(Manage_car_reservation) → (X, EQ + end-of (Manage_car_reservation), [])

(X, end-of(Manage_car_reservation) : EQ, []) → (X, EQ, [])

The logical term s(U, Y) for representing an activity state A can be implemented by using e.g.
dynamic lists consisting of activity descriptors according to the principles of creating dynamic lists we
have presented in [Tamm96]

3.6.7. Activity Modelling Language

As we saw in sections 3.6.1 – 3.6.6, a business process type can be defined from the perspective of a
focus agent as a sequence of one or more reaction rules where each reaction rule is formulated in terms
of its internal variables. This means that a business process type is closed in the sense that to each
action event or non-action event perceived by an agent within a business process of the given type
correspond one or more actions performed by the agent within the same business process.

A sequence of reaction rules defining a business process type can be equivalently specified using a
semi-formal activity modelling language that enables to determine the structure and invocation order
of activities. This ensures an important feature of activity diagrams ─ their executability. The activity
modelling language specifies a reaction rule as consisting of the following components:

• one or more triggering events;

77

• an optional precondition, consisting of one or more conditions;
• one or more actions, and/or
• a postcondition, consisting of one or more mental effects.
The event part defines the template for the types of action and non-action events to be processed by

the rule. Please notice that the activity modelling language defined in Appendix B also allows for
inclusive and exclusive logical disjunctions of event expressions. This is possible because reaction
rules in the activity modelling language are not atomic like were reaction rules defined and used in
section 3.6.6. This is to say, to a reaction rule in the activity modelling language correspond two or
more atomic reaction rules. For example, to a reaction rule in the example presented at the end of this
subsection correspond the atomic reaction rules r5, r6, and r7, which were specified in section 3.6.6.

The precondition part specifies by means of OCL the conditions under which the action(s)
prescribed by the rule is (are) executed. The action part consists of one or more elements of the
following types:

• communicative action;
• physical action;
• activity starting action (START ACTIVITY activityReference construct);
• CANCEL ACTIVITY or CANCEL PROCESS constructs (to be described in section 3.8.5.3).
In the activity modelling language, each reaction rule is defined in the context of the enclosing

agent or agent type. This enables the rule to access informational entities and their attributes and
relationships within the agent instance. Additionally, a reaction rule can be defined in the context of
instances of one or more informational entity types that are accessed by the rule’s precondition, like
the named instances carGroup and customer in the example below.The OCL constructs
formalParameterList and actualParameterList of the activity modelling language are specified in
terms of internal variables of the reaction rule.In the activity modelling language, the internal variables
of a reaction rule are defined as formal parameters of the rule. When the reaction rule starts an activity,
the values of the rule’s internal variables are passed as actual parameters to the input parameters of the
activity. For example, when an activity of the type “Manage car reservation” is started in a business
process of the type depicted in Figure 3-9, the values of the internal variables of rule R1 are passed to
the corresponding input parameters of the activity as is shown in the figure.

The activity modelling language is represented in Appendix B in the form of an EBNF grammar
where “|” stands for a choice and “?” stands for an option, and “*” and “+” denote the repetition of a
construct of zero or more and one or more times, respectively. The grammar references the grammar
for the extended subset of OCL that is presented in Appendix A. The constructs of the extended OCL
subset grammar are distinguished by representing them using italics.

The expressive power of the activity modelling language is the same as that of activity diagrams.
This means that any activity diagram can be represented by means of the activity modelling language
and vice versa. For example, the activity type “Manage car reservation” in Figure 3-9 can be
represented in the activity modelling language as the following sequence of reaction rules:

CONTEXT Pick-Up Branch
ON RECEIVE MESSAGE request(provideCar(Cgroup: String, Ptime: Date, Dtime: Date, Dbranch: String,
SenderID: String))
START ACTIVITY Create_rental_reservation(Cgroup, Ptime, Dtime, self.agentID, Dbranch, SenderID)

CONTEXT Pick-Up Branch
ON START ACTIVITY Create_rental_reservation(Cgroup: String, Ptime: Date, Dtime: Date, Pbranch: String,
Dbranch: String, Cust: String)
START ACTIVITY Check_the_customer_for_blacklistedness(Cust)

CONTEXT Pick-Up Branch
ON START ACTIVITY Check_the_customer_for_blacklistedness(Cust: String)
END ACTIVITY Check_the_customer_for_blacklistedness

CONTEXT Pick-Up Branch
ON END ACTIVITY Check_the_customer_for_blacklistedness
START ACTIVITY Create_rental_reservation(Cgroup, Ptime, Dtime, Pbranch, Dbranch, Cust)

CONTEXT Pick-Up Branch, carGroup : CarGroup, customer : Customer
def: rentalOrder: RentalOrder
ON START ACTIVITY Create_rental_reservation
(Cgroup: String, Ptime: Date, Dtime: Date, Pbranch: String, Dbranch: String, Cust: String)
IF Customer.allInstances->select(personID = Cust and not isBlacklisted)->includes(carGroup) and
CarGroup.allInstances->select(carGroupID = Cgroup and hasCapacity(Ptime, Dtime))->includes(customer)

78

THEN EFFECT RentalOrder.allInstances->exists(ro: RentalOrder | ro.carGroupID = Cgroup and
ro.pickUpTime = Ptime and ro.dropOffTime = Dtime and ro.dropOffBranchID = Dbranch and
ro.pickUpBranchID = Pbranch and rentalOrder = ro) and
rentalOrder.carGroup->exists(cg : CarGroup | cg = carGroup and cg->includes(rentalOrder)) and
rentalOrder.customer->exists(c : Customer | c = customer and c->includes(rentalOrder))
SEND MESSAGE agree provideCar(rentalOrder) TO Cust
END Create_rental_reservation
ELSE
SEND MESSAGE refuse provideCar(Cgroup, Ptime, Dtime, Dbranch) TO Cust
END Create_rental_reservation

CONTEXT Pick-Up Branch
ON END ACTIVITY Create_rental_reservation
START ACTIVITY Allocate_cars

CONTEXT Pick-Up Branch
ON START ACTIVITY Allocate_cars
START ACTIVITY Allocate_a_car

CONTEXT Pick-Up Branch
ON START ACTIVITY Allocate_a_car
END ACTIVITY Allocate_a_car

79

3.7. ANALYSIS UTILIZING USE CASES WITH GOALS

The methodology of agent-oriented modelling proposed by us consists of the steps of analysis of the
selected problem domain and design of a socio-technical system for it. Different modelling techniques,
like e.g. i* [Yu95a] or Resource-Event-Agent (REA) modelling framework of [McCarthy82], can be
used for the step of analysis. In [Taveter02a], we have studied the applicability of i*, which is
reviewed in section 2.1.4, for the domain analysis step. However, in this thesis we make use of goal-
based use cases proposed in [Cockburn97a] and [Cockburn97b] for analyzing the problem domain at
hand because their transformation into the corresponding models of design, represented in the
extended AORML, is very straightforward. Moreover, in [Gottesdiener99] it is claimed that capturing
of business rules should be done concurrently with the development of use cases because “behind
every use case are business rules at work”. In section 3.7.1, we describe how goal-based use cases can
be used for analyzing a problem domain. In section 3.7.2, we illustrate the applying of goal-based use
cases to the step analysis by using examples from the domain of the EU-Rent car rental company
which was described in section 3.1.

3.7.1. Adaptation of Goal-Based Use Cases to Agent-Oriented Modelling

Use cases as such were originally introduced by Jacobson in [Jacobson92]. In [Cockburn97a] and
[Cockburn97b], Cockburn proposes an extended version of use cases which he calls “use cases with
goals”. In [Cockburn97a], he defines a use case as “a collection of possible sequences of interactions
between the system under discussion and its external actors, related to a particular goal”. Goal-based
use cases are elaborated on in [Cockburn01].
 We employ goal-based use cases for two purposes:

• to model business process types for which a socio-technical system defined in section 1.7 is to
be designed by using the extended AORML;

• to document the design models expressed in the extended AORML.
The stated purposes imply that business process modelling by goal-based use cases is an iterative
process in the sense that in the course of the design phase we often have to return from the models of
design to the corresponding models of analysis and revise them.

A goal-based use case consists of a primary actor, the system under discussion, and optionally one
or more secondary actors. According to [Cockburn01], when use cases document an organization’s
business processes, the system under discussion is the organization itself or one of its subsystems, like
a department. The external primary actors are the actors whose goals the organization is to satisfy.
They include the company’s customers and perhaps their suppliers. The external primary actors form a
part of the company’s stakeholders which are the company shareholders, customers, vendors, and
government regulatory agencies. A secondary or a supporting actor is an external actor that provides a
service to the system under design. In parallel with the identification of primary actors, the triggering
events that the organization must respond to should be identified [Cockburn01].

The business use cases described within our approach are the so-called white-box use cases
[Cockburn01] because we look inside the organization whose business processes are to be modelled
and discuss the behaviours of its internal actors. In modelling the behaviour of an internal actor
initiated by another internal actor, we view the latter as a primary actor, i.e. we change the focus from
one internal actor to another. This means that an internal actor may also serve as a primary or
secondary actor. In this sense our business use cases differ from the business use cases described in
[Cockburn01] where both primary and secondary actors in business use cases can be only external
actors.

Cockburn notices in [Cockburn97a]: “It turns out that the system is itself an actor, and so the
communication model needs only work with actors”. Since ‘actor’ and ‘agent’ are synonyms for our
purposes, the communication model of goal-based use cases should work in agent-oriented modelling,
as well, “even though broadcast and asynchronous communications are omitted” in goal-based use
cases [Cockburn97a]. It is, however, possible to model broadcast communication by using actor roles
[Cockburn01] like the ‘pick-up branch’ or ‘branch-proposer’ in the example of car rental. Actor roles
correspond to agent roles in the metamodel presented in section 3.3. We will provide a full example
that includes actor roles in section 3.7.2. It is also possible to model asynchronous communication by
goal-based use cases by assuming the presence of an event queue within the actor in focus.

According to [Cockburn97a], each actor has a set of responsibilities. To carry out those
responsibilities, it sets some goals. To reach a goal, it performs some actions. According to
[Cockburn01], there is a need to describe three sorts of actions:

80

• an interaction between two agents;
• a validation (to protect a stakeholder);
• an internal state change (on behalf of a stakeholder).
Actions understood this way can be mapped to the agent-oriented notions of AOR modelling. In

AORML [Wagner03a], an interaction is understood as a sequence of actions performed by the focus
agent that are perceived as events by other agent(s) and the other way round, a validation is checking
of some condition in the agent’s VKB, and an internal state change corresponds to a mental effect.

It is further explained in [Cockburn97a] and [Cockburn01] that an actor can be a person, an
organization, or a machine. The internal actor can be the system under discussion, a subsystem, or an
object. The system under discussion consists of subsystems, which consist of objects. Actors have
behaviour(s). The top-level behaviour is responsibility. It contains goals, which contain actions. An
interaction between two actors is a kind of action that connects the actions of one actor with another.
In other words, an interaction is one actor’s goal calling upon another actor’s (or its own)
responsibility. If the second actor does not deliver its responsibility, for whatever reason, the primary
actor has to find another way to deliver its goal. This is termed a “backup action”.

Internal and external actors straightforwardly correspond to internal and external agents in AOR
modelling, as they were defined in section 3.4.1. A “person” is a human agent, an “organization”
constitutes an institutional agent, and a “machine” is equivalent to an artificial agent. A “subsystem”
of the institutional agent in focus, e.g. of an enterprise, can be interpreted as its internal human,
institutional, or artificial agent. The only difference between use cases with goals and AOR modelling
with regard to actors is that in AOR modelling an object is not viewed as an actor, but rather an
agent’s VKB may include one or more objects that are manipulated by it. In the extended AORML, an
agent’s responsibilities correspond to the types of activities that the agent is capable of performing in
response to perceiving action events of the corresponding types.

A compound interaction in goal-based use cases is understood as a recursive sequence of
interactions [Cockburn97a]. At the bottom level, it consists of messages. A sequence has no branching
or alternatives. It is therefore used to describe the past or a definite future, with conditions stated. Such
a sequence is known as a scenario which is defined in [Cockburn97a] as a sequence of interactions
happening under certain conditions, to achieve the primary actor’s goal, and having a particular result
concerning that goal. The interactions start from the triggering event and continue until the goal is
delivered or abandoned, and the system completes whatever responsibilities it has concerning the
interaction. A scenario in which the primary actor’s goal is delivered and all the stakeholders’ interests
are satisfied is called the main (success) scenario [Cockburn01]. Failure of a scenario’s step is
handled by another scenario, or an extension scenario. According to [Cockburn97b], each extension
scenario starts by stating where it picks up in the main scenario and what conditions are different. It
then contains some lines and reverts back to the main scenario, or runs to a possibly different
completion on its own.

In the light of the definition of a scenario, use case is more precisely defined in [Cockburn97a] as a
collection of possible scenarios between the system under discussion and external actors, characterized
by the goal the primary actor has toward the system’s declared responsibilities, showing how the
primary actor’s goal might be delivered or might fail.

The “system under discussion” in the previous definition may be substituted for the “agent in
focus” in an external AOR model. The interaction model of goal-based use cases is, however, simpler
than interaction models of agents, described e.g. in [ACL97]. According to [Cockburn97b], the
relationship between primary actor and system under discussion is that of client and server. This is in
contradiction with peer-to-peer relationships between actors which we have in agent-oriented
approaches. Consequently, new modelling techniques are required for agent-oriented analysis of
problem domains. Until they exist, the “traditional” modelling notations and approaches should be
adapted to agent-oriented modelling. In particular, use cases with goals can be applied to agent-
oriented analysis of problem domains by viewing the primary actor (i.e., the client) as the initiator and
the system under discussion (i.e., the server) as the responder in agent-to-agent interactions.
According to [Cockburn97b], the scope of a use case shows what system is being considered the
system under discussion. In our approach, the scope shows the actor in focus whose behaviour is
being described because we consider all systems and subsystems as human, institutional, or artificial
agents. Since in the peer-to-peer interaction model a responder may also act as an initiator, a business
process is modelled with goal-based use cases by changing the focus from one actor to another, so that
for each actor of the problem domain there are one or more use cases where the actor is in focus.

81

Goals of use cases are divided into user goals and summary goals. The user goal is the goal the
primary actor has in trying to get work done. Such a goal is achieved by what might be called a
primary task or an “elementary business process”. When we represent a business process by a goal-
based use case in the extended AORML, a user goal attached to the primary actor is internalized by
the actor (agent) in focus. For example, the user goal “a customer expects to have a car reserved for
him/her to be picked up at the pick-up branch at the pick-up time and dropped off at the drop-off
branch at the drop-off time” of the primary actor of use case 1 in section 3.7.2 becomes the following
goal of the car rental company’s pick-up branch: “reserve a car for the customer to be picked up at the
pick-up branch at the pick-up time and dropped off at the drop-off branch at the drop-off time.”

It is claimed in [Cockburn97b] that a user goal often corresponds to completing a transaction to the
database. This is an interesting observation because in section 3.6.1 we noticed that an agent’s activity,
corresponding to some responsibility which is associated with a user goal, also often corresponds to
completing a transaction.

Collections of user goals are summary goals like, for example, “rent a car” which involves user
goals of use cases 1 (“Have a car reserved”) and 2 (“Pick up the car”) presented in Tables 3-4 and 3-5,
respectively.

According to [Cockburn01], a use case may include a sub use case which refers to a goal at a lower
goal level (i.e., a subgoal). For example, use case 1 (“Have a car reserved”) in Table 3-4 consists of
sub use cases 3 (“Check the customer for blacklistedness”) and 5 (“Allocate cars”), presented in
Tables 3-6 and 3-8, respectively, which refer to the corresponding goals. A sub use case is a
subfunction of the primary task that it is included by. A subfunction is a step in a scenario that is
below the main level of interest of the primary actor. Therefore, its goal, which is a sub-goal of some
user goal, is attached to the actor in focus instead of the primary actor. Consequently, in order to
achieve a user goal, the actor in focus may set one or more subgoals which are modelled as goals of
subfunctions. Subfunctions may recursively consist of other subfunctions. A special group of sub use
cases are subfunctions that are triggered by internal actors, like use case 5 (“Allocate cars”) in Table 3-
8.

Based on [Cockburn97b], we suggest the following form for writing steps of goal-based use cases
where the first two elements are optional:

[<time or sequence factor>]…[<condition>]…<actor>…<action>…

This corresponds well to the general format for reaction rules in the metamodel presented in section
3.3, so that <time or sequence factor>, <condition>, and <action> stand for the event, precondition,
and action, respectively, and <actor> represents the agent, performing the action. An extension
scenario starts with either a <time or sequence factor> that triggers the extension scenario or a
<condition> that must be true when the extension scenario is started. The triggering of a subfunction
by an internal actor is also considered to be a <time or sequence factor>.

According to [Cockburn01], if several steps of a use case are to be repeated, the repetition
<condition> is written either before or after the repeating steps. The statement about repetition is not
numbered. In order to make goal-based use cases compatible with the extended AOR modelling, we
require to include the steps to be repeated in a separate subfunction. For example, step 1 of use case 5
(“Allocate cars”), presented in Table 3-8, refers to the subfunction to be repeated “Allocate a car”,
presented in Table 3-9.

3.7.2. Applying Goal-Based Use Cases to the Example of Car Rental

The use cases in Tables 3-4 – 3-17 describe the business process type of car rental with an advance
reservation. In Table 3-4, use case 1 (“Have a car reserved”) is presented. The goal of the use case, “to
have a car reserved for the customer to be picked up at the pick-up branch at the pick-up time and
dropped off at the drop-off branch at the drop-off time”, is given in its context in an informal way. It is
semi-formalized in section 3.8.4 at the phase of design. The use case is modelled from the perspective
of a customer with the pick-up branch of the car rental company in focus (scope). This means that the
goal of the use case is the so-called user goal, the goal of the actor (i.e., the customer) trying to get
work (primary task) done. The use case is triggered by receiving from a customer a request to have a
car reserved. The customer is therefore called the primary actor of the use case. The actor
‘headquarters’ and actor role ‘branch-proposer’ are termed secondary actors because they are the ones
from which the actor in focus (i.e., the pick-up branch) needs assistance to satisfy the user goal
internalized by it. Another primary task, i.e. a use case that is triggered by the primary actor, is use

82

case 2 (“Pick up the car”). Either use case mentioned includes the main success scenario for satisfying
its goal and a number of extension scenarios. For example, use case 2 includes the main scenario for
the case where the customer does not have another EU-Rent car on rental, is more than 25 years old,
has a valid driver’s license, and is physically able to drive the car safely, and the extension scenario for
the case when any of the criteria mentioned is not satisfied.

The primary task “Have a car reserved (use case 1) includes as subfunctions use cases 3 (“Check
the customer for blacklistedness”) and 5 (“Allocate cars”). The subfunction “Allocate cars”, in turn,
includes as a subfunction use case 6 (“Allocate a car”). The latter recursively includes five more
subfunctions. The primary task “Pick up the car” (use case 2) includes as a subfunction use case 4
(“Check the customer for another car”). As we learned in section 3.7.1, the goal of a subfunction is
attached to the actor in focus. For example, as Table 3-6 shows, the goal “expect to become to know
whether the customer is blacklisted” of the subfunction “Check the customer for blacklistedness” is
attached to the pick-up branch.

A special group of subfunctions is made up of those triggered by internal actors. In the business
process type of car rental with an advance reservation, to this group belongs use case 5 (“Allocate
cars”) which is triggered by the internal actor ‘timer’ of the pick-up branch.

In Tables 3-4 through 3-17, the <time or sequence factor> and <condition> components of use
case steps are distinguished by representing them in italic.
Table 3-4. Extended use case for the business process “Have a car reserved”.

USE CASE 1 Have a car reserved
Goal in Context A customer expects to have a car reserved for him/her to be picked up at the pick-up

branch at the pick-up time and dropped off at the drop-off branch at the drop-off time.
Scope & Level Pick-up branch, primary task.
Preconditions
Success End
Condition

The pick-up branch has reserved a car for the customer.

Primary Actor
Secondary Actors

Customer.
Headquarters, branch-proposer.

Trigger A request by a customer to have a car reserved, specifying the car group, pick-up time,
drop-off time, and drop-off branch.

DESCRIPTION Step Action
 1 The pick-up branch checks the customer for blacklistedness with the

headquarters (Use Case 3).
 2 The customer is not blacklisted and there is enough rental capacity in the

pick-up branch on the pick-up day: the pick-up branch creates the rental
reservation, informs the customer about the agreement, and commits to
reserve a car for the customer.

 3 It is the end of the day: the pick-up branch allocates cars to rental reservations
(Use Case 5).

EXTENSIONS Step Branching Action
 2a The customer is blacklisted or there is not enough rental capacity in the pick-

up branch on the pick-up day: the pick-up branch refuses the rental
reservation, informs the customer about the refusal, and the business process
ends.

83

Table 3-5. Extended use case for the business process “Pick up the car”.

USE CASE 2 Pick up the car
Goal in Context A customer expects to pick up the car reserved for him/her at the pick-up branch at the

pick-up time.
Scope & Level Pick-up branch, primary task.
Preconditions The pick-up branch has reserved a car for the customer.
Success End
Condition

The customer has picked up the car.

Primary Actor
Secondary Actors

Customer.
Headquarters.

Trigger A pick-up request by the customer.
DESCRIPTION Step Action
 1 The pick-up branch checks the customer for another car with the headquarters

(Use Case 4).
 2 The customer does not have another EU-Rent car on rental, is more than 25

years old, has a valid driver’s license, and is physically able to drive the car
safely: the pick-up branch agrees to provide the customer with the car.

 3 The pick-up branch releases the car to the customer.
 4 The pick-up branch informs the headquarters about the pick-up.
EXTENSIONS Step Branching Action
 2a The customer has another EU-Rent car on rental, or is 25 years old or less, or

does not have a valid driver’s license, or is physically not able to drive the car
safely: the pick-up branch refuses to provide the customer with the car and the
business process ends.

Table 3-6. Extended use case for the business process “Check the customer for blacklistedness”.

USE CASE 3 Check the customer for blacklistedness
Goal in Context The pick-up branch expects to become to know whether the customer is blacklisted.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has received from the customer a rental reservation request.
Success End
Condition

The pick-up branch knows whether the customer is blacklisted.

Primary Actor
Secondary Actors

Customer.
Headquarters.

Trigger
DESCRIPTION Step Action
 1 The pick-up branch sends to the headquarters a query to validate that the

customer is not blacklisted.
 2 The pick-up branch receives from the headquarters a reply of validation that

the customer is not blacklisted, and registers the reply.
EXTENSIONS Step Branching Action
 2a The pick-up branch receives from the headquarters a reply of validation that

the customer is blacklisted, and registers the reply.

84

Table 3-7. Extended use case for the business process “Check the customer for another car”.

USE CASE 4 Check the customer for another car
Goal in Context The pick-up branch expects to become to know whether the customer has another EU-

Rent car on rental.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has received from the customer a pick-up request according to the

rental reservation created by the pick-up branch.
Success End
Condition

The pick-up branch knows whether the customer has another EU-Rent car on rental.

Primary Actor
Secondary Actors

Customer.
Headquarters.

Trigger
DESCRIPTION Step Action
 1 The pick-up branch sends to the headquarters a query to validate that the

customer does not have another EU-Rent car on rental.
 2 The pick-up branch receives from the headquarters a reply of validation that

the customer does not have another EU-Rent car on rental, and registers the
reply.

EXTENSIONS Step Branching Action
 2a The pick-up branch receives from the headquarters a reply of validation that

the customer has another EU-Rent car on rental, and registers the reply.

Table 3-8. Extended use case for the business process “Allocate cars”.

USE CASE 5 Allocate cars
Goal in Context The pick-up branch expects to allocate cars to the rental reservations where a car is to

be picked up on the following day.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has created the rental reservations.
Success End
Condition

The pick-up branch has allocated cars to the rental reservations.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger A request by the timer to allocate cars to rental reservations.
DESCRIPTION Step Action
 1 For each rental reservation where a car is to be picked up on the following

day: allocate a car to the rental reservation (Use Case 6).

Table 3-9. Extended use case for the business process “Allocate a car”.

USE CASE 6 Allocate a car
Goal in Context The pick-up branch expects to allocate to the rental reservation a car of the requested

car group.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has created the rental reservation.
Success End
Condition

The pick-up branch has allocated to the rental reservation a car of the requested car
group.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger
DESCRIPTION Step Action
 1 There is an available car of the requested car group in the pick-up branch: the

pick-up branch allocates the car to the rental reservation and commits to
provide the customer with the car.

EXTENSIONS Step Branching Action
 1a There is no available car of the requested car group in the pick-up branch: the

pick-up branch allocates to the rental reservation a car of the next higher car
group (Use Case 7).

85

Table 3-10. Extended use case for the business process “Allocate a car of the next higher car group”.

USE CASE 7 Allocate a car of the next higher car group
Goal in Context The pick-up branch expects to allocate to the rental reservation a car of the next higher

car group.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has created the rental reservation and there is no available car of

the requested car group in the pick-up branch.
Success End
Condition

The pick-up branch has allocated to the rental reservation a car of the next higher car
group.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger
DESCRIPTION Step Action
 1 There is an available car of the next higher car group in the pick-up branch:

the pick-up branch allocates the car to the rental reservation and commits to
provide the customer with the car.

EXTENSIONS Step Branching Action
 1a There is no available car of the next higher car group in the pick-up branch:

the pick-up branch allocates to the rental reservation a car with bumped
upgrade (Use Case 8).

Table 3-11. Extended use case for the business process “Allocate a car with bumped upgrade”.

USE CASE 8 Allocate a car with bumped upgrade.
Goal in Context The pick-up branch expects to allocate to the rental reservation a car with bumped

upgrade.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has created the rental reservation and there is no available car of

the next higher car group in the pick-up branch.
Success End
Condition

The pick-up branch has allocated to the rental reservation a car with bumped upgrade.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger
DESCRIPTION Step Action
 1 There is an available car to allocate to the rental reservation with bumped

upgrade in the pick-up branch: the pick-up branch allocates to the rental
reservation a car with bumped upgrade (a car of the next higher group
allocated to a rental reservation is replaced by one more higher group car, and
the freed-up car of the next higher group is allocated to the rental reservation),
and commits to provide the customer with the car.

EXTENSIONS Step Branching Action
 1a There is no available car to allocate to the rental reservation with bumped

upgrade in the pick-up branch: the pick-up branch allocates to the rental
reservation a car of the next lower car group (Use Case 9).

86

Table 3-12. Extended use case for the business process “Allocate a car of the next lower car group”.

USE CASE 9 Allocate a car of the next lower car group.
Goal in Context The pick-up branch expects to allocate to the rental reservation a car of the next lower

car group.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has created the rental reservation and there is no available car to

allocate to the rental reservation with bumped upgrade in the pick-up branch.
Success End
Condition

The pick-up branch has allocated to the rental reservation a car of the next lower car
group.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger
DESCRIPTION Step Action
 1 There is an available car of the next lower car group in the pick-up branch:

the pick-up branch allocates the car to the rental reservation and commits to
provide the customer with the car.

EXTENSIONS Step Branching Action
 1a There is no available car of the next lower car group in the pick-up branch:

the pick-up branch allocates to the rental reservation a car that is not present in
the pick-up branch (Use Case 10).

Table 3-13. Extended use case for the business process “Allocate a car that is not present”.

USE CASE 10 Allocate a car that is not present.
Goal in Context The pick-up branch expects to allocate to the rental reservation a car of the requested

car group that is not present (i.e., has not been returned yet).
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has created the rental reservation and there is no available car of

the next lower car group in the pick-up branch.
Success End
Condition

The pick-up branch has allocated to the rental reservation a car that is not present.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger
DESCRIPTION Step Action
 1 There is a suitable car of the requested car group that is not present in the

pick-up branch: the pick-up branch allocates the car to the rental reservation
and commits to provide the customer with the car.

EXTENSIONS Step Branching Action
 1a There is no suitable car of the requested car group that is not present in the

pick-up branch: the pick-up branch allocates to the rental reservation a car
from another branch (Use Case 11).

87

Table 3-14. Extended use case for the business process “Allocate a car from another branch”.

USE CASE 11 Allocate a car from another branch.
Goal in Context The pick-up branch expects to allocate to the rental reservation a car transferred from a

branch-proposer.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has created the rental reservation and there is no suitable car of the

requested car group that is not present in the pick-up branch.
Success End
Condition

The pick-up branch has allocated to the rental reservation the car that has been
transferred to the pick-up branch from a branch-proposer.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger
DESCRIPTION Step Action
 1 The pick-up branch sends to branch-proposers a call for proposals to transfer a

car (Use Case 12).
 2 Until there is timeout: the production department waits for and receives from a

branch-proposer a proposal to transfer a car (Use Case 13).
 3 The pick-up branch selects the cheapest (in the interests of the EU-Rent car

rental company as a whole) proposal and informs the winning branch-
proposer about that.

 4 The pick-up branch rejects the proposals by the losing branch-proposers (Use
Case 14).

 5 The pick-up branch receives the car from the winning branch-proposer: the
pick-up branch registers the car and allocates the car to the rental reservation.

Table 3-15. Extended use case for the business process “Send calls-for-proposals”.

USE CASE 12 Send calls-for-proposals.
Goal in Context The pick-up branch expects to send to branch-proposers calls-for-proposals to transfer

a car.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has created the rental reservation and there is no suitable car of the

requested car group that is not present in the pick-up branch.
Success End
Condition

The pick-up branch has sent to branch-proposers calls-for-proposals to transfer a car.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger
DESCRIPTION Step Action
 1 For each branch-proposer: send a call-for-proposals.

Table 3-16. Extended use case for the business process “Receive a proposal”.

USE CASE 13 Receive a proposal.
Goal in Context The pick-up branch expects to receive from a branch-proposer a proposal to transfer a

car.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has sent to branch-proposers calls-for-proposals to transfer a car.
Success End
Condition

The pick-up branch has received from a branch-proposer a proposal to transfer a car.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger
DESCRIPTION Step Action
 1 The pick-up branch receives from a branch-proposer a proposal to transfer a

car: the pick-up branch registers the proposal.
EXTENSIONS Step Branching Action
 1a The pick-up branch receives from a branch-proposer a refusal to transfer a

car: the pick-up branch registers the refusal.

88

Table 3-17. Extended use case for the business process “Inform the losers”.

USE CASE 14 Inform the losers.
Goal in Context The pick-up branch expects to reject the proposals by the losing branch-proposers.
Scope & Level Pick-up branch, subfunction.
Preconditions The pick-up branch has selected the winning proposal.
Success End
Condition

The pick-up branch has rejected the proposals by the losing branch-proposers.

Primary Actor
Secondary Actors

Customer.
Branch-proposer.

Trigger
DESCRIPTION Step Action
 1 For each losing branch-proposer: send to the branch-proposer the rejection

message.

3.8. DESIGN BY EXTENDED AOR MODELLING

The modelling by goal-based use cases described in section 3.7 serves as the first step in working out
the design models of a socio-technical system. We have based the design phase of the methodology
proposed by us on the combination of the AOR Modelling Language (AORML), which was reviewed
in section 3.4, and Object Constraint Language (OCL) of UML [OMG03a, OMG03b] which was
briefly described in section 3.5. However, AORML in the form it is proposed in [Wagner00a],
[Wagner01], and [Wagner03a] does not lend itself to the modelling of the motivational and functional
views out of the six views of agent-oriented modelling defined in section 1.5.6. To fill in this gap, we
have complemented AORML by activity diagrams which were introduced and explained in section
3.6. We call the resulting modelling language the extended AORML.

Figure 3-10. The steps of the design phase by extended AOR modelling.

The steps of the design phase and the order how they should be applied are depicted in Figure 3-10.
In subsections 3.8.1 – 3.8.5, we will describe separately for each view of agent-oriented modelling
how the methodology proposed by us covers it.

3.8.1. Organization Modelling

The organizational view of business modelling concerns the modelling of active entities, i.e. agents
and agent types and relationships between them. The purposes of organization modelling are:

• to identify the organization(s) of the problem domain;
• to identify the relevant organization units that each organization to be modelled consists of;
• to identify the roles included by the organization units;
• to identify the types of relationships occurring between these agent types.

 According to [Wagner03a], an institutional agent consists of a number of internal agents that
perceive events and perform actions on behalf of it, by playing certain roles. Both human and artificial

Information
modelling

Organization
modelling

Interaction
modelling

Motivation
and function

modelling

Behaviour
modelling

89

agents act in roles on behalf of an organization and its units. A human agent may delegate a part or all
of its rights and duties obtained through playing a role to an artificial (e.g., software) agent.

Table 2-1 may prove useful in identifying organization units and the roles included by them.
However, please notice that in AORML, a role is understood as an “abstract characterization of the
behaviour of a social actor within some specialized context or domain of endeavor” [Yu95a] like
BranchManager (human role) or Pick-UpBranch (institutional role) in Figure 3-11, while in Role
Interaction Nets also institutional agent types like Branch are referred to as roles.

In AOR Modelling, a role is played by one or more human and/or artificial agents that act on
behalf of some institutional agent of the type the role is included by (e.g., the role BranchManager in
Figure 3-11 can be played by a combination of a human and software agent that act on behalf of an
agent of the type Branch).

Organization units and roles can be represented by agent diagrams of AORML where different
agent types may relate to each other through the relationships of generalization and aggregation. Both
organization units and roles are represented as agent types in agent diagrams. Figure 3-11 depicts the
agent instance EU-Rent, representing the car rental company that belongs to the agent type Organization
(not shown in the figure). The agent EU-Rent consists of instances of the internal agent types
Headquarters, Branch, and AutomotiveServiceStation which form subclasses of the institutional agent type
OrganizationUnit. In AORML like in UML [OMG03a], the number of instances of an agent type may
be shown in the top right corner of the box with rounded corners denoting the corresponding agent
type. For example, in Figure 3-11, the agent type Headquarters has just one instance, while the agent
types Branch and AutomotiveServiceStation have one or more instances. An interval for the number of
instances of different institutional agent types is shown in the second column of Table 2-1.

The institutional roles Pick-UpBranch, Drop-OffBranch, and BranchProposer form subclasses of the
institutional agent type Branch. According to the definition of a role presented above, each role is valid
only within a certain context. For example, the role Pick-UpBranch is valid only in the context of
business processes of making a rental reservation and picking up a car. The extension of a role is thus
less stable than that of its superclass.

All human roles represented in Figure 3-11 are subclasses of the role EmployeeOfEU-Rent, which, in
turn, constitutes a subclass of the agent type Person. The instance of the agent type Headquarters
includes the roles ManagingDirector and FinancialAccountingClerk. Each instance of the agent type Branch
includes an instance of BranchManager, CarMaintainer, Driver, and FinancialAccountingClerk, and one or
more instances of CustomerServiceClerk. Each instance of the agent type AutomotiveServiceStation
includes a ServiceStationManager, one or more instances of Repairman, and a BookingClerk.

In addition to human agents, the instance of Headquarters and instances of the agent types Branch
and AutomotiveServiceStation include the automated HeadquartersAgent, BranchAgent, and
AutomotiveServiceStationAgent, respectively, which enable (semi)-automatic management of business
processes. Additionally, instances of Branch include a simple automated agent of the type Timer.

According to [Zambonelli01], five types of relationships can be identified between the institutional
agent types and/or roles. Such relationships then apply to the instances of the agent types and/or roles.
Out of them, control, benevolence, and dependency relationships seem to be the most relevant ones to
modelling interactions between agents.

Control relationships identify the authority structures within an organization. If an agent i controls
another agent j, then j will perform any service demanded of it by i. For example, in Figure 3-11 there
is the isSubordinateTo relationship between instances of the roles BranchManager and
ServiceStationManager on one hand and the instance of the role ManagingDirector included by the
Headquarters on the other hand.

Benevolence relationships identify agents with shared interests. An agent i is said to be benevolent
to other agent j if i will offer its services to j whenever it is able to do so. For example, there is the
isBenevolentTo relationship between instances of the roles Pick-UpBranch and Customer in Figure 3-11.
This relationship typically appears between a service provider and customer. As it has been noticed in
[Zambonelli01], benevolence is also the classical assumption made in research on distributed problem
solving.

Dependency relationships exist between agents primarily because of resource restrictions. A
dependency relationship between two agents implies a contract or agreement between the agents
according to which one agent provides upon demand a part of some resource (e.g., a piece of
information) managed by it to another agent. For example, the providesResourceTo relationship
between the role Pick-UpBranch and the institutional agent type Headquarters in Figure 3-11 means that

90

a Pick-UpBranch depends on the Headquarters for information about blacklisted customers. In a similar
manner, a Drop-OffBranch depends on an AutomotiveServiceStation for car servicing. Upon demand, a
depender is provided with the required information or service by the dependee.

As we saw in section 2.1.4, in the i* approach [Yu95a, Yu95b], more abstract task, goal, and
resource dependency relationships are proposed. A task dependency, under which one agent specifies
to another how the task is to be performed, but not why, subsumes the control relationship which
means that the dependee is subordinated to the depender, as a rule. Analogously, a goal dependency,
where the dependee is given the freedom to choose how to bring about a certain state in the world for
the depender, subsumes the benevolence relationship in the sense that the dependee is assumed to be
benevolent towards the depender. Finally, a resource dependency of i*, where the depender depends
on the dependee for the availability of an entity (physical or informational), straightforwardly
corresponds to the dependency relationship between two agents by Zambonelli [Zambonelli01].

EU-Rent: Organization

Automotive ServiceStation

Person

Pick-UpBranch

EmployeeOfEU-Rent
BranchProposer

Drop-OffBranch

ServiceStation
Manager

Repairman

BookingClerk

Automotive
ServiceStationAgent

<<
is

S
ub

or
di

na
te

To
>>

<<isSubordinateTo>>

Branch

CarMaintainer

Driver

Financial
AccountingClerk

Customer
ServiceClerk

BranchAgent

Branch
Manager

<<
is

S
ub

or
di

na
te

To
>>

<<
is

S
ub

or
di

na
te

To
>>

1

1

1

1

1

1

1

1

1..*

1..*

1..*

1..*

OrganizationUnit

SoftwareAgent

<<isBenevolentTo>>

Customer

<<isBenevolentTo>>

<<providesResourceTo>>

<<providesResourceTo>>

Headquarters

Financial
AccountingClerk

HeadquartersAgent

ManagingDirector

<<
is

S
ub

or
di

na
te

To
>>

1

1

1

1

1

1..*

1..*
1

Timer 1

Figure 3-11. An agent diagram of the organizational view for the EU-Rent car rental company.

91

3.8.2. Information Modelling

The informational view of agent-oriented modelling deals with the modelling of beliefs of the focus
agent (or agents). Each agent has beliefs about its internal agents, about its ‘private’ objects, and about
all external agents and shared objects that are related to it.

Creation of the informational view for the focus organization(s) can be regarded as the creation of
an ontology providing a common framework of knowledge for the agents of the organization(s) and
external agents connected to the organization(s). A problem-oriented ontology is a description by truth
values of the concepts and relationships of the problem domain that exist for an agent or more
commonly for a community of agents [Gruber93]. Ontology consists of the concepts (classes),
relationships between them like e.g. subsumption (inheritance), aggregation, and association, and
axioms of the problem domain. Ontology should provide all the data structures, relationships, and
axioms that are necessary for the agents for performing their actions. Ontology should also represent
the agents themselves. Each agent of the problem domain can see only a part of the ontology, i.e. each
agent views the ontology from a specific perspective.
 According to [Corcho03], ontologies are sometimes divided into lightweight and heavyweight
ontologies. It is claimed in [Corcho03] that “the database community, as well as the object-oriented
community, also builds domain models using concepts, relations, properties, etc., but most of the times
both communities impose less semantic constraints than those imposed in heavyweight ontologies”.
However, since ontologies created within the Business Agents’ Approach include derivation rules and
constraints, as a rule, they can be regarded as heavyweight ontologies. Such ontologies are created by
using a combination of the principles and notations provided by the extended AORML and modified
Object Constraint Language which were reviewed in sections 3.4 and 3.5, respectively

According to [Wagner98], an entity-relationship (ER) model (an object class model) of an
application domain defines a formal language consisting of:

• the finite set of application domain predicates established by the entity-relationship analysis;
• the set of all possible attribute values, i.e. the union of all attribute domains, which forms the

set of constant symbols.
The ontology to be created within the informational view can thus be treated as the finite set of

domain predicates which were introduced in section 3.3. As we saw in section 3.3, there are three
kinds of basic domain predicates: informational entity types, relationship types, and attributes. For
representing them, we use agent diagrams of AORML which were briefly described in section 3.4.4.
Figure 3-13 depicts an agent diagram of the informational view of the domain of the EU-Rent car rental
company. As is shown in Figure 3-13, the car rental company EU-Rent is the focus agent of the type
Organization. It consists of instances of the institutional agent types Headquarters, Branch, and
AutomotiveServiceStation.

Please note that agent diagrams of the informational view can be created with different levels of
preciseness and different internal agents represented. It is thus not necessary to represent within the
informational view all the internal agent types and instances of EU-Rent that were modelled within the
organizational view in Figure 3-11.

In Figure 3-13, the agent EU-Rent has customers as external human agents of the type Customer,
which is a subtype of Person, and employees as internal human agents of another subtype of Person –
EmployeeOfEU-Rent. In general, institutional agents may also serve as customers, but this possibility is
not reflected by Figure 3-13.

According to the associations between informational entity types shown in the agent diagram of
Figure 3-13, the EU-Rent car rental company has zero or more customers. A Customer has zero or more
instances of RentalOrder/Invoice, to each of which may have been allocated at most one RentalCar. The
object type RentalCar forms a subclass of the more general object type Car. Each instance of RentalCar
belongs to a specific CarGroup, and each instance of CarGroup has zero or more instances of RentalCar.
Instances of CarGroup of different rank (and price) are connected to each other by the association that
is navigated in the directions denoted by the nextLowerGroup and nextHigherGroup rolenames
[OMG03a]. As a rental order always specifies the group of the car requested or provided, there is an
instance of CarGroup associated with each RentalOrder.

The meanings of the attributes of informational entity types, such as personID, birthDate, and age of
Customer, as well as carID of RentalCar and mileage of Car in Figure 3-13 are self-evident. We
distinguish identifier attributes, like rentalOrderID, by presenting them in bold as is shown in Figure 3-
13. Identifier attributes are used to identify the entities in agent messages as is demonstrated in

92

section 3.8.3. An identifier attribute is implicitly assigned with a unique value when the corresponding
entity instance is created.

3.8.2.1. Modelling of Derivation Rules

We distinguish three kinds of business rules of the derivation rule type: derived attributes, status
predicates, and intensional predicates. Strictly speaking, derived informational entity types, like those
derived by means of the inheritance relationship, and derived associations also form kinds of
derivation rules. However, we confine our treatment of derivation rules to derived attributes, status
predicates, and intensional predicates.

Derived attributes are the attributes of an entity whose values are computed or inferred from the
values of the entity’s other attributes. In [Wagner98] such attributes, i.e. the attributes whose values
are not explicitly stored in the VKB of an agent but rather have to be computed in some way, are
termed attribute functions. For example, the value of the attribute age of an instance of Customer is
computed from the present date, returned by the calendar function now(), and the value of the attribute
birthDate of the Customer. Analogously, the value of the attribute mileageSinceService of a RentalCar is
computed by subtracting from the value of the attribute mileage the value of the attribute
mileageAtService which is registered before every regular maintenance of a car.

Status predicates represent the statuses of instances of informational entity types like, for example,
isBlacklisted and hasCar of a Customer, isReserved and isDroppedOff of a RentalOrder, and isPresent and
isInService of a RentalCar. Status predicates do not take parameters of any kind. A status predicate can
be expressed with a Boolean-valued attribute.

Intensional predicates are in our approach derived Boolean-valued attributes9. Intensional
predicates take parameters. An example of an intensional predicate in Figure 3-13 is hasCapacity(Date,
Date) of the object type CarGroup which checks whether the given car group has additional rental
capacity between the pick-up time and drop-off time requested.

Derived attributes and status and intensional predicates form subtypes of domain predicates. They
all are defined by derivation rules, as is shown in the metamodel of the Business Agents Approach’ in
Figure 3-3. The modelling technique proposed by us includes representing derivation rules using the
Object Constraint Language (OCL) which is now a part of UML [OMG03a]. Originally in
[Taveter01c], we also sketch a notation for visualizing derivation rules of some kind.

Derived attributes are expressed in our approach by using invariants of OCL. For example, the
derivation of the value of the attribute age of an instance of Person from the present date, returned by
the calendar function now(), and from the value of the attribute birthDate of the Person, can be expressed
as follows:

context Person inv:
self.age = now() – self.birthDate

Analogously, the derivation of the value of the attribute mileageSinceService from the values of the
attributes mileage and mileageAtService of an instance of RentalCar can be expressed as the following
invariant:

context RentalCar inv:
self.mileageSinceService = self.mileage – self.mileageAtService

As we have argued in [Taveter01c], derivation rules of the type status predicates can be expressed
both graphically and in OCL. Consider the rule D1: A car is available for rental if it is physically
present, is not assigned to any rental order, is not scheduled for service, and does not require service.
D1 can be formalized as a logic programming-style derivation rule in the following form:

RentalCar.isAvailable(x) ←
RentalCar.isPresent(x)
∧¬∃y(isAssignedTo(x, y))
∧¬RentalCar.requiresService(x)
∧¬RentalCar.isScheduledForService(x)

where the variable x refers to the identifier of a car.
The rule is applicable to an instance of the conclusion class if the conjunction of the conditions

evaluates to true. Each condition is either an atom (in the sense of logic programming terminology), a

9 In general, the term “intensional predicate” just means a predicate that is defined by means of a derivation rule
instead of e.g. presenting a set of extensional facts.

93

negated atom, or a negated existentially qualified atom where all free variables occur also among the
variables of some atom. An example of the latter condition type is the expression ¬∃y(isAssignedTo(x,
y)).

The condition and conclusion part of certain types of derivation rules can be expressed in OCL.
Since there is no genuine rule conditional in OCL but only the Boolean implication operator implies,
and the semantics of OCL does not include a proper treatment of derivation rules10, we have to form a
pseudo-OCL expression where the IF operator represents the rule conditional ←.

context RentalCar inv:
self.isAvailable IF
self.isPresent
and self.RentalOrder->isEmpty()
and not self.requiresService
and not self.isScheduledForService

RentalOrderRentalCar

isPresent

isAvailable

requires
Service

isScheduled
ForService

isInService

isPickedUp

D1

isAssignedTo

Figure 3-12. Visualizing the derivation rule D1.

There has been some work on the visualization of logic programs [Dewar91, Brayshaw91,
Neufeld97], focusing mainly on the visualization of proof trees and the control flow in an AND/OR
tree by displaying the success or failure of rules and the associated unification process. These works
are motivated by the desire to support the debugging, and the execution analysis, of logic programs.
We have visualized the status predicate D1 in Figure 3-12 in a different way. In this graphical
rendering of derivation rules, the incoming arrows form the conditions of the rule, and the outgoing
arrow represents the conclusion (referring to instances of some informational entity type). A negated
atom of the condition is represented by crossing the source part of the arrow denoting the condition.
However, in Appendix C we represent status predicates as well as other derivation rules of the domain
of the EU-Rent car rental company in OCL extended by the IF operator.

Finally, we express derivation rules of the type intensional predicates as operations of OCL. For
example, the intensional predicate hasCapacity(Date, Date) in Figure 3-13 can be expressed as the
operation below attached to the object type CarGroup. The helper operation hasOverlappingRentalOrder
according to the new version of OCL [OMG03b] is defined in Appendix C.

context CarGroup::hasCapacity(pickUpTime: Date, dropOffTime: Date): Boolean
post: result = (self.rentalCar->exists(not(isScheduledForService) and
not(hasOverlappingRentalOrder(pt, dt))))

3.8.2.2. Modelling of Integrity Constraints

For representing business rules of the type integrity constraints, we again make use of OCL. Our
example of the business rule stating that a customer of EU-Rent must be at least 25 years old
corresponds to a simple state constraint that can be expressed in OCL in the following way:

context Customer inv:

10 As has been noticed in logic programming semantics, because of their nonmonotonic nature, derivation rules
do not correspond to Boolean implication formulas.

94

self.age > 25

where the OCL keyword inv indicates an invariant.
A simple constraint like the one presented above can be included as an attribute constraint in the

attribute list of a type, as suggested by UML. There are other constraints, such as multiplicity
constraints, for which a visualization is readily available. In the general case, however, since
constraints correspond to logical sentences of a formal language, there may be no straightforward way
to visualize a constraint, and we have to be content with a textual representation. A comprehensive but
somewhat complicated technique for visualizing constraints – Ross Notation – was presented and
evaluated in section 2.1.1.

3.8.2.3. Extensions to Agent Diagrams

External AOR models represent agent types and/or agents and object types of the problem domain
under inspection. The structure of beliefs of each focus agent about the entities that it is associated
with by default corresponds to the structure of these informational entity types. For example, since the
rectangle representing the agent type Customer is connected to the rectangle of the object type
RentalOrder/Invoice in Figure 3-13, agents of this type have about instances of RentalOrder/Invoice beliefs
of the structure depicted in the figure. However, sometimes a belief of an agent needs a different
representation, using different attributes and status and intensional predicates, because it does not
directly correspond to the structure of an “external” object or agent but rather to the agent’s “personal”
view of it. For such a case, we are extending the AOR Modelling Language by the dependency arrow
with the stereotype <<represents>> between the internal representation and the corresponding external
informational entity type. For example, as is shown in the agent diagram of Figure 3-13, there is an
internal representation of the object type CarGroup within agents of the type Branch.

Wagner03aWagner03aIn the agent diagram depicted in Figure 3-13, the agent EU-Rent has specific
internal representations of the object types RentalCar and RentalOrder/Invoice. The first of them is shared
between the EU-Rent’s internal agents of the types Branch and AutomotiveServiceStation, while the
second one is shared between instances of the agent types Headquarters and Branch. The corresponding
dependency arrows with the stereotype <<represents>> from the internal RentalCar and
RentalOrder/Invoice rectangles within EU-Rent to the corresponding external rectangles indicate that the
car rental company needs to represent information about instances of RentalCar and RentalOrder/Invoice
using additional attributes, such as mileageAtService and serviceStartTime, additional status predicates
like isPresent and isPaid, and additional intensional predicates, such as
isAvailableOfOwnGroup(RentalOrder) and canBeReAllocated(RentalOrder) which have to do with the
allocation of cars to rental orders. Analogously, the internal representation of the object type CarGroup
within the agent type Branch includes the additional status predicate hasCapacity(Date, Date). The latter
is expressed by the dependency arrow with the stereotype <<represents>> from the internal CarGroup
rectangle of Branch to the corresponding external rectangle.

Analogously to object types, if another agent type is to be represented by a focus agent (type) with
“proprietary” attributes or status predicates (that only have meaning for the focus agent), such as when
a Customer is to be represented by the Headquarters with the proprietary status predicates isBlacklisted
and hasCar, then the corresponding agent type rectangle with an agent type name is drawn as a
representation of the “external” agent type within the focus agent (type), as can be seen in Figure 3-13.

As it is formulated in [Wagner03a], if an object type belongs exclusively to one agent or agent type
(in the sense of a UML component class), the corresponding rectangle is drawn inside of this agent
(type) rectangle. Otherwise, if the object type rectangle is drawn outside of the respective agent (type)
rectangles, the focus agents have by default beliefs of the corresponding structure about its instances.
However, it is emphasized in [Wagner03a] that an “external” object type does not imply that all the
agents connected by an association to it have the same beliefs about it, or, in other words, that there is
a common extension of it shared by all agents. For example, different instances of the agent type
Customer in Figure 3-13 all hold different sets of instances of RentalOrder/Invoice in their VKB’s, as a
rule. Since the extensional difference between internal representations is implicit, as was stated above,
the internal representations of the object type RentalOrder/Invoice within the agent type Customer are not
shown in Figure 3-13.In addition to the way generalization is visualized in ER diagrams and UML
class diagrams, by means of a special arrow, a subclass can also be visualized as a rectangle within its
superclass, following [Harel87]. Since all entities of some type that have a certain status (satisfy a
certain status predicate) form a subclass of the informational entity type (see, e.g. [IDEF94]), we use
the notation for subclasses also for representing entities having a certain status where it seems to be

95

especially useful in terms of visual clarity. For example, in the internal view by EU-Rent, an object of
the type RentalCar in Figure 3-13 can have the status isPresent, isPickedUp, or isInService. A status
predicate may include substatus predicates. For example, an instance of RentalCar in Figure 3-13 with
the status isPresent has the substatus requiresService, isScheduledForService, or isAvailable.

Please notice that a graphical box inside of another in agent diagrams of AOR modelling has one of
three different meanings: isBeliefOf, isSubclassOf (inheritance which includes status predicates), and
isComponentOf (aggregation). It is easy to distinguish the first case from the others because the
rectangle representing an entity (type) of an agent’s “private” belief structure is located inside of the
rectangle representing the corresponding agent (type). It is more complicated to distinguish between
aggregation and inheritance relationships which are context-dependent until the issue will be settled in
the forthcoming AORML Reference Manual11. However, in the extended AOR models included in
this thesis we have represented the isSubclassOf relationship by using a UML inheritance arrow, like
between Customer and Person in Figure 3-13, and have reserved the controversial notation for
representing status predicates, like the status predicate isPreliminary included by the object type
RentalOrder/Invoice in Figure 3-13.

11 According to the personal communication with the author of the original AORML.

96

EU-Rent: Organization

Headquarters

Customer

RentalCar

Customer

isBlacklisted

hasCar

Branch

next
Higher
Group

next
Lower
Group

carID: String
carGroupID: String

Customer

isQualifiedForRental

branchID: String

isPresent

RentalCar

isAvailable
isAvailable

WithMinMileage

requires
Service

isScheduled
ForService

isPickedUp

isInService

RentalOrder/Invoice

rentalOrderID: String
carGroupID: String
carID: String
pickUpTime: Date
dropOffTime: Date
pickUpBranchID: String
dropOffBranchID:
String
price: Currency

AutomotiveService
Station

<<represents>>

<<represents>>

<<represents>>

0..*

1

0..*

1

1..*

1

0..*

2

0..*

0..1

11..*

1

0..*

CarGroup
carGroupID: String

1 0..*

CarGroup

<<represents>>

mileageAtService: Integer
mileageSinceService: Integer
serviceStartTime: Date
serviceEndTime: Date

1

1..*

1

isCheapest

Proposal
priceForTransfer:
Real
proposingBranch:
String

isBlacklisted

hasCar

Car
corpusNumber:
String
mileage: Integer

Person
personID: String
firstName: String
lastName: String
birthDate: Date
age: Integer

EmployeeOfEU-Rent

hasCapacity
(Date, Date)

isAvailableOf
OwnGroup

(RentalOrder)

isAvailableOf
NextHigherGroup

(RentalOrder)

isAvailableWith
 BumpedUpgrade

(RentalOrder)

isAvailableOf
NextLowerGroup

(RentalOrder)

isAvailable
NotPresent

(RentalOrder)

10..*

0..*
1

0..1

0..1 0..1

RentalOrder/Invoice

isReserved

isAllocated

isEffective

isDroppedOff

rentalCharge
isCalculated

isPaid

canBe
ReAllocated

(RentalOrder)

<<represents>>

Figure 3-13. An agent diagram of the informational view for the EU-Rent car rental company.

97

3.8.3. Interaction Modelling

The interactional view concerns the modelling of interactions and communication between the agents.
It is represented by using interaction frame diagrams which were introduced in section 3.4.4. An
interaction frame between two agent types consists of those action event types and commitment/claim
types that form the basis of the interaction processes in which these two agent types are involved.
Unlike a UML sequence diagram, it does not model any sequential process but provides a static
picture of the possible interactions and evolvement of commitments/claims between the agent types.

Figure 3-16 depicts the interaction frames between the agent types Customer, Branch, Headquarters,
and AutomotiveServiceStation. The interaction frames are formed in accordance with the control,
benevolence, and dependency relationships that were identified between the institutional agent types
and/or roles in section 3.8.1. A control relationship between an agent requesting for some service and
the agent providing the service means that the service provider agent can not refuse the service
requested from it. For example, in Figure 3-11 there is the isSubordinateTo relationship between
instances of the roles BranchManager of Branch and ManagingDirector of Headquarters. Since, as we
argued in section 3.8.1, internal agents included by an institutional agent act on behalf of the
institutional agent, this control relationship also applies to the institutional agents of the respective
types Branch and Headquarters. Under a benevolence relationship between a service requester and the
service provider, the service provider performs the service requested if it is able to do so, but the
service provider also has an option to refuse the service requested. This can, for example, happen on
the insufficiency of the resources required. For example, there is the isBenevolentTo relationship
between instances of Pick-UpBranch and Customer in Figure 3-11. Finally, since a dependency (for a
resource) relationship, like the relationship between instances of Drop-OffBranch and
AutomotiveServiceStation in Figure 3-11, implies a valid contract or agreement between the parties to
provide the service requester with the service, a service request is usually not refused under this kind
of dependency.

Notice that not for all action event types in Figure 3-16, there is a corresponding commitment/claim
type. For instance, there are no commitments of (or claims against) customers to pick up a car,
whereas there are commitments and claims to return a car. Notice also that even though a commitment
of a Customer of the type returnCar in Figure 3-16 is towards an instance of the agent role Drop-
OffBranch, this commitment is also discharged if the Customer returns the car to a branch other than the
agreed drop-off branch (true, he/she is charged a drop-off penalty then according to a business rule of
the EU-Rent car rental company).

In principle, each communicative action event type in Figure 3-16 could be modelled as a separate
object type consisting of the message type name and a number of attributes. For example, the first
message type request provideCar in Figure 3-16 could be modelled as the object type
CarReservationRequest. This way, we would obtain many domain-specific message languages. Such an
approach has been followed in EDIFACT [Salminen95] and in the emerging standards for e-business
RosettaNet [RosettaNet] of electronics industry and PapiNet [PapiNet] of paper industry. However,
within each domain this will eventually lead to an exponential explosion of message types which
should be avoided. To avoid such explosion, we have chosen to model communicative action event
types as types of speech act messages [Austin62] where different modalities in the form of speech acts
can be applied to the same proposition. A speech act message has the mandatory form m(c) where m is
the message type (like request, query-if, inform, etc., expressing the ‘illocutionary force’ according to
[Searle85]), and c is the message content, composed of propositions and/or action terms. We define a
proposition as a logical sentence referring to one or more domain predicates of the problem domain’s
ontology. An action term identifies the type of action that, for example, one agent requests another
agent to perform. We elaborate on AORML as it was described in sections 3.4.1 through 3.4.4 by
stating that each action term refers to some non-communicative action event type.

Agent communication based on speech acts contrasts with the language used in the literature on
object-oriented programming, where objects ‘communicate’ or ‘interact’ with each other by sending
‘messages’. As we saw above, a speech act message consists of the message type and content, while
an OO message has no generic structure at all. Notice also that the UML [OMG03a] term
‘collaboration’ between objects corresponds only to a very low-level sense of communication and
interaction. In fact, sending a ‘message’ in the sense of OO programming corresponds rather to a
(possibly remote) procedure call, and not to a communication act (or speech act). Object-orientation
thus does not capture communication and interaction in the high-level sense of business processes
carried out by business agents.

98

3.8.3.1. Representation of Action Event Types

In interaction frame and activity diagrams, non-communicative action event types are represented as
combinations of action terms and propositions. The constructs for representing them are defined by the
activity modelling language which is presented in Appendix B. For example, in Figure 3-16 the action
term provideCar is used in combination with the proposition RentalCar(corpusNumber(?String1)
mileage(?Integer) carID(?String2) carGroupID(?String3)), which includes the domain predicate RentalCar,
representing an object type, and the domain predicates corpusNumber, mileage, carID, and carGroupID,
representing attributes of the object type. When the action event type is instantiated by e.g. a
simulation environment, to the terms (variables) of the proposition ?String1, ?Integer, ?String2, and
?String3 are assigned values of the corresponding types. As a result, the instantiated proposition refers
to the representation of a physical object, such as a rental car, that is transferred from one agent to
another by the action event. As commitment/claim types may be coupled with action event types,
propositions may be associated with them in exactly the same manner as with action event types.

Analogously, within a communicative action event (i.e., an agent message), an instance of an
informational entity type can be represented by means of an instantiated proposition that includes one
or more domain predicates of the ontology in the way demonstrated by the following example:

(RentalOrder
 : rentalOrderID "245"
 : carGroupID "B"
 : carID "764 WGY"
 : pickUpTime 0106041200
 : dropOffTime 0706041730
 : pickUpBranchID "Tallinn Airport"
 : dropOffBranchID "Riga Centre"))

In interaction frame and activity diagrams, we represent the terms (variables) standing for instances
of object types and of internal representations of agent types as ?EntityType. Analogously, the terms
standing for instances of datatypes are abbreviated as ?DataType. An object of the type RentalOrder and
a data item of the type String are thus represented as ?RentalOrder and ?String, respectively. If there is
more than one data item of the same type within an action event, its representation within the action
event type is followed by the number of order, like ?String1. However, in some cases it is sufficient to
refer to an instance of an informational entity type by using just the value of the instance’s identifier
attribute. We thus define the construct EntityType(?DataType) that enables to refer to an instance of
EntityType by the value of its identifier attribute of the type DataType. For example, the instantiated
proposition RentalOrder("245") refers to the same instance of RentalOrder as the proposition in the
example above by making use of the RentalOrder’s identifier attribute rentalOrderID of the type String.

As a rule, the mental effect co-occurring with a non-communicative action event evaluates one or
more domain predicates of the problem domain’s ontology which is expressed in the form of an agent
diagram in our approach. For example, the mental effect accompanying the occurrence of an action
event of the type pickupCar in Figure 3-16 evaluates the status predicate isEffective of the corresponding
instance of RentalOrder.
3.8.3.2. Introducing achieve-Construct Type

In addition to requesting another agent to perform an atomic action, one agent can directly request
another agent to make true some proposition expressed in terms of domain predicates of the ontology.
This modelling solution is used when there are no action events that would serve as ‘carriers’ of the
request, such as action events of the type provideCar. For example, in Figure 3-16 a request by a Branch
to service a car is expressed as a request to make true the proposition consisting of the status predicate
isInService applied to the corresponding instance of RentalCar because there is no action event type for
servicing a car in the problem domain of car rental. In a similar manner, there is no action event type
for scheduling and performing a production activity by a resource unit (v. section 4.1.5.3) or for
performing an advertising campaign by a media agency (v. section 4.2.4.2). Making some proposition
true involves the occurrence of several atomic communicative and non-communicative action events
between the respective agents, as a rule.

For modelling situations as the ones described above, we are introducing an achieve modelling
construct type to denote achieving, i.e. making true, some proposition which is defined in terms of the
domain predicates specified by the informational view of agent-oriented modelling. An achieve
construct type may be coupled with the corresponding see-to-it-that (stit)-commitment/claim type. An

99

achieve construct type and the stit-commitment/claim type coupled with it are visualized like an action
event type and the commitment/claim type coupled with it but drawn with a thick line. For example,
Figure 3-16 depicts the achieve construct type achieve(isAllocated(?RentalOrder)) which is coupled with
the corresponding stit-commitment/claim type achieve(isAllocated(?RentalOrder) ?Date).

3.8.3.3. Interaction Ontology

In order to be able to communicate and interact, in addition to sharing common object types defined in
the informational view, the agents of the problem domain should have a common understanding of the
communicative and non-communicative action event types referred to by them, as well as of the types
of the corresponding commitments/claims formed between the agents. Therefore, we extend the set of
shared object types explained in section 3.8.2 by the set of communicative and non-communicative
action event types and commitment/claim types coupled with them. As was described in section 3.4.5,
to all action event types is applied the stereotype ActionEvent. It is shown in Figure 3-14 that the
stereotype ActionEvent has the subclasses CommunicativeActionEvent and NonCommunicativeActionEvent.

As is depicted in Figure 3-15, each communicative action event type is represented as an entity
type to which is applied the stereotype CommunicativeActionEvent. When the stereotype
CommunicativeActionEvent is applied to a communicative action event type, the attribute performative
defined for the stereotype contains the name of the communicative action event type, like “request” in
the example of Figure 3-15. In addition, all communicative action event types extend the abstract
object class CommunicativeActionEventType that defines the attributes senderID, receiverID, and content of
the type String. According to [OMG03a], abstract classes may not be directly instantiated and exist
only for other classes to inherit and reuse the features declared by them, like the attributes defined by
the abstract class CommunicativeActionEventType. When a communicative action event type is
instantiated, the attributes senderID and receiverID contain the values of the identifier attributes of the
sender and receiver agent, respectively, while the attribute content holds the message content,
composed of instantiated propositions and/or action terms. This means that we view a communicative
action event as a structured document in the same way as a message is understood in EDIFACT
[Salminen95], FIPA ACL [ACL97], RosettaNet [RosettaNet], and PapiNet [PapiNet].

Each non-communicative action event type, such as provideCar in Figure 3-15, is also represented as
an entity type of the same name to which is applied the stereotype NonCommunicativeActionEvent. In
addition, all non-communicative action event types extend the abstract object class
NonCommunicativeActionEventType that defines the attributes sourceID and targetID of the type String and
the attribute about of the type OclAny. When a non-communicative action event type is instantiated, the
attributes sourceID and targetID contain the values of the identifier attributes of the agents that
respectively perform and perceive an action of the corresponding type. The attribute about of the type
OclAny, defined by OCL [OMG03a], specifies the entity that the instantiated non-communicative
action event refers to. For example, the attribute about of a non-communicative action event of the type
provideCar modelled in Figure 3-15 specifies the instance of RentalCar that is delivered by the Branch to
the Customer.

Analogously to an action event type, a commitment/claim type is represented as an entity type to
which is applied the stereotype CommitmentClaim. It is shown in Figure 3-14 that the stereotype
CommitmentClaim is divided into the stereotypes ToDoCommitmentClaim and STITCommitmentClaim. As
was explained in section 3.4.5, the stereotype ToDoCommitmentClaim defines the attribute
actionEventTypeName of the type String. When the stereotype is applied to a to-do-commitment/claim
type, this attribute contains the name of the action event type that the commitment/claim type is
coupled with, like “provideCar” in the example of Figure 3-15. All commitment/claim types extend the
abstract object class CommitmentClaimType depicted in Figure 3-15 that defines the attributes dueTime,
sourceID, and targetID of the respective types Date, String, and String. When a commitment/claim type is
instantiated, these attributes specify the due time of the commitment/claim and the identifiers of the
agents that the commitment/claim occurs between. In addition, the abstract object class
ToDoCommitmentClaimType shown in Figure 3-15 defines the attribute about of the type OclAny which
specifies for an instance of a to-do-commitment/claim type the entity that the commitment/claim is
about. Analogously, the abstract object class STITCommitmentClaimType shown in Figure 3-15 defines
the attribute achieve of the type OclExpression specifying, when a stit-commitment/claim type is
instantiated, the proposition that the commitment/claim is about. The type OclExpression is the logical
expression type defined by OCL [OMG03a]. Please notice that a stit-commitment/claim type as an
anonymous class [OMG03b] is determined by the type of the proposition included by it.

100

<<Stereotype>>
ActionEvent

<<Stereotype>>
CommitmentClaim

<<Stereotype>>
ToDoCommitmentClaim
actionEventTypeName:
String

<<Stereotype>>
STITCommitmentClaim

<<Stereotype>>
CommunicativeActionEvent

<<Stereotype>>
NonCommunicativeActionEvent

performative: String
Figure 3-14. The hierarchy of stereotypes.

The beliefs of an agent contain knowledge about action events that have been performed or
perceived by the agent and about commitments/claims that the agent is involved in. Instances of the
types of to-do-commitments/claims and stit-commitments/claims represent in the agent’s VKB the
respective commitments/claims in force. When the action event that discharges a commitment/claim
occurs, the representations of the corresponding commitment/claim are deleted from the VKB’s of one
or several agents involved, and the action event that has occurred is recorded in their VKB’s as an
instance of the corresponding action event type. Since a stit-commitment/claim type is viewed as an
anonymous class [OMG03b], it can be referred to by navigating to it from an instance of one of the
agent types it occurs between in the direction of the rolename stitCommitmentClaim, as is shown in
Figure 3-15. The originating agent instance can be the contextual agent instance, which is referred to
by self, as in the examples of creating and deleting commitments/claims presented in section 3.8.4.

In addition to storing non-communicative action events, the interaction ontology represented in
Figure 3-15 provides an agent with the structure required to “remember” communicative action events
that the agent has created or perceived. A “memory” of such a kind can be used for learning by the
agent.

<<STIT
CommitmentClaim>>

<<NonCommunicative
ActionEvent>>
provideCar

<<ToDo
CommitmentClaim>>

provideCar

STITCommitmentClaimType ToDoCommitmentClaimType

CommitmentClaimType
dueTime: Date
sourceID: String
targetID: String

about: OclAnyachieve: OclExpression

<<ToDoCommitmentClaim>>
actionEventTypeName =
"provideCar"

NonCommunicativeActionEventType
sourceID: String
targetID: String
about: OclAny

CommunicativeActionEventType
senderID: String
receiverID: String
content: String

<<Communicative
ActionEvent>>

<<CommunicativeActionEvent>>
performative = "request"

AgentType1 1 0..*
stit

CommitmentClaim

Figure 3-15. The interaction ontology.

3.8.3.4. Example of an Interaction Frame Diagram

When the agent message type request provideCar(?String1 ?Date1 ?Date2 ?String2) represented in Figure
3-16 is instantiated, the data items of the types String and Date in the message contain the identifier of
the car group, the requested pick-up time and drop-off time, and the identifier of the drop-off branch,
respectively. Besides, the interaction frame between the agent types Customer and Branch shown in
Figure 3-16 includes the achieve construct type achieve(isAllocated(?RentalOrder)), which is coupled with
the corresponding stit-commitment/claim type, the communicative action event types refuse
provideCar(?String1 ?Date1 ?Date2 ?String2), agree achieve(isAllocated(?RentalOrder)), request provideCar
(RentalOrder(?String)), and agree provideCar(?RentalCar) (or refuse provideCar(?RentalCar)), and the non-
communicative action event types pickupCar, provideCar, and returnCar. The last two action event types
are coupled with the corresponding commitment/claim types. Notice that the Customer is informed

101

about the instance of RentalOrder only when and if the rental reservation request has been accepted by
the Pick-UpBranch.

The interaction frame between the agent types Branch and Headquarters depicted in Figure 3-16
consists of the following pairs (protocols) of agent message types:

• query-if(isBlacklisted(Customer(?String))) and inform([not]isBlacklisted(Customer(?String)));
• query-if(hasCar(Customer(?String))) and inform([not]hasCar(Customer(?String)));
• query-ref(RentalOrder(?String)) and inform(?RentalOrder).
The square brackets enclosing the not keyword in the first two protocols stand for optionality. With

the third protocol, the drop-off branch asks for and receives the required instance of RentalOrder.
In addition, the interaction frame between the agent types Branch and Headquarters includes the

standalone message types inform(isEffective(?RentalOrder)) and inform(isDroppedOff(RentalOrder(?String))).
By using their instances, a Branch provides the Headquarters with an effective rental order and informs
the Headquarters that the car in the rental order has been dropped off, respectively.

Finally, the interaction frame between the agent types Branch and AutomotiveServiceStation consists
of the agent message type request achieve(isServiced(?RentalCar)) and the achieve construct type
achieve(isServiced(?RentalCar)) which is coupled with the corresponding stit-commitment/claim type.

EU-Rent

Customer Branchrequest provideCar
(?String1 ?Date1
?Date2 ?String2)

agree
achieve(isAllocated

(?RentalOrder))

returnCar
(?RentalCar ?Date)

returnCar
(?RentalCar)

pickupCar
(?RentalCar)

achieve
(isAllocated

(?RentalOrder) ?Date)
achieve

(isAllocated
(?RentalOrder))

request
provideCar

(RentalOrder(?String))

Headquarterquery-if
(isBlacklisted

(Customer(?String)))

inform
([not]isBlacklisted

(Customer(?String)))

agree/refuse
provideCar

(?RentalCar)

provideCar
(?RentalCar)

query-if
(hasCar

(Customer(?String)))

inform
([not]hasCar

(Customer(?String)))

inform
(isEffective

(RentalOrder))

inform
(isDroppedOff

(RentalOrder(?String)))

query-ref
(RentalOrder

(?String))

inform
(?RentalOrder)

provideCar
(?RentalCar ?Date)

refuse provideCar
(?String1 ?Date1
?Date2 ?String2)

Automotive
Service Station

request achieve
(isInService

(?RentalCar))

achieve
(isInService

(?RentalCar) ?Date)
achieve

(isInService
(?RentalCar))

Figure 3-16. The extended interaction frame diagram for the EU-Rent car rental company.

102

3.8.4. Function and Motivation Modelling

The functional view of agent-oriented modelling deals with the modelling of activities performed by
agents. It enables to specify what has to be done. This view is closely related to the motivational view
which deals with the modelling of the goals the agents are trying to achieve, because the goals are
attached to the activities. All the activity types defined at the design step of function modelling are
unspecified. This means that we declare for each activity type its name, optional input parameters, an
optional precondition, and an optional goal, but we do not specify the actions included by it. In other
words, we model activity types in terms of control flow, data flow, preconditions, and goals.

3.8.4.1. Describing Activity Types

Within the functional view of the Business Agents’ Approach, activity types are extracted from goal-
based use cases and described by activity diagrams according to the following recursive procedure:

1. Turn the main scenario of the primary task into an activity type of the agent (type) in focus.
2. Turn the trigger of the main scenario into the reaction rule starting an activity of the

corresponding type of the focus agent in response to perceiving the action event created by an
external agent of the type corresponding to the primary actor.

3. Set the main scenario as the current scenario.
4. For the next step of the current scenario, if there are more steps left:

o if the step does not include any subordinate use cases, turn the step into a
sequential elementary activity type, connect it to the previous sequential
elementary activity type, and return to 4;

o if the step includes a subordinate use case:
 turn the subordinate use case into a subactivity type;
 if the composition of the subordinate use case is to be modelled, set the

main scenario of the subordinate use case as the current scenario, and
return to 4;

o if the step includes performing an action or making true a proposition directed
towards the primary or secondary actor of the use case, draw an action event or
achieve-construct rectangle, possibly coupled with the corresponding
commitment/claim type rectangle, between the corresponding activity type
rectangle and external agent (type) rectangle;

o if the step includes an internal state change, draw a mental effect arrow from the
corresponding activity type rectangle to the relevant object type, status predicate,
or commitment/claim type rectangle, or the association line.

5. Return to the enclosing scenario and return to 4, or finish, if there is no enclosing scenario.
At the design step of function modelling, just the main success scenarios are extracted from goal-

based use cases and modelled. The extension scenarios will be dealt with only during the design step
of behaviour modelling to be described in section 3.8.5. Also, the <time or sequence factor> and
<condition> elements of use case steps are ignored until the design step of behaviour modelling. In
the example of the car rental company, the main scenario of the primary task “Have a car reserved”
presented in Table 3-4 is modelled in the activity diagram of Figure 3-17 as the activity type “Manage
car reservation” of the institutional agent role Pick-UpBranch. In the same way, the main scenario of the
primary task “Pick up the car” described in Table 3-5 is represented in Figure 3-17 as the activity type
“Manage pick-up”. The subfunctions “Check the customer for blacklistedness” and “Allocate cars” of
the use case “Have a car reserved”, which are presented in Tables 3-6 and 3-8, respectively, are
modelled in Figure 3-17 as the corresponding subactivity types of the same names. The subactivity
type “Check the customer for blacklistedness” is modelled with a hidden composition, while the
subactivity type “Allocate cars” includes the elementary subactivity type “Allocate a car”, in
accordance with the use cases presented in Tables 3-8 and 3-9. The subfunction “Check the customer
for another car” of the use case “Pick up the car”, which is presented in Table 3-7, is also modelled in
the activity diagram of Figure 3-17 as the corresponding activity type of the same name. The other
steps of the use cases “Have a car reserved” and “Pick up the car” are represented as the following
elementary activity types of the focus agent type: “Create rental reservation”, “Check qualifications”,
“Hand over the car”, and “Inform the Headquarters on pick-up”. While processing the use case “Have
a car reserved” in Table 3-4, the <time or sequence factor> element “It is the end of the day” in step 3
of the use case is ignored. Analogously, the <condition> element “For each rental reservation…” in
step 1 of the use case “Allocate cars” in Table 3-8 is ignored.

103

EU-Rent

Pick-UpBranch

agree (achieve
(isReserved

(?RentalOrder)))

achieve
(isAllocated

(?RentalOrder) ?Date)

Check the
customer for

blacklistedness
(cust: String)

Create rental reservation
(cgroup: String,

ptime: Date, dtime: Date,
dbranch: String,

cust: String)

Customer

Manage car reservation
(cgroup: String, ptime: Date,
dtime: Date, dbranch: String,

cust: String)

C

CarGroup

Customer

isBlacklisted

hasCar

<<know-if>>

request provideCar
(?String1 ?Date1
?Date2 ?String2)

R1

<<know-if>>

returnCar
(?RentalCar ?Date)

Manage pick-up
(r: RentalOrder)

Check the customer
for another car
(r: RentalOrder)

C

Inform the
Headquarters

on pick-up
(r: RentalOrder)

RentalCar

isPresent

isPickedUp

isInService

agree
provideCar

(?RentalOrder)

Hand over
the car

(r: RentalOrder)

provideCar
(?RentalCar)

provideCar
(?RentalCar ?Date)

RentalOrder

isReserved

isAllocated

isEffective

isDroppedOff

rentalCharge
isCalculated

C

U
Check qualifications

(r: RentalOrder)

pickupCar
(?RentalCar)

U

returnCar
(?RentalCar)

isQualified
ForRental

<<know-if>>

0..*

1

0..1

0..1

0..*

1

0..*

1

request
provideCar

(RentalOrder(?String))
R3

Allocate cars

Allocate a car
(r: RentalOrder) U

C

achieve
(isAllocated

(?RentalOrder))

C

C

C

Figure 3-17. Activity diagram of the functional view for the business process type of car rental between the

agent types Customer and Pick-Up Branch of the EU-Rent car rental company.

104

Please notice that while a use case of the type ‘primary task’ is always modelled from the
perspective of its primary actor and the goal of the use case is thus the goal of the primary actor, in
function modelling the perspective changes to that of the agent (type) in focus and the goal of the
primary actor of the use case is internalized by the agent (type) in focus. For example, the use case
“Pick up the car” initiated by the customer and the customer’s goal to pick up the car reserved for
him/her to be picked up at the pick-up branch at the pick-up time become the corresponding activity
type “Manage car rental” of the institutional agent role Pick-Up Branch and the definition of its goal to
provide the customer with the car.

The activity diagram in Figure 3-17 thus constitutes the function model of the business process
types of reserving and picking up a rental car between the external agent type Customer and the focus
agent type Pick-UpBranch of the EU-Rent car rental company. The activity diagram represents only the
main success scenarios of these business process types.

3.8.4.2. Defining Preconditions and Goals

As we saw in section 3.6.7, input parameters can be defined for an activity type as formal parameters.
At runtime, an activity instance can access through its instantiated input parameters the instances of
entity and association types and action event and commitment/claim types making up the beliefs of the
corresponding agent.
 Preconditions and goals are defined for activity types as propositions by means of OCL. Table 3-18
presents the preconditions and goals defined for the activity types of the EU-Rent car rental company
which are modelled in Figure 3-17.

At the step of function modelling, the precondition may be defined for an activity type in two
cases: when an activity of the corresponding type is invoked by a reaction rule which is triggered by
an external or internal agent or when the activity type defines a new input parameter. The first case is
exemplified by the activity type “Manage pick-up” in Figure 3-17 and Table 3-18 because its instance
is started by reaction rule R3 which is triggered by an external agent of the type Customer. As an
example of the second case serves the activity type “Allocate a car” in Figure 3-17 which introduces
the input parameter r of the object type RentalOrder referring to the instance of RentalOrder created
within an activity of the type “Create rental reservation”. The precondition of this activity type is
therefore defined in Table 3-18 in terms of the attribute pickUpTime of the object type RentalOrder.

The goal, which is defined Table 3-18 for the activity type “Manage car reservation”, was
thoroughly explained section 3.6.2 in connection with the introduction of the mental effect categories.

The goal defined in Table 3-18 for the activity type “Check the customer for blacklistedness”
specifies knowing by the Pick-UpBranch whether the customer in question is blacklisted or not. This
goal is represented in OCL in terms of the status predicate isBlacklisted of the internal representation of
the agent type Customer within the institutional agent type Pick-UpBranch.

The goal defined in Table 3-18 for the activity type “Create rental reservation” specifies that an
instance of RentalOrder with the attribute values corresponding to the values of the activity’s input
parameters has been created, the relationships from it to the corresponding instances of CarGroup and
Customer have been formed, and the stit-commitment to allocate a car to the rental order has been
created.

The goal defined in Table 3-18 for the activity type “Allocate cars” specifies that cars have been
allocated to all rental orders where a car is to be picked up on the following day.

The goal defined in Table 3-18 for the activity type “Allocate a car” specifies that a car has been
allocated to the rental order, the corresponding stit-commitment has been deleted, and the to-do-
commitment to provide the customer with the car by the pick-up time stated in the rental order has
been created.

The goals defined in Table 3-18 for the activity types “Manage pick-up” and “Hand over the car”
specify status changes of the corresponding instances of RentalOrder and RentalCar, the deletion of the
to-do-commitment to provide the customer with the car, and the creation of the to-do-claim against the
customer to return the car.
 The goals defined in Table 3-18 for the activity types “Check the customer for another car” and
“Check qualifications” are respectively specified as knowing whether the customer in question is
blacklisted or not and whether the customer is qualified for renting a car or not. The goals are
expressed in terms of the input parameter r of the type RentalOrder, referring to the given instance of
RentalOrder.

105

Table 3-18. Source data items, preconditions, and goals pertaining to the activity types of Pick-UpBranch
extracted at the step of function modelling.

Activity type and
input parameter(s)

Precondition Goal

Manage car
reservation

(cgroup : String,
ptime : Date,
dtime : Date,

pbranch : String,
 dbranch : String,

cust: String,
senderID : String)

- RentalOrder.allInstances->exists
(r: RentalOrder | r.carGroupID = cgroup and

r.pickUpTime = ptime and r.dropOffTime = dtime and
r.pickUpBranchID = pbranch and
r.dropOffBranchID = dbranch and

r.carGroup->exists
(cg : CarGroup | carGroupID = cgroup and

cg->includes(r)) and r.customer->exists(c : Customer |
personID = cust and c->includes(r)) and

r.rentalCar->exists(c : RentalCar | c.carGroup =
r.carGroup and c.rentalOrder = r) and r.isAllocated and

provideCar.allInstances->exists
(about = r.rentalCar and

dueTime = ptime and
sourceID = pbranch and targetID = cust))

Check the customer
for blacklistedness

(cust : String)

- Customer.allInstances->any
(personID = cust).isBlacklisted or
not Customer.allInstances()->any

(personID = cust).isBlacklisted
Create rental
reservation

(cgroup : String,
ptime : Date,
dtime : Date,

pbranch: String,
dbranch : String,

cust : String)

- RentalOrder.allInstances->exists
(r: RentalOrder | r.carGroupID = cgroup and

r.pickUpTime = ptime and r.dropOffTime = dtime and
r.pickUpBranchID = pbranch and
r.dropOffBranchID = dbranch and

r.carGroup->exists
(cg : CarGroup | carGroupID = cgroup and

cg->includes(r)) and r.customer->exists(c : Customer |
personID = cust and c->includes(r)) and r.isReserved and

self.stitCommitmentClaim->exists
(achieve = r.isAllocated and dueTime = ptime and

sourceID = pbranch and targetID = senderID))
Allocate cars - RentalOrder.allInstances->select(isReserved and

pickUpTime.date = now().date + 1)->forAll(isAllocated)
Allocate a car

(r : RentalOrder)
RentalOrder.

allInstances->exists
(ro: RentalOrder |
ro.isReserved and
pickUpTime.date =

now().date + 1 and ro = r)

r.rentalCar->exists
(c : RentalCar | c.rentalOrder = r) and r.isAllocated and

not(self.stitCommitmentClaim->exists
(achieve = r.isAllocated and dueTime = r.pickUpTime and

sourceID = r.pickUpBranchID and targetID = senderID)
and provideCar.allInstances->exists

(about = r.rentalCar and
dueTime = r.pickUpTime and

sourceID = r.pickUpBranchID and targetID = senderID))
Manage pick-up
(r : RentalOrder,

senderID : String)

RentalOrder.
allInstances->exists
(ro : RentalOrder |

ro.isAllocated and ro = r)

r.isEffective and r.rentalCar.isPickedUp and
not(provideCar.allInstances->exists

(about = r.rentalCar and dueTime = r.pickUpTime and
sourceID = r.pickUpBranchID and targetID = senderID))

and returnCar.allInstances->exists
(about = r.rentalCar and

dueTime = r.dropOffTime and
sourceID = senderID and targetID = r.pickUpBranchID)

Check the customer
for another car

(r : RentalOrder)

- r.customer.hasCar or
not r.customer.hasCar

Check qualifications
(r : RentalOrder)

- r.customer.isQualifiedForRental or
not r.customer.isQualifiedForRental

106

Table 3-18 (continued). Source data items, preconditions, and goals pertaining to the activity types of Pick-
UpBranch extracted at the step of function modelling.

Hand over the car
(r : RentalOrder)

- r.isEffective and r.rentalCar.isPickedUp and
not(provideCar.allInstances->exists

(about = r.rentalCar and
dueTime = r.pickUpTime and

sourceID = r.pickUpBranchID and targetID = senderID))
and returnCar.allInstances->exists

(about = r.rentalCar and
dueTime = r.dropOffTime and

sourceID = senderID and targetID = r.pickUpBranchID)
Inform the

Headquarters on
pick-up (r :

RentalOrder)

- -

3.8.5. Behaviour Modelling

While the functional view of agent-oriented modelling addresses the modelling of business
functionality (what has to be done), the behavioural view addresses the modelling of business
behaviour (in which order and under what conditions work has to be done). At the design step of
function modelling, we extracted from goal-based use cases and described by means of activity
diagrams unspecified activity types. At the step of behaviour modelling, we elaborate on these activity
types by representing triggers and conditions for their performing and specifying completely as many
activity types as possible. In accordance with Figure 3-10, the resulting activity diagrams unite the
models of the organizational, informational, interactional, functional, motivational, and behavioural
views of agent-oriented modelling.

3.8.5.1. Plans of Activity Types

In function modelling, an activity type is regarded as a “black box”. This means that the composition
of an activity type is not specified, and in principle any procedure or method which results, if it
succeeds, in achieving the goal for an instance of the activity type can be applied as a plan of the
activity type. In behaviour modelling, we explicitly specify a plan for an activity type. Generally, a
plan is the means to achieve a goal [Presley97]. It should specify what is to be done (i.e. the goal to be
achieved), the types of subactivities and actions included in the plan, and the constructs required for
starting and sequencing them. A goal of an activity thus holds after successful execution of the plan
that is defined for the activity type. Analogously to a goal, a plan also has an assignee, the agent or
role type to which this plan has been assigned. A plan may recursively include activity types of the
following three kinds:

• an automatic activity type with a complete created at the time of design or generated at runtime
plan P for achieving a goal G where all subactivity types are completely specified in terms of
automated actions;

• a human activity type with either just a goal G and no plan at all, or with a predefined plan P
for achieving a goal G created at the time of design;

• a semiautomatic activity type with an incomplete created at the time of design or generated at
runtime plan P for achieving a goal G where one or more subactivity types are human activity
types.

Examples of automatic, human, and semiautomatic activity types in the case study of car rental are
respectively “Allocate a car”, “Hand over the car”, and “Manage pick-up” of Pick-UpBranch. The latter
consists of both automatic subactivity types (e.g., “Check the customer for another car”) and a human
subactivity type (“Hand over the car”). As we showed in section 3.6.6, even when an activity type
does not have a plan, like certain human activity types, it is executable in an activity diagram.

The activity type and its subtypes are defined in Table 3-2 as the UML stereotypes Activity,
AutomaticActivity, HumanActivity, and SemiautomaticActivity of the base class Class.

Within the Business Agents’ Approach, plans are defined at the time of design by using activity
diagrams. In this thesis, we thus do not treat generation of plans at runtime. The subject is discussed,
for example, in [Wagner00b].

107

3.8.5.2. Complementing Activity Diagrams

In order to turn function models of business processes into behaviour models, goal-based use cases are
re-examined with the intention to complement activity diagrams of the functional view according to
the following four guidelines:

1. The <time or sequence factor> component of a scenario step is represented as an action or a
non-action event type connected to the reaction rule that performs the action(s) described by
the step in response to perceiving an event of the corresponding type.

2. The <condition> component of a scenario step is turned into the reaction rule that performs the
action(s) described by the scenario step if the condition evaluates to true and the action(s)
described by the corresponding step of the extension scenario, if any, in the opposite case.

3. The symbol for the type of action event to be performed or perceived or achieve construct to be
made true within an activity of the given type as well as the arrow standing for a mental effect
associated with an activity of the given type is connected to the reaction rule included by the
activity type. Also an arrow denoting the activity starting action type is connected to the
reaction rule.

4. When needed, a precondition or mental effect arrow of a reaction rule is augmented by an OCL
expression as is described in sections 3.6.4 and 3.6.5.

According to guideline 1, the <time or sequence factor> component “It is the end of the day” of
step 3 of the use case “Have a car reserved” presented in Table 3-4 is turned into reaction rule R1
depicted in Figure 3-19 that is invoked by the internal agent :Timer.

In compliance with guideline 2, the <condition> component of step 2 of the main scenario of the
use case “Have a car reserved” in Table 3-4 is represented in Figure 3-18 as reaction rule R2 that
performs the communicative action agree(achieve(isAllocated(?RentalOrder))), creates the rental order
with the status isReserved, the associations between it and the Customer and CarGroup, and the to-do
commitment to provide the customer with the car if the condition of the reaction rule evaluates to true.
In the opposite case, reaction rule R2 performs the communicative action refuse provideCar(?String1
?Date1 ?Date2 ?String2) and ends the business process of car rental with advance reservation. In the
same way, the <condition> component of step 1 of the main scenario of the use case “Allocate a car”
presented in Table 3-9 is turned into reaction rule R3 shown in Figure 3-19. This reaction rule allocates
to the rental order a car of the car group requested and creates the corresponding to-do commitment to
provide the customer with the car if the condition, which is expressed as the intensional predicate
isAvailableOfOwnGroup(RentalOrder) attached to the object type RentalCar, returns true. In the opposite
case, reaction rule R3 starts an activity of the type “Allocate a car of the next higher car group”.

According to guideline 3, the symbols for the action event types pickupCar and provideCar in Figure
3-17, which are respectively perceived and performed by the Pick-UpBranch, are in Figure 3-18
connected to reaction rule R5 included by the activity type “Hand over the car”. In addition, three
mental effects that are in Figure 3-17 associated with this activity type are in Figure 3-18 connected to
the symbol for reaction rule R5. Based on the same guideline, the arrow denoting in Figure 3-17 the
activity starting action type START ACTIVITY “Hand over the car” is in Figure 3-18 connected to
reaction rule R5. In addition to the activity type “Hand over the car”, the elementary activity types
“Create rental reservation” and “Check qualifications” in Figure 3-17 are specified in Figure 3-18 by
means of reaction rules based on guideline 3. According to the same guideline, in Figure 3-19
reaction rules R3, R4, R7, R8, and R9 are connected to the to-do commitment/claim type
provideCar(?RentalCar ?Date). However, only the first of such connections is shown in Figure 3-19
because of space limitations.

According to guideline 4, the precondition arrows of reaction rules R2, R3, R4, and R5, and the
mental effect arrows of reaction rules R2, R4, and R5 in Figure 3-18 and of reaction rule R2 in Figure
3-19 are augmented by OCL expressions which are formed according to the principles stated in
sections 3.6.4 and 3.6.5. The schema of a reaction rule may also require the introduction of new
preconditions, like the precondition of reaction rule R5 in Figure 3-18 that is augmented by the OCL
expression {rentalOrder = r}. The intent of this precondition is to complement the reaction rule’s schema
by the internal variable RentalCar.

The compositions of the activity types “Check the customer for blacklistedness”, “Check the
customer for another car”, and “Inform the Headquarters on pick-up” in Figure 3-18 and “Allocate a
car from another branch” in Figure 3-19 are presented in Appendix E.

For representing more complicated use case scenarios, like loops, the behavioural patterns
described in section 3.8.5.3 are to be used. It is important to emphasize here that complementing

108

activity diagrams by behavioural constructs based on goal-based use cases is not as straightforward as
transforming goal-based use cases into activity diagrams of the functional view. It is rather an iterative
process where some behavioural constructs are “documented” by goal-based use cases only after they
have been worked out in activity diagrams.

109

EU-Rent

Pick-UpBranch

agree (achieve
(isAllocated

(?RentalOrder)))

achieve
(isAllocated

(?RentalOrder) ?Date)

R2

Check the customer
for blacklistedness

(cust: String)

Create rental reservation
(cgroup: String, ptime: Date, dtime:

Date, pbranch: String, dbranch:
String, cust: String)

Customer

Manage car reservation
(cgroup: String, ptime: Date,
dtime: Date, pbranch: String,
dbranch: String, cust: String)

refuse provideCar
(?String1 ?Date1
?Date2 ?String2)

CarGroup

Customer

<<know-if>>

request provideCar
(?String1 ?Date1
?Date2 ?String2)

R1

<<know-if>>

R4

returnCar
(?RentalCar ?Date)

pickupCar
(?RentalCar)

Manage pick-up
(r: RentalOrder, c: Customer)

Check the customer
for another car
(c: Customer)

Inform the
Headquarters

on pick-up
(r: RentalOrder)

RentalCar

isPresent

isPickedUp

isInService

agree
provideCar

(?RentalCar)

refuse
provideCar

(?RentalCar)
Hand over the car
(r: RentalOrder)

R5

provideCar
(?RentalCar)

D

provideCar
(?RentalCar ?Date)

returnCar
(?RentalCar)

hasCapacity
(Date, Date)

Check qualifications
(c: Customer)

C(4)

U

isBlacklisted

hasCar

isQualified
ForRental

0..*

1

1

0..*

0..*

1

0..1

0..1

request
provideCar

(RentalOrder(?String))
R3

{carGroupID = cgroup and
hasCapacity(ptime, dtime) }

{personID = cust}

{rentalOrderID = ?String}

Allocate cars

Allocate a car
(r: RentalOrder)

achieve
(isAllocated

(?RentalOrder))

C

C

{cgroup = Cgroup and
ptime = Ptime and
dtime = Dtime and

dbranch = Dbranch and
cust = SenderID and

pbranch = self.agentID}

{Cgroup = ?String1 and
Ptime = ?Date1 and
Dtime = ?Date2 and
Dbranch = ?String2}

{achieve = ROrder.isAllocated and
dueTime = ptime and

sourceID = pbranch and
targetID = cust}

{about = r.rentalCar and
dueTime = r.dropOffTime and

sourceID = c.personID and
targetID = self.agentID}

{rentalOrder = r}

C(2)
C(3)

{carGroupID = cgroup and
pickUpTime = ptime and
dropOffTime = dtime and

pickUpBranchID = pbranch and
dropOffBranchID = dbranch}

C

{personID = SenderID}

RentalOrder
isReserved

isAllocated

isEffective

isDropped-Off

rentalCharge
isCalculated

U

U

C(1)

{ReceiverID =
cust}

{ReceiverID =
c.personID}

{TargetID =
c.personID}

Figure 3-18. Activity diagram of the behavioural view for the business process type of car rental between the

agent types Customer and Pick-UpBranch of the EU-Rent car rental company.

110

Allocate a car
of a given car group

(?RentalOrder)

EU-Rent

Pick-Up Branch

Customer

isBlacklisted

hasCar

RentalOrder

CarGroup

next
Higher
Group

next
Lower
Group

:Timer

hasCapacity
(Date, Date)

0..1

0..1

1

0..*

0..*

1

0..*1

isReserved

isAllocated

isEffective

isDroppedOff

rentalCharge
isCalculated

0..1 0..1

R1

isPaid

RentalCar

canBe
ReAllocatedTo
(RentalOrder)

Allocate cars

Allocate a car
(r: RentalOrder)

Allocate a car of the
next higher car group

(r: RentalOrder)

R4

R3

Allocate a car
with bumped upgrade

(r: RentalOrder)

R5

Allocate a car of the
next higher car group

(r: RentalOrder)

R7

Allocate a car of the
next lower car group

(r: RentalOrder)

R8

Allocate a car not
physically present
(r: RentalOrder)

R9

Allocate a car
from another

branch
(r: RentalOrder)

U

U

U(2)

CU

U

C

C

Re-allocate a car
(r1: RentalOrder,
c1: RentalCar)

R6

R2
{pickUpTime =
now().date + 1}

provideCar
(?RentalCar)

provideCar
(?RentalCar ?Date)

Customer

request
allocateCars

C(3)

{about = r.rentalCar and
dueTime = r.pickUpTime and
sourceID = self.agentID and

targetID = r.customer.personID}

C(1)

C

RentalCar

isPresent

isAvailable
isAvailable

WithMinMileage

requires
Service

isScheduled
ForService

isPickedUp

mileageAtService: Integer
mileageSinceService: Integer
serviceStartTime: Date
serviceEndTime: Date

isAvailableOf
OwnGroup

(RentalOrder)

isAvailableOf
NextHigherGroup

(RentalOrder)

isAvailableWith
 BumpedUpgrade

(RentalOrder)

isAvailableOf
NextLowerGroup

(RentalOrder)

isAvailable
NotPresent

(RentalOrder)

isInService

C

C

U

Figure 3-19. The composition of the activity type “Allocate a car”.

111

3.8.5.3. Behavioural Patterns

On the site [Patterns03] by Wil van der Aalst and others, 21 workflow patterns are distinguished. In
addition to workflow management systems, these patterns can be used in business process modelling.
These patterns are listed and shortly described in Table 3-19. In this section, we evaluate the support
provided by the extended AORML for these patterns.
Table 3-19. Descriptions of workflow patterns.

Description of the pattern
Sequence - execute activities in sequence.
Parallel Split - execute activities in parallel.
Synchronization - synchronize two parallel threads of execution.
Exclusive Choice - choose one execution path from many alternatives.
Simple Merge - merge two alternative execution paths.
Multiple Choice - choose several execution paths from many alternatives.
Synchronizing Merge - merge many execution paths. Synchronize if many paths are taken. Simple merge if
only one execution path is taken.
Multiple Merge - merge many execution paths without synchronizing.
Discriminator - merge many execution paths without synchronizing. Execute the subsequent activity only once.
N-out-of-M Join - merge many execution paths. Perform partial synchronization and execute subsequent
activity only once.
Arbitrary Cycles - execute workflow graph without any structural restriction on loops.
Multiple Instances without Synchronization - generate many instances of one activity without synchronizing
them afterwards
Multiple Instances with a Priori Known Design Time Knowledge - generate many instances of one activity when
the number of instances is known at the design time.
Multiple Instances with a Priori Known Runtime Knowledge - generate many instances of one activity when the
number of instances can be determined at some point during the runtime (as in parallel FOR loop).
Multiple Instances with no a Priori Runtime Knowledge - generate many instances of one activity when the
number of instances cannot be determined beforehand (as in parallel WHILE loop).
Deferred Choice - execute one of several alternatives threads. The choice which thread is to be executed
should be implicit.
Interleaved Parallel Routing – execute two activities in random order, but not in parallel.
Milestone - enable an activity until a milestone is reached.
Implicit Termination - terminate if there is nothing to be done.
Cancel Activity - cancel (disable) an enabled activity.
Cancel Case - cancel (disable) the process.

R1

Activity
Type2

Activity
Type1

Figure 3-20. The pattern “Sequence”.

The pattern “Sequence” (“Forced sequencing”, “Sequential routing”, “Serial routing”) is
represented in Figure 3-20. In the figure, an activity of the type ActivityType2 is started after the
completion of an activity of the type ActivityType1. The circle symbol for the reaction rule is usually
omitted from a graphical representation of this pattern. The example is expressed in the activity
modelling language as follows:

ON END ActivityType1 THEN START ACTIVITY ActivityType2(...).

112

R1

Activity
Type2

Activity
TypeN

Activity
Type1

...

Figure 3-21. The pattern “Parallel Split”.

The pattern “Parallel Split” (“AND-split”, “Asynchronous spawning”, “Parallel routing”, “Fork”)
splits an activity into two or more activities which can be performed in parallel, thus allowing
activities to be performed simultaneously or in any order. This pattern is exemplified by Figure 3-21.
In the figure, after the end of an activity of the type ActivityType1, activities of the types ActivityType2 …
ActivityTypeN are started to be performed in parallel. The example is expressed in the activity modelling
language as follows:

 ON END ActivityType1 THEN START ACTIVITY ActivityType2(...) … & START ACTIVITY ActivityTypeN(...).

R1

Activity
Type2

Activity
TypeN

Activity
Type1

...

Figure 3-22. The pattern “Synchronization”.

The pattern “Synchronization” (“AND-join”, “Rendezvouz”, “Synchronizer”) merges two or more
parallel activities into one activity. An example is presented in Figure 3-22. In the figure, after all
parallel activities of the types ActivityType2 … ActivityTypeN have ended, an activity of the type
ActivityType1 is started. The example is expressed in the activity modelling language as follows:

ON END ActivityType2 … AND END ActivityTypeN THEN START ACTIVITY ActivityType1(...).

R1

Activity
Type2

Activity
Type3

Activity
Type1

Entity
Type1

predicate1{expression1}

Figure 3-23. The pattern “Exclusive Choice”.

The pattern “Exclusive Choice” (“XOR-split”, “Conditional sequencing”, “Conditional routing”,
“Switch”, “Decision”) chooses one of several activities for performing based on a control data. In the
example of Figure 3-23, after the end of an activity of the type ActivityType1, if the condition specified
by predicate1 and expression1 is true, an activity of the type ActivityType2 is started. Otherwise, an
activity of the type ActivityType3 is started. The example is expressed in the activity modelling
language as follows:

CONTEXT entity1 : EntityType1
ON END ActivityType1 IF EntityType1.allInstances->select(expression1 and predicate1)->includes(entity1)
THEN START ACTIVITY ActivityType2(...) ELSE START ACTIVITY ActivityType3(...).
A construct of exclusive choice between more than two alternatives can be built by recursively

inserting a next level exclusive choice into the activity type ActivityType3.

113

R1

Activity
Type2

Activity
TypeN

Activity
Type1

...

X

Figure 3-24. The pattern “Simple Merge”.

The pattern “Simple Merge” (“XOR-join”, “Asynchronous join”, “Merge”) starts an activity once
any of the preceding alternative activities ends. It is an assumption of this pattern that none of the
alternative branches is ever executed in parallel. If this is not the case, the pattern “Multiple merge” or
“Discriminator” should be applied instead. In the extended AORML, business process modelers are
responsible for the model not having the possibility of parallel execution of alternative threads. In the
example of Figure 3-24, an activity of the type ActivityType1 is started when one preceding activity out
of alternative activities of the types ActivityType2 … ActivityTypeN ends. An activity of the type
ActivityType1 thus gets performed only once. The diamond symbol with the symbol ‘X’ inside stands
for an exclusive disjunction (XOR). The example is expressed in the activity modelling language as
follows:

ON END ActivityType2 … XOR END ActivityTypeN THEN START ACTIVITY ActivityType1(...).

R1 Rn...

Activity
Type1

Activity
Type2

Activity
TypeN...

Entity
TypeN

predicateN

Entity
Type1

predicate1 {expression1} {expressionN}

Figure 3-25. The pattern “Multiple Choice”.

The pattern “Multiple Choice” (“OR-split”, “Conditional routing”, “Selection”) is the
generalization of the pattern “Exclusive Choice”. It chooses one or more activities for performing
based on a control data. In the example of Figure 3-25, according to reaction rule R1, after the end of
an activity of the type ActivityType1, if the condition specified by predicate1 and expression1 is true, an
activity of the type ActivityType2 is started. According to reaction rule Rn, if the condition specified by
predicateN and expressionN is true, an activity of the type ActivityTypeN is started. Either an activity of
one of the types ActivityType2 ... ActivityTypeN or any combination of them in parallel may thus get
performed. An activity may get performed one or more times, depending on the condition specified by
the given expression and predicate, after which the branch continues without synchronizing with the
other branches. The example is expressed in the activity modelling language as follows:

CONTEXT entity1 : EntityType1, …, entityN : EntityTypeN
ON END ActivityType1 IF EntityType1.allInstances->select(expression1 and predicate1)->includes(entity1)
THEN START ACTIVITY ActivityType2(...) ELSE …
…
ON END ActivityType1 IF EntityTypeN.allInstances->select(expressionN and predicateN)->includes(entityN)
THEN START ACTIVITY ActivityTypeN(...) ELSE …

114

R1

Activity
Type2

Activity
TypeN

Activity
Type1

...

Figure 3-26. The pattern “Multiple Merge”.

The pattern “Multiple Merge” (“OR-join”) starts an activity once for every preceding activity that
ends. In the example of Figure 3-26, an activity of the type ActivityType1 is started when any preceding
activity out of possibly parallel activities of the types ActivityType2 … ActivityTypeN ends. An activity of
the type ActivityType1 thus gets performed as many times as the number of the preceding activities. The
example is expressed in the activity modelling language as follows:

ON END ActivityType2 … OR END ActivityTypeN THEN START ACTIVITY ActivityType1(...).
The pattern “Discriminator” models a point in a business process that waits for one of the

preceding, possibly parallel activities to complete before starting the subsequent activity. From that
moment on, it waits for all remaining preceding activities to complete and “ignores” them. Once all
preceding activities have completed, it “resets” itself so that it can be started again. The pattern
“Discriminator” naturally generalizes to the pattern “N-out-of-M-join” where N threads from M
incoming transitions are synchronized. This generalized pattern “Discriminator” can be modelled as a
reaction rule with a counter counting the number of the rule’s triggering events of the type END
ActivityType that have occurred. The example is expressed in the activity modelling language as
follows:

ON END ActivityType2 … OR END ActivityTypeN IF counter = count THEN START ACTIVITY
ActivityType1(...) EFFECT counter = counter@pre + 1 ELSE EFFECT counter = counter@pre + 1.
The value of the variable counter is thus increased by one for every preceding activity that ends.

The presupposition is that the value of counter is initially equal to 0 and the variable count contains the
threshold number of the preceding activities. The initial values for counter and count can be given as
the values of the input parameters of the activity enclosing the pattern.

According to [Patterns03], during the analysis/design time of a business process it is undesirable to
be exposed to various syntactical constrains of a specific business process modelling tool such as for
example that there should be only one entry and one exit point to the loop. The reason for this
requirement is that most of the initial business process models contain arbitrary cycles at the analysis
stage. Since activity diagrams do not impose any restrictions on the structure of cycles, a business
process model in the Business Agents’ Approach may have multiple entry and exit points which are
represented as reaction rules. The Business Agents’ Approach thus lends itself to the modelling of the
“Arbitrary Cycles” pattern. Moreover, such arbitrary cycles are executable in our approach.

R1

Activity
Type1

Activity
Type3

3

ActivityType2

Activity
Type4

Figure 3-27. The pattern “Multiple Instances with a Priori Known Design Time Knowledge”.

115

The pattern “Multiple Instances with a Priori Known Design Time Knowledge” enables to create
many instances of one activity. The number of instances is known at the design time. In the example
of the pattern in Figure 3-27, an activity of the type ActivityType1 is replicated three times to be
executed in parallel. The example is expressed in the activity modelling language as follows:

ON END ActivityType1 THEN START ACTIVITY ActivityType2
ON START ActivityType2 THEN START ACTIVITY ActivityType3(...) 3 TIMES
ON END ActivityType2 THEN START ACTIVITY ActivityType3.

 The activity type ActivityType2 acts as a decomposition block, using workflow terminology from
[Aalst03a], whose task is to synchronize multiple instances of ActivityType3 so that when all
subactivities of the type ActivityType3 have ended, the activity of the type ActivityType2 also ends, and
the next activity of the type ActivityType4 is started (or the business process ends).

R1

Activity
Type3

Entity
Type1

predicate1{expression1}

U

Activity
Type1

ActivityType2

Activity
Type4

Figure 3-28. The pattern “Multiple Instances with a Priori Known Runtime Knowledge”.

Within the pattern “Multiple Instances with a Priori Known Runtime Knowledge”, the number of
instances of a given activity type for a given business process type is variable and may depend on
characteristics of the business process instance or availability of resources, but is known at some stage
during runtime, before the instances of that activity type have to be created. Once all instances are
completed, an activity of some other type needs to be started. In the Business Agents’ Approach, this
pattern is represented by its sub-pattern “Parallel For-Each” which is naturally supported by a reaction
rule’s mechanism of evaluating internal variables described in section 3.6.3. In Figure 3-28, the
“Parallel For-Each” loop is included in an activity of the type ActivityType2 which is started after the
end of an activity of the type ActivityType1. According to the example of the “Parallel For-Each” loop
pattern represented in the figure, upon the start of an activity of the type ActivityType2, its subactivity of
the type ActivityType3 is performed for each instance of the informational entity type (i.e., object type
or a representation of an agent type) denoted by EntityType1 for which the precondition specified by
expression1 and predicate1 evaluates to true. The activities of the type ActivityType3 are executed in
parallel. The precondition may also be omitted. In that case, an activity of the type ActivityType3 is
repeated for each instance of the informational entity type whose symbol the condition arrow is
connected to. In the pattern depicted in Figure 3-28, implicit termination of an activity when all its
subactivities have completed, as is described in section 3.6.6, is used as the synchronizing mechanism
for multiple instances of ActivityType3. This is to say, when all subactivities of the type ActivityType3
have ended, the activity of the type ActivityType2 also ends, and the next activity of the type
ActivityType4 is started (or the business process ends). The example represented in Figure 3-28 is
expressed in the activity modelling language as follows:

CONTEXT entity1 : EntityType1
ON END ActivityType1 THEN START ACTIVITY ActivityType2
ON START ActivityType2 IF EntityType1.allInstances->select(expression1 and predicate1)->includes(entity1)
THEN START ACTIVITY ActivityType3(...)
ON END ActivityType2 THEN START ACTIVITY ActivityType4.

116

R1

Activity
Type1

Activity
Type3

Entity
Type1

predicate1

R2

Activity
Type1

Activity
Type4

Entity
Type1

predicate1

{expression1}

{expression1}U

U

Activity
Type4

R1

Activity
Type3

ActivityType2

Activity
Type5

ActivityType2

Activity
Type5

Figure 3-29. The patterns of “Multiple Instances with no a Priori Runtime Knowledge”.

Within the pattern “Multiple Instances with no a Priori Runtime Knowledge”, the number of
instances of a given activity type is not known at the design time, nor it is known at any stage during
runtime, until immediately before the instances of that activity type have to be created. Once all
instances are completed, an activity of some other type needs to be started. The difference from the
pattern “Multiple Instances with a Priori Runtime Knowledge” is that even while some of the activity
instances are being executed or have already completed, new ones can be created. In the Business
Agents’ Approach, this pattern is represented by its sub-patterns “Parallel While-Repeat” and “Parallel
Repeat-Until”. In Figure 3-29, both loop patterns mentioned are included in an activity of the type
ActivityType2 which is started after the end of an activity of the type ActivityType1. In these sub-patterns,
an activity of the type ActivityType3 is invoked many times and as a rule an activity of the type
ActivityType4 is used to determine if more instances of ActivityType3 are needed. An activity of the type
ActivityType4 also updates an entity of the type EntityType1.

According to the example of the “Parallel While-Repeat” loop pattern in Figure 3-29 (on the left),
upon the start of an activity of the type ActivityType2, if the condition specified by predicate1 and
expression1 is true, reaction rule R1 starts activities of the types ActivityType3 and ActivityType4 to be
executed in parallel. An activity of the type ActivityType4 checks if more instances of ActivityType3 are
needed and records the decision in the corresponding entity of the type EntityType1. The completion of
the activity of the type ActivityType3 again invokes reaction rule R1. If the condition specified by
predicate1 and expression1 is true, reaction rule R1 creates a new parallel instance of ActivityType3 and a
new instance of ActivityType4. This loop continues until all instances of ActivityType3 are completed.

Just like in case of the pattern “Multiple Instances with a Priori Runtime Knowledge”, in both sub-
patterns represented in Figure 3-29 synchronization of multiple instances of ActivityType3 is achieved
through implicit termination of an activity when all its subactivities have completed, as is described in
section 3.6.6. This means that when all subactivities of the type ActivityType3 have ended, the activity
of the type ActivityType2 also ends, and the next activity of the type ActivityType5 is started (or the
business process ends). The example of the sub-pattern “Parallel While-Repeat” represented in Figure
3-29 on the left is expressed in the activity modelling language as follows:

CONTEXT entity1 : EntityType1
ON END ActivityType1 THEN START ACTIVITY ActivityType2
ON START ActivityType2 OR END ActivityType4 IF EntityType1.allInstances->select(expression1 and
predicate1)->includes(entity1) THEN START ACTIVITY ActivityType3(...) & START ACTIVITY
ActivityType4(...)
ON END ActivityType2 THEN START ACTIVITY ActivityType5.

117

According to the example of the “Parallel While-Repeat” loop pattern in Figure 3-29 (on the right),
upon the start of an activity of the type ActivityType2, reaction rule R1 starts activities of the types
ActivityType3 and ActivityType4 to be executed in parallel. An activity of the type ActivityType4 checks if
more instances of ActivityType3 are needed and records the decision in the corresponding entity of the
type EntityType1. After the end of an activity of the type ActivityType4, if the condition specified by
predicate1 and expression1 is true, reaction rule R2 creates a new parallel instance of ActivityType3 and a
new instance of ActivityType4. This loop continues until all instances of ActivityType3 are completed. The
example of the sub-pattern “Parallel Repeat-Until” is expressed in the activity modelling language as
follows:

CONTEXT entity1 : EntityType1
ON END ActivityType1 THEN START ACTIVITY ActivityType2
ON START ActivityType2 THEN START ACTIVITY ActivityType3(...) & START ACTIVITY ActivityType4(...)
ON END ActivityType4 IF EntityType1.allInstances->select(expression1 and predicate1)->includes(entity1)
THEN START ACTIVITY ActivityType3(...) & START ACTIVITY ActivityType4(...)
ON END ActivityType2 THEN START ACTIVITY ActivityType5.

 In both sub-patterns described, the condition specified by predicate1 and expression1 determines at
each step of the loop if more instances of the activity type ActivityType3 are needed. Since in many
cases it is determined within the activity to be repeated whether more instances of it are needed (e.g.,
see the behavioural constructs modelled in section 4.1.5.5), both sub-patterns can be made sequential
by merging the activity types ActivityType3 and ActivityType4.

The pattern “Deferred Choice” (“Dynamic XOR-split”, “External choice”, “Implicit choice”) is a
point in the business process where one of several activities is chosen to be performed. In contrast to
the “XOR-Split” pattern, the choice is not made explicitly (e.g., based on a control data), but several
alternatives are offered to the environment. The environment then selects the activity to be performed.
Only one of the alternative activities is executed. This means that once the environment triggers one of
the activities, the other alternative activities are withdrawn. In the Business Agents’ Approach, a
trigger by the environment is modelled as perceiving of an action event or a non-action event by the
agent in focus.

X

R1 Rn...

Activity
Type1

Activity
Type2

Activity
TypeN...

ActionEvent
Type2

Agent
Type2 ActionEvent

TypeN

Agent
TypeN

Figure 3-30. The pattern “Deferred Choice”.

According to the example of the pattern “Deferred Choice” in Figure 3-30, after the end of an
activity of the type ActivityType1, only one activity of the types ActivityType2 … ActivityTypeN is started
depending on which action event out of possible ones specified by ActionEventType2 …
ActionEventTypeN is first perceived by the agent. Notice the diamond symbol with the symbol ‘X’
inside standing for an exclusive disjunction (XOR). The example is expressed in the activity modelling
language as follows where agentType2 ... agentTypeN stand for instances of the respective agent types:

ON END ActivityType1 THEN XOR (ON RECEIVE ActionEventType2 FROM agentType2 THEN START
ACTIVITY ActivityType2(...) … ON RECEIVE ActionEventTypeN FROM agentTypeN THEN START ACTIVITY
ActivityTypeN(...)).
The activity modelling language defined in section 3.6.7 also enables to model the pattern

“Deferred Choice” combined with an inclusive disjunction (OR). The meaning of such a pattern is that
one or several activities out of activities of the types ActivityType2 … ActivityTypeN is (are) started
depending on which events are perceived by the agent.

The pattern “Implicit Termination” specifies that a given subprocess should be terminated when
there are no activities being performed in the business process and no other activity can be started (and
at the same time the process is not in deadlock). In our approach, this pattern is supported naturally
through implicit termination of an activity when all its subactivities have completed (v. section 3.6.6).

118

R1

Activity
Type1

R1

Activity
Type2

Figure 3-31. The patterns “Cancel Activity” and “Cancel Case”.

The pattern “Cancel Activity” shown in Figure 3-31 (on the left) cancels the current activity being
performed by removing the representation of the activity from the logical term describing the agent’s
activity state which was explained in section 3.6.6. It is not, however, possible to cancel other activity
than the current one. The example is expressed in the activity modelling language as follows:

ON START ActivityType1 THEN CANCEL ActivityType1.
The pattern “Cancel Case” in Figure 3-31 (on the right) cancels the whole business process being

executed by emptying the logical term describing the agent’s activity state which was explained in
section 3.6.6. The example is expressed in the activity modelling language as follows:

ON START ActivityType1 THEN CANCEL PROCESS.
According to the activity modelling language presented in section 3.6.7, reaction rules within

behavioural constructs may have “side effects”: in addition to starting an activity, a reaction rule
within a behavioural construct like any other reaction rule may invoke actions or have mental effects.
In many cases, this feature is capable of making activity diagrams shorter and more compact. For
example, reaction rule R32 within the behavioural pattern “Deferred Choice” represented in Appendix
F doesn’t start any activity but invokes all the actions to be performed by itself.

Table 3-20, adopted from [Patterns03], summarizes the results of the comparison of various
standards for workflow and business process modelling. We have complemented Table 3-20 with the
column showing the support for the behavioural patterns by the extended AOR Modelling Language.
In compliance with the notation used in [Patterns03], if the standard directly supports the pattern
through one of its constructs, it is rated +. If the pattern is not directly supported but can be
“mimicked”, it is rated +/-. Any solution which results in spaghetti diagrams or coding is considered
as giving no support and is rated -. Table 3-20 includes the following standards in addition to the
extended AORML: XML Process Definition Language (XPDL) [XPDL], UML Activity Diagrams
[OMG03a], BPEL4WS (Business Process Execution Language for Web Services) [BPEL], and BPML
(Business Process Modelling Language) [BPML].

Table 3-20 reveals that the extended AORML supports all workflow patterns being compared with
the exception of “Synchronizing Merge”, “Interleaved Parallel Routing”, and “Milestone”. The
extended AORML thus provides a stronger support for workflow patterns than any other standard
listed in Table 3-20. The table also affirms the weakness of UML for business process modelling.

All the behavioural patterns described in this section can be specified as different combinations of
atomic reaction rules of the form described in section 3.6.6, as is shown in Table 3-21. In addition,
Table 3-21 contains definitions of the activity triggering patterns that are represented in Figure 3-8.
The names of the action event types and informational entity types starting with small letters in Table
3-21 stand for instances of the respective types. Please note that since the extended AORML does not
allow for the first-level parallel activities, the (parallel) subactivities in the behavioural patterns
“Parallel Split”, “Synchronization”, “Multiple Choice”, and “Deferred Choice” have an implicit
superactivity of the type Temp in Table 3-21. However, according to the operational semantics of
extended KPMC agents described in section 3.6.6, such an implicit superactivity is created only in
case the behavioural pattern is not already included by some activity type.

119

Table 3-20. The comparison of workflow and business process modelling standards.

Pattern Standard
 XPDL UML BPEL BPML AORML
Sequence + + + + +
Parallel Split + + + + +
Synchronization + + + + +
Exclusive
Choice

+ + + + +

Simple Merge + + + + +
Multi Choice + - + - +
Multi Merge - - - +/- +
Discriminator - - - - +/-
Synchronizing
Merge

+ - + - -

Arbitrary Cycles + - - - +
MI with a Priori
Design Time
Knowledge

+ + + + +

MI with a Priori
Runtime
Knowledge

- + - - +

MI without a
Priori Runtime
Knowledge

- - - - +

Deferred Choice - + + + +
Interleaved
Parallel Routing

- - +/- - -

Milestone - - - - -
Implicit
Termination

+ - + + +

Cancel Activity - + + + +
Cancel Case - + + + +

120

Table 3-21. Combinations of reaction rules, corresponding to the behavioural patterns of business agents.

Behavioural pattern Reaction rule(s)
Starting an activity by means of an
action event (Fig. 3-8 a))

start(ActivityType1) ← recvMsg[actionEventType1,
agentType1]

Starting a subactivity
(Figure 3-8 b))

startsub(ActivityType2) ← start-of(ActivityType1)
end(ActivityType1) ← end-of(ActivityType2)12

Starting a subactivity upon
perceiving an action event
(Figure 3-8 c))

startsub(ActivityType2) ← start-of(ActivityType1),
recvMsg[actionEventType1, agentType1]
end(ActivityType1) ← end-of(ActivityType2)13

Starting an activity by means of two
(or more) events (Figure 3-8 d))

start(ActivityType2) ← end-of(ActivityType1),
recvMsg[actionEventType1, agentType1]

Starting the next activity upon
perceiving an action event
(Figure 3-8 e))

end(ActivityType1), start(ActivityType2) ←
start-of(ActivityType1),
recvMsg[actionEventType1, agentType1]

Sequence (Figure 3-20) start(ActivityType2) ← end-of(ActivityType1)
Parallel Split (Figure 3-21) start(Temp) ← end-of(ActivityType1)13

startsub(ActivityType2), …, startsub(ActivityTypeN) ←
start-of(Temp)

Synchronization (Figure 3-22) end(Temp) ←
end-of(ActivityType2), …, end-of(ActivityTypeN)13
start(ActivityType1) ← end-of(Temp)

Exclusive Choice (Figure 3-23) start(ActivityType2) ← end-of(ActivityType1), Cond
start(ActivityType3) ← end-of(ActivityType1), ¬Cond

Simple Merge (Figure 3-24) start(ActivityType1) ← end-of(ActivityType2)
…
start(ActivityType1) ← end-of(ActivityTypeN)

Multiple Choice (Figure 3-25) start(Temp) ← end-of(ActivityType1)14
startsub(ActivityType2) ← start-of(Temp), Cond1
…
startsub(ActivityTypeN) ← start-of(Temp), Condn

Multiple Merge (Figure 3-26) start(ActivityType1) ← end-of(ActivityType2)
…
start(ActivityType1) ← end-of(ActivityTypeN)

Discriminator start(ActivityType1), Eff ← end-of(ActivityType2), Cond
Eff ← end-of(ActivityType2), ¬Cond
…
start(ActivityType1), Eff ← end-of(ActivityTypeN), Cond
Eff ← end-of(ActivityTypeN), ¬Cond

MI with a Priori Known Design Time
Knowledge (Figure 3-27)

start(ActivityType2) ← end-of(ActivityType1)
startsub(ActivityType3), startsub(ActivityType3),
startsub(ActivityType3) ← start-of(ActivityType2)
start(ActivityType4) ← end-of(ActivityType2)

Parallel For-Each (Figure 3-28) start(ActivityType2) ← end-of(ActivityType1)
startsub(ActivityType3) ← start-of(ActivityType2), Cond
start(ActivityType4) ← end-of(ActivityType2)

12 This rule is provided just for the sake of informativity: according to the execution model of a KPMC agent, an
activity with subactivities ends when all its subactivities have ended.
13 An implicit superactivity of the type Temp is created only in case the behavioural pattern is not already
included by some activity type.

121

Table 3-21 (continued). Combinations of reaction rules, corresponding to the behavioural patterns of business
agents.

Parallel While-Repeat (Figure 3-29) start(ActivityType2) ← end-of(ActivityType1)
startsub(ActivityType3) ← start-of(ActivityType2), Cond
startsub(ActivityType4) ← start-of(ActivityType2), Cond
startsub(ActivityType3) ← end-of(ActivityType4), Cond
startsub(ActivityType4) ← end-of(ActivityType4), Cond
start(ActivityType5) ← end-of(ActivityType2)

Parallel Repeat-Until (Figure 3-29) start(ActivityType2) ← end-of(ActivityType1)
startsub(ActivityType3) ← start-of(ActivityType2)
startsub(ActivityType4) ← start-of(ActivityType2)
startsub(ActivityType3) ← end-of(ActivityType4), Cond
startsub(ActivityType4) ← end-of(ActivityType4), Cond
start(ActivityType5) ← end-of(ActivityType2)

Deferred Choice (Figure 3-30) start(Temp) ← end-of(ActivityType1)14
end(Temp), start(ActivityType2) ←
recvMsg[actionEventType2, agentType2], start-of(Temp)
…
end(Temp), start(ActivityTypeN) ←
recvMsg[actionEventTypeN, agentTypeN], start-of(Temp)

Cancel Activity (Figure 3-31) remove(ActivityType1) ← start-of(ActivityType1)
Cancel Case (Figure 3-31) remove-all ← start-of(ActivityType1)

122

3.8.6. Mapping Activity Diagrams to the Constructs of JADE

The operational semantics of extended KPMC agents presented in section 3.6.6 can be mimicked on
the JADE agent platform. This enables to perform simulations with the extended AORML models,
like the ones created for the EU-Rent car rental company and for the case studies to be presented in
Chapter 4. Mimicking operational semantics of KPMC agents on JADE complies with the principles
of Model Driven Architecture (MDA) of OMG [MDA]. According to the overview of MDA provided
in [KlasseObjecten], the MDA process defines three steps:

1. First, a model at a high level of abstraction that is independent of any implementation
technology is built. This is called a Platform Independent Model (PIM). In the Business
Agent’s Approach, the models of the extended AORML serve as the PIM.

2. Next, the PIM is transformed into one or more Platform Specific Models (PSM). A PSM is
tailored to specify the PIM in terms of the implementation constructs that are available in one
specific implementation technology, which is JADE in our approach.

3. The final step is to transform a PSM to code. Because a PSM fits its technology very closely,
this transformation is rather trivial. The complex step is the one in which a PIM is transformed
to a PSM.

The JADE (Java Agent Development Environment) agent platform is described in [Bellifemine01]
and [JADE]. It is a software framework to build agent systems in the Java programming language
[JAVA] for the management of networked information resources in compliance with the FIPA
specifications [FIPA] for interoperable intelligent multi-agent systems. In addition to providing an
agent development model, JADE deals with all the aspects that are not peculiar to agent internals and
that are independent of the applications, such as message transport, encoding and parsing, or agent
life-cycle management. According to [Bellifemine01], JADE offers the following features to the agent
programmer:

• FIPA-compliant distributed agent platform which can be split onto several hosts.
• Java Application Programmer’s Interface to send/receive messages to/from other agents;
• Library of FIPA interaction protocols, such as Contract Net, ready to be used.
• Graphical user interface to manage several agents from the same Remote Management Agent.

According to [JADE], an agent must be able to carry out several concurrent tasks in response to
different external events. In order to make agent management efficient, every JADE agent is
composed of a single execution thread and all its tasks are modelled and can be implemented as
instances of the Java object class jade.core.behaviours.Behaviour. The developer who wants to
implement an agent-specific task should define one or more subclasses of Behaviour, instantiate them,
and add the resulting behaviour objects to the agent task list. The jade.core.Agent class, which must be
extended by agent programmers, exposes two methods: addBehaviour(Behaviour) and removeBehaviour
(Behaviour), which allow management of the ready tasks’ queue of a specific agent. By using them,
behaviours and sub-behaviours can be added whenever needed. Adding a behaviour should be seen as
a way to spawn a new (cooperative) execution thread within the agent. A scheduler, implemented by
the base jade.core.Agent class and hidden to the programmer, carries out a round-robin non-preemptive
scheduling policy among all behaviours available in the ready tasks’ queue, executing a Behaviour-
derived class until it will release control. Behaviours thus work just like co-operative threads, but there
is no stack to be saved. Therefore, the whole computation state must be maintained in instance
variables of the Behaviour and its associated Agent.

The abstract class jade.core.behaviours.Behaviour provides an abstract base class for modelling agent
tasks, and it sets the basis for behaviour scheduling as it allows for state transitions (i.e. starting,
blocking, and restarting a Java behaviour object). It has the predefined subclasses SimpleBehaviour and
CompositeBehaviour. The first of them is further divided into the subclasses OneShotBehaviour and
CyclicBehaviour, while the second one has the subclasses SequentialBehaviour and ParallelBehaviour. The
functionality of a behaviour is included in its start() method. Another important method of a behaviour
is the block() method which allows to block a behaviour object until some event happens (typically,
until a message arrives). The jade.core.behaviours.Behaviour class also provides two placeholder
methods, named onStart() and onEnd(). These methods can be overridden by user defined subclasses
when some actions are to be executed before and after running behaviour execution. The functionality
of a SequentialBehaviour and ParallelBehaviour is included in the method onStart() in place of action().

We will next treat by views of agent-oriented modelling how executable JADE-based models
corresponding to executable models expressed by means of the extended AORML can be created.

123

3.8.6.1. Organizational and Informational View

When preparing extended AOR models for simulation on JADE, we first represent the types of
institutional agents of the organization model, such as Customer, Branch, Headquarters, and
AutomotiveServiceStation shown in Figure 3-11, as the corresponding subclasses of the JADE’s class
jade.core.Agent. The instances of these Java classes form the agents of the simulation environment.
After that, we turn the object types and representations of agent types of the information model, like
RentalOrder/Invoice, CarGroup, RentalCar, Proposal, and Customer represented within the agent type
Branch in Figure 3-13, into the respective Java classes. Their instances form the VKB’s of the
corresponding agents. For example, instances of the object classes RentalOrder, CarGroup, RentalCar,
Proposal, and Customer form the VKB of the corresponding agent instance of the agent class Branch.
When there are several instances of such a class, they are represented as elements of a Java collection
of the type HashMap, as is shown in the example below. The status and intensional predicates of an
informational entity type within an agent’s VKB are implemented as functions attached to the
corresponding object class. Associations between informational entity types are represented as object
references between instances of the corresponding object classes. For example, the agent type Branch
and the object type RentalCar of the extended AORML are represented as the following Java classes:
public class Branch extends jade.core.Agent {

 /** Virtual Knowledge Base */
 private HashMap rentalOrder = new HashMap();
 private HashMap carGroup = new HashMap();
 private HashMap rentalCar = new HashMap();
 private HashMap proposal = new HashMap();
 private Customer customer;

 /** Information about ontology */
 private Codec codec = new SLCodec();
 private Ontology ontology = CarRentalOntology.getInstance();

 /** The ID of the branch */
 private String branchID;

 ...
}

public class RentalCar extends Car implements Concept {

 /** Attributes */
 private Date serviceStartTime;
 private Date serviceEndTime;
 private int mileageAtService;
 private int mileageSinceService;

 /** References */
 private Branch branch;
 private RentalOrder rentalOrder;

 /** Statuses */
 public static final boolean is_present = false;
 public static final boolean requires_service = false;
 public static final boolean is_scheduled_for_service = false;
 public static final boolean is_available = false;
 public static final boolean is_picked_up = false;
 public static final boolean is_in_service = false;

 /** Status predicates */
 public boolean isAvailable() {
 if (is_present &&
 ! requires_service &&
 ! is_scheduled_for_service)
 return true;
 else
 return false;
 }
 ...
}

124

3.8.6.2. Interactional View

Agent messages are represented as instances of the JADE’s object class jade.lang.acl.ACLMessage. In
order to be able to interpret messages received from each other, JADE agents of the simulation
environment must share a common knowledge of the structure of concepts, predicates, and actions
included in agent messages. For that purpose, there is a JADE-based ontology that describes the
concepts, predicates, and actions used in agent messages. Such an ontology corresponds to the union
of shared object and action event types defined by the extended AORML models of the informational
and interactional views. The ontology of a problem domain, like the ontology of the EU-Rent car rental
company, extends the ontology defined in the JADE development library (jade.content.onto.Ontology).
According to [JADE], the basic ontology of JADE enables to create application-specific ontologies
describing the elements that agents can use within the messages exchanged by them. An ontology is
characterized by one name, one (or more) basic ontology that it extends, and a set of element schemas.
Element schemas are Java objects describing the structure of concepts, actions, and predicates that are
allowed in agent messages. Concepts, which correspond to the shared object types like
RentalOrder/Invoice and RentalCar appearing in the interaction model of the EU-Rent car rental company
shown in Figure 3-16, are expressions that indicate entities with a complex structure that can be
defined in terms of slots. Concepts typically make no sense if used directly as the content of an ACL
message. In general they are referenced inside predicates and other concepts, like agent actions.
Primitives are expressions that indicate atomic entities such as strings and integers. They correspond
to data types defined in the informational view. A concept may include one or more primitives. Agent
actions, which correspond to the non-communicative action event types like provideCar, pickupCar, and
achieve defined by the interaction ontology of the EU-Rent car rental company, are special concepts that
indicate actions that can be performed by some agents. Unlike “normal” concepts, they are meaningful
contents of certain types of FIPA ACL messages such as messages of the type “request”. Predicates,
which correspond to the status predicates like isAllocated, hasCar, and isServiced used in the interaction
model of the EU-Rent car rental company shown in Figure 3-16, are expressions that say something
about the status of the world and can be true or false. An ontology for a given domain is thus a set of
schemas defining the structure of the predicates, agent actions and concepts (basically their names and
their slots) that are pertinent to that domain [JADE]. Each schema added to the ontology is associated
with the corresponding Java class. For example, the schema for the RentalCar concept is associated
with the object class RentalCar. When using the defined ontology, expressions indicating rental cars in
agent messages are instances of the RentalCar class. In JADE, one must also define Java classes
corresponding to agent actions, like provideCar, and predicates. All Java classes corresponding to
concept schemas implement the Concept interface. Analogously, all Java classes corresponding to
action and predicate schemas implement the AgentAction and Predicate interface, respectively. An
excerpt from the ontology of the car rental company looks like as follows:
public class CarRentalOntology extends Ontology {

 // The name identifying this ontology
 public static final String ONTOLOGY_NAME = "Car-Rental-Ontology";

 // VOCABULARY
 public static final String RENTAL_ORDER = "RentalOrder";
 public static final String ORDER_CAR_GROUP_ID = "carGroupID";
 public static final String ORDER_PICK_UP_TIME = "pickUpTime";
 public static final String ORDER_DROP_OFF_TIME = "dropOffTime";
 public static final String ORDER_PICK_UP_BRANCH_ID = "pickUpBranchID";
 public static final String ORDER_DROP_OFF_BRANCH_ID = "dropOffBranchID";
 public static final String RENTAL_CAR = "RentalCar";

 ...
 public static final String PROVIDE_CAR = "provideCar";
 public static final String PROVIDE_CAR_CAR = "rentalCar";

 ...
 // Private constructor
 private CarRentalOntology() {
 // The car rental ontology extends the basic ontology
 super(ONTOLOGY_NAME, BasicOntology.getInstance());

 try {
 add(new ConceptSchema(RENTAL_ORDER), RentalOrder.class);
 add(new AgentActionSchema(PROVIDE_CAR), provideCar.class);

125

 ...
 // Structure of the schema for the RentalOrder concept
 ConceptSchema cs = (ConceptSchema) getSchema(RENTAL_ORDER);
 cs.add(ORDER_CAR_GROUP_ID,
 (PrimitiveSchema)getSchema(BasicOntology.STRING));
 cs.add(ORDER_PICK_UP_TIME,
 (PrimitiveSchema)getSchema(BasicOntology.DATE));

 ...
 // Structure of the schema for the provideCar agent action
 AgentActionSchema as1 = (AgentActionSchema) getSchema(PROVIDE_CAR);
 as1.add(PROVIDE_CAR_CAR, (ConceptSchema) getSchema(RENTAL_CAR));

 ...
 }
 catch (OntologyException oe) {
 oe.printStackTrace();
 }

3.8.6.3. Functional and Behavioural Views

In the JADE agent class corresponding to some institutional agent type modelled in the organizational
view, we represent an activity type consisting of sequential subactivities, like the activity type
“Manage car rental” represented in Figure 3-18, as the corresponding subclass of SequentialBehaviour.
Analogously, an activity type with parallel subactivities, like the activity type “Allocate cars”
modelled in Figure 3-19, is implemented as a subclass of ParallelBehaviour. Instances of
SequentialBehaviour and ParallelBehaviour have one or more sub-behaviours. The difference between
them is that a SequentialBehaviour executes its sub-behaviours in sequential order, while the “children”
of a ParallelBehaviour are executed concurrently. Finally, an elementary activity type, like the activity
type “Create rental reservation” in Figure 3-18, is represented as a subclass of OneShotBehaviour. An
instance of OneShotBehaviour is executed only once.

The action() method of a OneShotBehaviour, containing the functionality of the behaviour,
corresponds to the reaction rule included by the respective elementary activity type. The action()
method of a OneShotBehaviour is invoked by the JADE agent platform when the behaviour is started.
Accordingly, each instance of the subclass of OneShotBehaviour, corresponding to some elementary
activity, has to be a “child” of an instance of SequentialBehaviour or ParallelBehaviour, corresponding to
the “father” activity. A “child” behaviour is started by invoking the addSubBehaviour method of the
“father” behaviour with the argument new ActivityType(...). For example, an instance of
Create_rental_reservation in the example below is invoked by the corresponding instance of
Manage_car_reservation which is a subclass of SequentialBehaviour. The outermost behaviour, like an
instance of Manage_car_reservation in the example below, is directly a “child” of the agent which is
added through calling of the addBehaviour method of the corresponding instance of jade.core.Agent with
the argument new MainActivityType(...). Invocation of the onStart() or action() method of a behaviour
straightforwardly corresponds to the occurrence of the start-of-activity activity border event of the
corresponding activity. In a similar way, the method onEnd() of a behaviour instance is invoked upon
ending the behaviour. Invocation of this method thus corresponds to the end-of-activity activity border
event of the corresponding activity.

Essential parts of each agent of the simulation system are instances of the object classes
MessageHandler and InputHandler. The class MessageHandler extends CyclicBehaviour of JADE. The
instance of MessageHandler acts in cycles of waiting for an incoming ACL message, gets a message, if
there is any, from the agent’s event queue by using the receive() method of jade.core.Agent, analyzes it,
and starts the appropriate business process by adding the behaviour corresponding to the outermost
activity of the process to the agent with a call of the agent’s method addBehaviour. The instance of
InputHandler works like the MessageHandler but expects input from a human agent through a GUI.

The input parameters of an activity type are defined as the corresponding formal parameters of the
constructor of the corresponding behaviour class. When needed, the input parameters are passed to the
constructors of inner behaviour classes. For example, the constructor of the behaviour class
Manage_car_ rental is invoked by the MessageHandler with the actual parameters corresponding to the
behaviour’s formal parameters cgroup, ptime, dtime, dbranch, and msg. These parameters are then stored
into the instance attributes of Manage_car_reservation and are thereafter passed to its inner activities by
invoking the corresponding addSubBehaviour methods with the arguments new ActivityType(...) like is
shown in the following example:

126

class Manage_car_reservation extends SequentialBehaviour {
 /** Placeholder for the received message */
 private ACLMessage receivedMessage;
 /** The identifier of the car group */
 private String carGroupID;
 /** The pick-up time */
 private Date pickUpTime;
 /** The drop-off time */
 private Date dropOffTime;
 /** The identifier of the pick up branch */
 private String pickUpBranchID;
 /** The identifier of the drop off branch */
 private String dropOffBranchID;
 public Manage_car_reservation (String cgroup, Date ptime, Date dtime,
 String pbranch, String dbranch, ACLMessage msg){
 super();
 carGroupID = cgroup;
 pickUpTime = ptime;
 dropOffTime = dtime;
 pickUpBranchID = pbranch;
 dropOffBranchID = dbranch;
 receivedMessage = msg;
 }

 public void onStart() {
 addSubBehaviour(new Check_the_customer_for_blacklistedness
 (receivedMessage));
 addSubBehaviour(new Create_rental_reservation(carGroupID, pickUpTime,
 dropOffTime, pickUpBranch, dropOffBranch, receivedMessage));
 addSubBehaviour(new Allocate_cars ());
 }
}

Table 3-22 shows the mapping of the notions of the extended AORML to the constructs of the
JADE agent development model.

127

Table 3-22. Mapping of notions of the extended AORML to the object classes and methods of JADE.

Notion of
the extended AORML

Object class of JADE Object method of JADE
(if applicable)

Object type Class -
Agent type jade.core.Agent -

Elementary activity type jade.core.behaviours.
OneShotBehaviour

-

Sequential activity type jade.core.behaviours.
SequentialBehaviour

Parallel activity type jade.core.behaviours.
ParallelBehaviour

Execution cycle of
a KPMC agent

jade.core.behaviours.
CyclicBehaviour

-

Receiving a message from the
agent’s event queue

jade.core.Agent public final ACLMessage
receive()

Waiting for a message
to be received

jade.core.behaviours.
ReceiverBehaviour

public ReceiverBehaviour (Agent a,
long millis, MessageTemplate mt)

Starting the first-level activity jade.core.Agent public void addBehaviour
(Behaviour b)

Starting a subactivity jade.core.behaviours.
SequentialBehaviour

public void
addSubBehaviour

(Behaviour b)
Starting a parallel subactivity jade.core.behaviours.

ParallelBehaviour
public void

addSubBehaviour
(Behaviour b)

Start-of-activity
activity border event

jade.core.behaviours.
OneShotBehaviour

public abstract void
action()

Start-of-activity
activity border event

jade.core.behaviours.
SequentialBehaviour,
jade.core.behaviours.

ParallelBehaviour

public abstract void
onStart()

End-of-activity
activity border event

jade.core.behaviours.Behaviour public int onEnd()

Agent message java.lang.acl.ACLMessage -

128

4. CASE STUDIES

This chapter contains two full-fledged case studies where a ceramic factory and the domain of
advertising are modelled by using the methodology that was introduced and explained in sections 3.7
and 3.8.

4.1. THE CASE STUDY OF A CERAMIC FACTORY

The modelling approach proposed in this thesis is first evaluated by using the case study of Tallinn
Ceramic Factory Ltd. located in Tallinn, Estonia. By using the methodology proposed, we have
created the information, organization, interaction, function, motivation, and behaviour models of the
problem domain.

4.1.1. Overview of Tallinn Ceramic Factory Ltd.

Tallinn Ceramic Factory [TKT] was founded in 1934, when the brick factory was opened in Kopli,
Tallinn. The production was divided all over Estonia at that time. Red clay bricks were very demanded
in Estonia, Russia, and Finland. In addition to the bricks, the production of household and decorative
ceramics was started in the 1950s. Local red clay from Joosu was used as the raw material. The factory
was privatized in 1994 and bought by today’s owners in 1999. The branches were privatized
separately and Tallinn Ceramic Factory remained as one factory in Kopli. In 2000, the factory was
named Tallinn Ceramic Factory Ltd. The raw material was changed – red clay was replaced with
white stoneware. This enabled to concentrate mainly on the production of high quality tableware. The
factory still produces decorative ceramics, different cooperation orders, and artists’ sets.

More than half of the production is exported. During the last ten years, the biggest export partner
has been Sweden. The best known clients of the factory are the Scandinavian biggest ceramic
producers Boda Nova Höganäs Keramik AB, Guldkroken/Röda Bodan AB, Arabia, and Röstrand. The
factory mainly produces product sets according to subcontractual orders for them. Different stove tiles
for fireplaces, jugs, bowls, and handles for mugs are exported as raw or finished products. The factory
has been represented with its own standard production in the biggest Scandinavian household goods’
fair FORMEX in Sweden by its wholesalers for six years already. For several years, the factory has
also taken part in the biggest European household goods fair in Frankfurt. Beside Sweden, the factory
also exports to Finland, Japan, and Norway. The standard production exported consists mainly of
different hand painted tableware sets. The factory also exports product sets produced according to
special orders for restaurants and catalogues.

In the local market the production is sold in the factory shop in Kopli and in bigger storehouses.
The factory also produces tableware sets for restaurants, pubs, and cafes, and business gifts and
souvenirs by special orders. In the local market the factory mainly sells the hand painted tableware
sets.

The factory uses local red clay from Joosu and stoneware imported from Germany as raw
materials. All other raw materials come from Germany, the Czech Republic, and the United Kingdom.
Red clay is used only for the production of decorative ceramics. White stoneware is the high
temperature clay which must be burned at the temperature 1160 – 1200 Centigrade. The products are
burned twice which gives them a better quality standard. As the factory accepts special orders for
special designs, the number of restaurants and pubs among its clients is increasing. The best outfit of
products is granted for a very long time as all the products are covered with transparent glaze and the
raw material used is of the highest quality.

There are 65 people working in the factory. Most of the workers have 10 – 20 years of working
experience and knowledge of ceramic production. The production process in the factory involves a lot
of handwork. In fact, most of the production operations, with the exception of e.g. burning, are
performed by hand at Tallinn Ceramic Factory. Also production schedules are created and updated
manually.

129

4.1.2. Goals of the Case Study

Agent-oriented modelling of business/manufacturing processes of the problem domain of Tallinn
Ceramic Factory is important for two reasons:

1. An agent-oriented modelling approach lends itself easily to simulation. The models of the
problem domain worked out by following the methodology proposed by us can thus be quite
straightforwardly turned into the implementation constructs of the actual simulation
environment. We will briefly describe in section 4.1.5.6 how this was done for the case study
of Tallinn Ceramic Factory. The simulation environment worked out also prepares for the
forthcoming automation of the factory.

2. With the advent of virtual enterprises, a manufacturing enterprise should be capable of
composing its business/manufacturing processes in a modular fashion so that if the factory
receives at short notice a subcontractual order the satisfaction of which requires only a part of a
full-length manufacturing process of the enterprise, the order would be scheduled and satisfied
in a dynamic, flexible, and fast manner. One way to achieve this is to view a manufacturing
enterprise as consisting of active entities – agents – so that each agent would be responsible for
scheduling and performing manufacturing operations of a certain resource. This objective is
already acute at Tallinn Ceramic Factory because a remarkable portion of the orders received
by it are subcontractual orders for mug handles and stove tiles for fireplaces from Sweden.

According to [Tamm87], the so-called ‘simulation modelling’, related to the first reason above, is
also one of the most practical means of conceptual analysis of a problem domain. Its main advantages
are:

• learning of and experimenting on the target system with complex internal dependencies;
• trying out the influences of decisions of informational, technological, and organizational

nature;
• full understanding of the problem domain;
• enabling the selection of the most crucial objects, relationships between them, and rules needed

for the creation of the conceptual model of the problem domain;
• connection to new situations that have not been seen in practice yet;
• flexibility with respect to operational time;
• discovering and solving problems related to the existing information/manufacturing systems.

With an agent-oriented approach to modelling and simulation of production environments, each
agent is autonomous and does not know the decision logic of the other agents, as a rule. The decision
logic is thus specified for each agent individually and not for the system of agents, as a whole. This is
closer to how the real world “works” than traditional approaches for modelling big systems, including
UML [OMG03a].

The second reason above is in line with the four key requirements for manufacturing control
systems that are vital in practice identified in [Burmeister98]:

• the control system should be able to dynamically incorporate incoming orders;
• it should adapt to disturbances concerning orders and resources;
• it should exhibit more flexibility when re-arranging (the control of) the production process –

ideally perform the reorganization itself;
• it should be able to co-ordinate its actions with other control systems.

Especially the first and second requirements listed are relevant for the current case study. The
importance of subcontracting is stressed, e.g., in [Zeng99]: “In manufacturing, managers face ‘make or
buy’ decisions, i.e., the choice of making components/products in house or subcontracting them to
outside sources … These decisions are critical in today’s highly competitive and dynamic business
environment”.

130

4.1.3. Principles of Reactive Scheduling

According to [Smith90], the job-shop scheduling problem (or factory scheduling problem) can be
defined as one of coordinating sequences of manufacturing operations for multiple orders so as to:

• obey the temporal restrictions of production processes and the capacity limitations of a set of
shared resources (e.g., machines), and

• achieve a satisfactory compromise with respect to a myriad of conflicting preferential
constraints (e.g. meeting due dates, minimizing work-in-progress, etc.).

Two kinds of scheduling are distinguished between in [Smith90]:
• predictive scheduling which concerns an ability to effectively predict shop behaviour through

the generation of production plans that reflect both the full complexity of the factory
environment and the stated objectives of the organization;

• reactive scheduling which concerns an ability to intelligently react to changing circumstances,
as the shop floor is a dynamic environment where unexpected events (e.g., machine
breakdowns, quality control inspection failures) continually force changes to planned activities.

In the paper [Smith90], the OPIS (OPportunistic Intelligent Scheduler) factory scheduling system
based on a common view of predictive and reactive scheduling is described. The OPIS scheduling
architecture is derived from principles of standard blackboard style architectures. It assumes an
organization comprised of a number of knowledge sources that extend, revise and analyze the globally
accessible factory schedule. The OPIS scheduling architecture combines two principal components: a
schedule maintenance subsystem, for incrementally maintaining a representation of current solution
constraints, and an event-driven control cycle for coordinating the use of knowledge sources.
Generally, coordination of the scheduling effort by the OPIS scheduler proceeds as an event-driven
process. Changes in the state of the schedule, introduced either by internal problem-solving activity
(e.g., generating a schedule for a given order) or by external factory status updates (e.g., notification of
a machine breakdown) are detected by the schedule maintenance system and posted as control events
to the system at the beginning of each problem solving cycle [Smith90].

The OPIS scheduling system combines two alternative problem solving perspectives in generating
a schedule. An order-based perspective repeatedly focuses the scheduler on an individual order’s
schedule and promotes achievement of good compromises with respect to conflicts involving the
operations that must be performed to produce a given order. Alternatively, a resource-based
perspective isolates a specific resource schedule as the scheduler’s focus of attention, and emphasizes
resolution of conflicts involving operations that must compete for that resource. In the OPIS scheduler
these perspectives are represented by the Order Scheduler and Resource Scheduler knowledge sources,
respectively. The Order Scheduler provides a method for generating or revising scheduling decisions
relative to some contiguous portion of a specific order’s production plan. Its scheduling method uses a
beam search to explore alternative sets of resource assignments and execution intervals with respect to
relevant preference constraints (e.g. work-in-process time objectives, machine preferences, etc.). The
Resource Scheduler provides a method for generating or revising the schedule of a designated
resource. It generates scheduling decisions using an iterative dispatch-based approach, adding another
operation to the schedule of the resource under consideration at each cycle, and emphasizes efficient
resource utilization [Smith90].

Similarly, in the agent-based cooperative scheduling system described in [Ow88], the order- and
resource-based perspectives are represented by the work-order manager and resource broker,
respectively. The work-order manager is an agent whose role is to provide estimates of completion
dates for prospective work-orders that minimize the completion time and work-in-process time of the
work-orders. In addition, when a work-order is accepted, the work-order manager is responsible for
finalizing the contracts with the resource brokers, thereby causing the order to be scheduled. The
work-order manager has access to information about the operations that the various resource brokers
can perform, and the manufacturing requirements of prospective work-orders. A resource broker is an
agent representing a set of resources which can perform similar operations. Resource brokers can
represent machines, storage areas, tools, skill levels etc. When a resource broker receives a call from
the work-order manager, bids are generated in accordance with the following hard constraints:

131

• resources/machines must be able to perform the operation, e.g. fulfill machining requirements;
• the maximum capacity of the resource should not be exceeded, e.g., each machine can only

work on one work-order at a time;
• precedence constraints – i.e., an operation cannot start until all its preceding operations have

completed.
In reactive scheduling, violation of the last two constraints resulting from constraint propagation in

response to schedule changes can lead to the detection of two types of conflicts [Smith95]:
• capacity conflicts - situations where the resource requirements of a set of currently scheduled

operations exceed the available capacity of a specific resource over some interval of time;
• time conflicts - situations where either the time bounds or scheduled execution times of two

operations belonging to the same process instantiation violate a defined temporal precedence
constraint.

The recognition of such conflicts signals the need for schedule revision. Detected conflicts are
posted in the current control state as elementary conflict events which require subsequent scheduling
attention [Smith95].
 Constraint propagation can also lead to detection of rescheduling opportunities, situations where
time and capacity constraints are loosened by introduced schedule changes. In the current
implementation of OPIS, such situations are treated in a somewhat specialized manner; opportunity
events are posted only in response to changes originating from external events that imply additional
resource capacity (e.g., cancellation of a process request) to ensure that a rescheduling process is
triggered [Smith95].

According to [Smith95], the simplest reactive methods invoked in response to conflict and
opportunity events in OPIS are the Right Shifter and Left Shifter, respectively.

The Right Shifter implements a reactive method that resolves conflicts by simply “pushing” the
scheduled execution times of designated operations forward in time. Execution of these designated
shifts can introduce both time conflicts (with downstream operations belonging to the same process)
and capacity conflicts (with operations scheduled downstream on the same resource). However, these
conflicts are internally resolved by recursively propagating the shifts through resource and process
schedules to the extent necessary. Thus, the Right Shifter will not introduce any new conflicts into the
overall schedule.

The Left Shifter provides a similar but totally non-disruptive reactive method that “pulls”
operations backwards in time (i.e., closer to execution) to the extent that current resource availability
and temporal process constraints will permit. The method proceeds by sliding operations on a
designated resource R to exploit an identified interval of available resource capacity (and any capacity
intervals created by this sliding), and then recursively applying the procedure to the resources
associated with the successor operations of processes who have had their scheduled execution interval
on R changed. The recursion terminates whenever a downstream resource schedule is encountered that
does not provide opportunities for left shifting or when process schedules have been completely
traversed [Smith95].

The scheduling system of the ceramic factory to be modelled and simulated in the present thesis
will be based on a mixture of the OPIS system [Smith90] and the agent-based cooperative scheduling
system [Ow88] described above. The production department and a resource unit of the factory
respectively embody the work-order manager and a resource broker. Since with an agent-oriented
approach there is no centralized representation of the schedule like in OPIS, the production department
has an overview of the schedule from the perspective of a production order and its production
activities, while a resource unit knows about utilization of the resources represented by it. The Right
Shifter and Left Shifter are realized through rescheduling the production activity or activities whose
schedules are to be shifted right or left.

132

4.1.4. Analysis with Goal-Based Use Cases
The use cases in Tables 4-1 – 4-26 describe the business/manufacturing process types of the ceramic
factory with different types of internal actors of the factory, sketched as a part of the analysis step, in
focus. In Table 4-1, use case 1 “Have the product set produced”, which has the sales department of the
ceramic factory in focus, is presented. This use case is triggered by receiving from a customer a
request to have the product set specified by the product code and required quantity produced. The goal
of the use case, “expecting the product set to be produced” is given in its context in an informal way. It
is semi-formalized in section 4.1.5.4 at the modelling phase of design. The use case is modelled from
the perspective of the customer with the sales department in focus (scope) which means that the goal
of the use case is the so-called user goal, the goal of the actor (i.e., the customer) trying to get work
(primary task) done. Since the use case “Have the product set produced” is triggered by the customer,
the customer is called the primary actor of this use case. The production department is termed the
secondary actor because it is the one from which the actor in focus, sales department, needs assistance
to satisfy the user goal internalized by it. The production department, in turn, has resource units as
secondary actors. Other primary tasks, i.e. use cases that are triggered by primary actors, are use cases
5, 6, 7, 11, 15, 17, 19 and 21 below.

Use case 1 includes as subfunctions use cases 2, 3, and 4. As we learned in section 3.7.1, the goal
of a subfunction, which is a subgoal of some user goal, is attached to the actor in focus. For example,
the goal “expecting the production order to be scheduled” of the subfunction “Have the production
order scheduled” (use case 2), which is a subgoal of the user goal “expecting the product set to be
produced”, is attached to the sales department. Among the use cases mentioned, use case 3 “Make a
proposal and process the reply” includes the main scenario for the case the production proposal is
accepted by the customer and the extension scenario for the opposite case.

A special group of subfunctions are subfunctions that are triggered by internal actors. In the
example of the ceramic factory, to this group belong use cases 22, 23, and 24 below which are
triggered by an internal worker.

In Tables 4-1 to 4-26, the <time or sequence factor> and <condition> components of use case
steps are distinguished by representing them in italic.
Table 4-1. Extended use case for the business process “Have the product set produced”.

USE CASE 1 Have the product set produced.
Goal in Context The customer expects the product set to be produced.
Scope & Level Sales department, primary task.
Preconditions
Success End
Condition

The product set has been produced.

Primary Actor
Secondary Actors

Customer.
Production department.

Trigger A request by the customer to provide it with a product set, specifying the product code
and the quantity required.

DESCRIPTION Step Action
 1 The sales department creates the production order.
 2 The sales department has the production order scheduled (Use Case 2).
 3 The sales department makes a proposal to the customer and processes the

reply by the customer (Use Case 3).
 4 The sales department has the production order completed (Use Case 4).

133

Table 4-2. Extended use case for the business process “Have the production order scheduled”.

USE CASE 2 Have the production order scheduled.
Goal in Context The sales department expects the production order to be scheduled.
Scope & Level Sales department, subfunction.
Preconditions The sales department has created the production order.
Success End
Condition

The production order has been scheduled.

Primary Actor
Secondary Actors

Customer.
Production department.

Trigger
DESCRIPTION Step Action
 1 The sales department forwards the production order to the production

department for scheduling.
 2 The sales department receives the production order from the production

department and registers the scheduling.

Table 4-3. Extended use case for the business process “Make a proposal and process the reply”.

USE CASE 3 Make a proposal and process the reply.
Goal in Context The sales department expects the production proposal to be accepted or rejected by the

customer.
Scope & Level Sales department, subfunction.
Preconditions The production order has been scheduled.
Success End
Condition

The production proposal has been accepted or rejected.

Primary Actor
Secondary Actors

Customer.
Production department.

Trigger
DESCRIPTION Step Action
 1 A proposal to the customer is authorized by the sales manager, registered, and

sent to the customer.
 2 The acceptance of the proposal is received from the customer: the acceptance

is registered and the sales department commits to provide the customer with
the product set, corresponding to the production order.

EXTENSIONS Step Branching Action
 2a The rejection of the proposal is received from the customer: the rejection is

registered, the production department is requested to delete the production
order, and the business process ends.

Table 4-4. Extended use case for the business process “Have the production order completed”.

USE CASE 4 Have the production order completed.
Goal in Context The sales department expects the product set to be produced according to the given

production order.
Scope & Level Sales department, subfunction.
Preconditions The production proposal has been accepted by the customer.
Success End
Condition

The product set has been produced.

Primary Actor
Secondary Actors

Customer.
Production department.

Trigger
DESCRIPTION Step Action
 1 The sales department requests the production department to complete the

production order
 2 The sales department receives a notification about the completion of the

production order from the production department and registers it.
 3 The sales department informs the customer about the completion of the

production order.

134

Table 4-5. Extended use case for the business process “Have the product set delivered”.

USE CASE 5 Have the product set delivered.
Goal in Context The customer expects the product set to be delivered.
Scope & Level Completed production store (internal actor of the sales department), primary task.
Preconditions The product set has been produced.
Success End
Condition

The product set has been delivered to the customer.

Primary Actor
Secondary Actors

Customer.

Trigger A request by the customer to release the product set.
DESCRIPTION Step Action
 1 The completed production store delivers the product set to the customer,

discharges the commitment to provide the customer with the product set, and
registers the delivery.

 2 The completed production store creates the invoice.
 3 The invoice is authorized by the sales manager: the invoice is sent to the

customer, and the sending is registered.
 4 The completed production store creates a claim against the customer to pay

for the product set according to the invoice.

Table 4-6. Extended use case for the business process “Register the payment”.

USE CASE 6 Register the payment.
Goal in Context The customer wants to pay for the product set delivered according to the invoice.
Scope & Level Sales department, primary task.
Preconditions The product set has been delivered and the invoice has been sent to the customer.
Success End
Condition

The customer has paid for the product set delivered according to the invoice.

Primary Actor
Secondary Actors

Customer.

Trigger Receiving of a payment by the customer.
DESCRIPTION Step Action
 1 The sales department registers the payment and satisfies the claim against the

customer to pay for the product set according to the invoice.

Table 4-7. Extended use case for the business process “Create the product set and schedule the production
order”.

USE CASE 7 Create the product set and schedule the production order.
Goal in Context The sales department expects the product set to be created and the production order to

be scheduled.
Scope & Level Production department, primary task.
Preconditions
Success End
Condition

The product set has been created and the production order has been scheduled.

Primary Actor
Secondary Actors

Sales department.
Resource units.

Trigger A request by the sales department to schedule the production order.
DESCRIPTION Step Action
 1 The production department creates the instance of the product set,

corresponding to the production order.
 2 The production department instantiates the production plan (Use Case 8).
 3 The production department schedules the production order (Use Case 9).
 4 The production department sends the production order to the sales department

135

Table 4-8. Extended use case for the business process “Instantiate the production plan”.

USE CASE 8 Instantiate the production plan.
Goal in Context The production department expects the production plan corresponding to the

production order to be instantiated.
Scope & Level Production department, subfunction.
Preconditions The production department has created the instance of the product set, corresponding

to the production order.
Success End
Condition

The production plan for the product set has been instantiated.

Primary Actor
Secondary Actors

Sales department.

Trigger
DESCRIPTION Step Action
 1 For each production activity type of the product type of the product set: create

instance of the production activity type.

Table 4-9. Extended use case for the business process “Schedule the production order”.

USE CASE 9 Schedule the production order.
Goal in Context The production department expects the production activities of the production plan to

be scheduled.
Scope & Level Production department, subfunction.
Preconditions The production plan corresponding to the production order has been instantiated.
Success End
Condition

The production order has been scheduled.

Primary Actor
Secondary Actors

Sales department.
Resource units.

Trigger
DESCRIPTION Step Action
 1 For each production activity of the production plan in the order of their

performing: have the production activity scheduled (Use Case 10).

Table 4-10. Extended use case for the business process “Have the production activity scheduled”.

USE CASE 10 Have the production activity scheduled.
Goal in Context The production department expects the production activity to be scheduled.
Scope & Level Production department, subfunction.
Preconditions The production activity has been instantiated as a part of the corresponding production

plan.
Success End
Condition

The production activity has been scheduled.

Primary Actor
Secondary Actors

Sales department.
Resource units.

Trigger
DESCRIPTION Step Action
 1 The production department sets the earliest start time of the production

activity and sends to the corresponding resource unit a request to schedule the
production activity.

 2 The production department receives from the resource unit a confirmation of
the scheduling of the production activity and registers the scheduling.

136

 Table 4-11. Extended use case for the business process “Complete the production order”.

USE CASE 11 Complete the production order.
Goal in Context The sales department expects the production order to be completed.
Scope & Level Production department, primary task.
Preconditions The production order has been scheduled.
Success End
Condition

The production order has been completed.

Primary Actor
Secondary Actors

Sales department.
Resource units.

Trigger A request to complete the production order by the sales department.
DESCRIPTION Step Action
 1 The production department commits towards the sales department to complete

the production order.
 2 Until the production order is completed: the production department follows

the production activities of the production plan corresponding to the
production order for rescheduling, start, and completion (Use Case 12).

 3 The production department informs the sales department about the completion
of the production order and discharges the commitment towards the sales
department to complete the production order.

Table 4-12. Extended use case for the business process “Follow the production activities”.

USE CASE 12 Follow the production activities.
Goal in Context The production department expects the status changes of the production activities of

the given product set to be registered.
Scope & Level Production department, subfunction.
Preconditions All the production activities of the given product set have been scheduled.
Success End
Condition

All the production activities of the given product set have been completed.

Primary Actor
Secondary Actors

Sales department.
Resource units.

Trigger
DESCRIPTION Step Action
 1 The production department receives from a resource unit a message about

rescheduling of a production activity involved in a capacity conflict: the
production department has all the production activities to be performed after
the given production activity that are involved in a time conflict shifted (Use
Case 13).

EXTENSIONS Step Branching Action
 1a The production department receives from a resource unit a message about the

start of a production activity: the start of the production activity is registered.
 1b The production department receives from a resource unit a message about the

end of a production activity: the end of the production activity is registered
and the production department has all the production activities to be
performed after the given production activity that are involved in a time
conflict shifted (Use Case 13).

137

Table 4-13. Extended use case for the business process “Have the production activities shifted”.

USE CASE 13 Have the production activities shifted.
Goal in Context The production department expects all the production activities to be performed after

the given production activity that are involved in a time conflict to be shifted.
Scope & Level Production department, subfunction.
Preconditions The production activities have been scheduled and are involved in a time conflict.
Success End
Condition

The production activities have been shifted.

Primary Actor
Secondary Actors

Sales department.
Resource units.

Trigger
DESCRIPTION Step Action
 1 For each production activity to be performed after the given production

activity that is involved in a time conflict: have the production activity shifted
(Use Case 14).

Table 4-14. Extended use case for the business process “Have the production activity shifted”.

USE CASE 14 Have the production activity shifted.
Goal in Context The production department expects the production activity to be shifted.
Scope & Level Production department, subfunction.
Preconditions The production activity has been scheduled and is involved in a time conflict.
Success End
Condition

The production activity has been shifted.

Primary Actor
Secondary Actors

Sales department.
Resource units.

Trigger
DESCRIPTION Step Action
 1 The production department sets the earliest start time of the production

activity and sends to the corresponding resource unit a request to reschedule
the production activity.

 2 The production department receives from the resource unit a confirmation of
rescheduling of the production activity and registers the rescheduling.

Table 4-15. Extended use case for the business process “Delete the production order”.

USE CASE 15 Delete the production order.
Goal in Context The sales department expects the production order and the corresponding product set to

be deleted.
Scope & Level Sales department, primary task.
Preconditions The production order has been scheduled.
Success End
Condition

The production order and the corresponding product set have been deleted.

Primary Actor
Secondary Actors

Sales department.
Resource units.

Trigger A request to delete the production order by the sales department.
DESCRIPTION Step Action
 1 The production department has the production activities of the product set

corresponding to the production order deleted (Use Case 16).
 2 The production department deletes the production order and the corresponding

product set.

138

Table 4-16. Extended use case for the business process “Have the production activities deleted”.

USE CASE 16 Have the production activities deleted.
Goal in Context The production department expects the production activities of the product set to be

deleted.
Scope & Level Production department, subfunction.
Preconditions The production activities of the product set have been scheduled.
Success End
Condition

The production activities of the product set have been deleted.

Primary Actor
Secondary Actors

Sales department.
Resource units.

Trigger
DESCRIPTION Step Action
 1 For each production activity of the product set: delete the production activity

and request the corresponding resource unit to delete it.

Table 4-17. Extended use case for the business process “Perform the production activity”.

USE CASE 17 Perform the production activity.
Goal in Context The production department expects the production activity to be scheduled and

performed.
Scope & Level Resource unit, primary task.
Preconditions
Success End
Condition

The production activity has been scheduled and performed.

Primary Actor
Secondary Actors

Production department.

Trigger A request to schedule the production activity by the production department.
DESCRIPTION Step Action
 1 The resource unit allocates the resources required for performing of the

production activity to the production activity (Use Case 18).
 2 The resource unit registers the scheduling, commits towards the production

department to complete the production activity, and informs the production
department about the scheduling.

 3 A signal by an internal worker on changing the capacity of a resource is
received and the production activity is allocated to the resource having the
capacity conflict: resolve the capacity conflict (Use Case 24).

 4 A signal on starting of the production activity by an internal worker is
received: register the start of the production activity (Use Case 22).

 5 A signal on completion of the production activity by an internal worker is
received: register the end of the production activity (Use Case 23).

Table 4-18. Extended use case for the business process “Allocate the resources”.

USE CASE 18 Allocate the resources.
Goal in Context The resource unit expects the resources required for performing of the production

activity to be allocated to the production activity.
Scope & Level Resource unit, subfunction.
Preconditions
Success End
Condition

The resources required for performing of the production activity have been allocated to
the production activity.

Primary Actor
Secondary Actors

Production department.

Trigger
DESCRIPTION Step Action
 1 For each resource required for performing of the production activity: allocate

the resource to the production activity.

139

Table 4-19. Extended use case for the business process “Reschedule the production activity”.

USE CASE 19 Reschedule the production activity.
Goal in Context The production department expects the production activity involved in a capacity

conflict to be rescheduled.
Scope & Level Resource unit, primary task.
Preconditions The production activity has been scheduled and is involved in a capacity conflict.
Success End
Condition

The production activity has been rescheduled.

Primary Actor
Secondary Actors

Production department.

Trigger A request to reschedule the production activity has been received from the production
department.

DESCRIPTION Step Action
 1 The resource unit deletes the commitment of the resource unit towards the

production department to complete the production activity.
 2 The resource unit deletes the resource allocations of the production activity

(Use Case 20).
 3 The resource unit re-allocates the resources required for performing of the

production activity to the production activity (Use Case 18).

Table 4-20. Extended use case for the business process “Delete the resource allocations”.

USE CASE 20 Delete the resource allocations.
Goal in Context The resource unit expects the resource allocations of the production activity to be

deleted.
Scope & Level Resource unit, subfunction.
Preconditions The production activity has been scheduled and is involved in a capacity conflict.
Success End
Condition

The resource allocations of the production activity have been deleted.

Primary Actor
Secondary Actors

Production department.

Trigger
DESCRIPTION Step Action
 1 For each resource allocated to the production activity: delete the allocation.

Table 4-21. Extended use case for the business process “Delete the production activity”.

USE CASE 21 Delete the production activity.
Goal in Context The production department expects the production activity to be deleted.
Scope & Level Resource unit, primary task.
Preconditions The production activity has been scheduled.
Success End
Condition

The production activity has been deleted.

Primary Actor
Secondary Actors

Production department.

Trigger A request by the production department to delete the production activity.
DESCRIPTION Step Action
 1 The resource unit deletes the commitment of the resource unit towards the

production department to complete the production activity.
 2 The resource unit deletes the resource allocations of the production activity

(Use Case 20).
 3 The resource unit deletes the production activity.

140

Table 4-22. Extended use case for the business process “Register the start of the production activity”.

USE CASE 22 Register the start of the production activity.
Goal in Context The resource unit expects the start of the production activity to be registered.
Scope & Level Resource unit, subfunction.
Preconditions The production activity has been scheduled.
Success End
Condition

The start of the production activity has been registered.

Primary Actor
Secondary Actors

Internal worker.

Trigger A signal on starting of the production activity by an internal worker.
DESCRIPTION Step Action
 1 The resource unit registers the start of the production activity.

Table 4-23. Extended use case for the business process “Register the end of the production activity”.

USE CASE 23 Register the end of the production activity.
Goal in Context The resource unit expects the end of the production activity to be registered.
Scope & Level Resource unit, subfunction.
Preconditions The production activity has been scheduled.
Success End
Condition

The end of the production activity has been registered.

Primary Actor
Secondary Actors

Internal worker.

Trigger A signal on completion of the production activity by an internal worker.
DESCRIPTION Step Action
 1 The resource unit registers the end of the production activity, discharges the

commitment of the resource unit towards the production department to
complete the production activity, and informs the production department
about the completion of the production activity.

Table 4-24. Extended use case for the business process “Resolve the capacity conflict”.

USE CASE 24 Resolve the capacity conflict.
Goal in Context The resource unit expects all the production activities allocated to the resource having

the capacity conflict to be rescheduled.
Scope & Level Resource unit, subfunction.
Preconditions A capacity conflict of the resource has been detected.
Success End
Condition

All the production activities allocated to the resource having the capacity conflict have
been rescheduled.

Primary Actor
Secondary Actors

Internal worker.

Trigger A signal by an internal worker on changing the capacity of a resource.
DESCRIPTION Step Action
 1 The resource unit cancels all the resource allocations of production activities

to the resource having the capacity conflict (Use Case 25).
 2 The resource unit reschedules all the production activities that are to be

allocated to the resource having the capacity conflict (Use Case 26).

141

Table 4-25. Extended use case for the business process “Cancel the resource allocations”.

USE CASE 25 Cancel the resource allocations.
Goal in Context The resource unit expects all the resource allocations of production activities to the

resource having the capacity conflict to be deleted.
Scope & Level Resource unit, subfunction.
Preconditions A capacity conflict of the resource has been detected.
Success End
Condition

All the resource allocations of production activities to the resource having the capacity
conflict have been deleted.

Primary Actor
Secondary Actors

Internal worker.

Trigger
DESCRIPTION Step Action
 1 For each production activity allocated to the resource having the capacity

conflict: the resource unit deletes the resource allocations of the production
activity (Use Case 20).

Table 4-26. Extended use case for the business process “Reschedule the production activities”.

USE CASE 26 Reschedule the production activities.
Goal in Context The resource unit expects all the production activities to be allocated to the resource

having the capacity conflict to be rescheduled.
Scope & Level Resource unit, subfunction.
Preconditions All the resource allocations of production activities to the resource having the capacity

conflict have been deleted.
Success End
Condition

All the production activities to be allocated to the resource having the capacity conflict
have been rescheduled.

Primary Actor
Secondary Actors

Internal worker.

Trigger
DESCRIPTION Step Action
 1 For each production activity to be allocated to the resource having the

capacity conflict: schedule the production activity (Use Case 17).

142

4.1.5. Design By Extended AOR Modelling

4.1.5.1. Organization Modelling

According to [Ow88], production scheduling decisions for large and/or complex manufacturing
facilities are often not made by any single individual. Rather, a group of people may be identified in
the organization who cooperate and share information to develop and manage a production schedule.
Because of the routine nature of the scheduling task, this group has usually adopted some organization
structure to make the decision-making process efficient. As a drastic change to this organization
structure is not desired, the AORML agent diagram of the ceramic factory’s organization structure,
shown in Figure 4-1, reflects the existing factory. However, the organization structure has been
complemented with some generalizations in line with the principles of reactive scheduling introduced
in section 4.1.3.

The agent instance CeramicFactory depicted in Figure 4-1, which belongs to the agent type
Organization, represents the ceramic factory to be modelled. There is an isBenevolentTo relationship
between the internal agent type SalesDepartment of the CeramicFactory and the external agent type
Customer. The agent CeramicFactory consists of instances of the following subclasses of the institutional
agent type OrganizationUnit, representing departments and other internal units of the factory:
FactoryManagement, TechnologicalDepartment, AccountingDepartment, SalesDepartment,
ProductionDepartment, DesignDepartment, SupplyDepartment, and ResourceUnit. Like in section 3.8.1, the
number of instances of an agent type is shown in the top right corner of the box with rounded corners
denoting the corresponding agent type.

The institutional agent type FactoryManagement includes the internal institutional agent type
ManagingBoard. In the same way, the institutional agent type SalesDepartment includes the internal
institutional agent types FactoryShop and CompletedProductionStore, and the institutional agent type
SupplyDepartment includes the institutional agent type RawMaterialStore. In addition to other institutional
agent types, the institutional agent types modelled in Figure 4-1 include human role types, like, e.g.,
ChiefTechnologist, Accountant, and Designer. A typical pattern of internal agent types within an
institutional agent type representing a department of the factory consists of the human role type of the
head of the department, like ChiefTechnologist, ChiefAccountant, SalesManager, ChiefDesigner, and
SupplyManager, who has one or more human role types subordinated to it.

Within the ceramic factory, like within any other organization, there is a hierarchy of roles where
one role is subordinate to another role. For example, in Figure 4-1 there is an isSubordinateTo
relationship between the human role types BoardMember and StaffManager on one hand and the human
role type ManagingDirector on the other. The human role type BoardMember forms a superclass of the
human role types SalesManager and ProductionManager. The human role types ManagingDirector and
BoardMember are included by the internal institutional agent type ManagingBoard which reflects the fact
that the ManagingDirector as well as the SalesManager and ProductionManager belong to the managing
board of the factory by virtue of their offices. There is also an isSubordinateTo relationship between
several other human role types in Figure 4-1, like, e.g., between the internal agent types StoreKeeper
and SalesManager of SalesDepartment. All the human role types represented in Figure 4-1 are subclasses
of the human role type EmployeeOfCeramicFactory, which, in turn, forms a subclass of the agent type
Person. For the sake of clarity of Figure 4-1, these agent types are not represented in the figure.

The Order Scheduler and Resource Scheduler introduced in section 4.1.3 are represented in Figure
4-1 by the institutional agent types ProductionDepartment and ResourceUnit which respectively consist of
the human role types ProductionManager and Worker. Instances of Worker are subordinated to the
instance of ProductionManager. The institutional agent type ResourceUnit has been introduced to enable
the modelling of two-perspective scheduling described in section 4.1.3. In the ceramic factory to be
modelled there is no real agent type corresponding to it, even though workers effectively form teams
according to their specialties. The institutional agent type ResourceUnit has as subclasses the
institutional agent types MouldmakingUnit, Moulding/CastingUnit, ElaborationUnit, BurningUnit,
RawMaterialStore, and CompletedProductionStore, representing different types of resource units of the
ceramic factory.

143

CeramicFactory:
Organization

1

1

Organization
Unit

Resource
Unit

Factory
Management

Worker

Production
Department

<<isSubordinateTo>> 1..*

1..*Sales
Department

FactoryShop

CompletedProduction
Store

<<
is

Su
bo

rd
in

at
e

To
>>

1

1

1 1

Shop
Manager

Store
Keeper

1

1

Production
Manager

1Sales
Manager

1

<<isSubordinateTo>>

Design
Department

1

Chief
Artist

1

1

Artist 1..*

<<isSubordinateTo>>

Technological
Department

1

Chief
Technologist

1

Technologist 1..*

<<isSubordinateTo>>

Accounting
Department

1

Chief
Accountant

1

Staff
Manager

1
Accountant 1..*

<<isSubordinateTo>>

1

1

Mouldmaking
Unit

Moulding/Casting
Unit

Elaboration
Unit

Burning
Unit

1 1 1 1

Supply
Department

RawMaterial
Store

1

Store
Keeper

1

<<isSubordinateTo>>

Supply
Manager

1

ManagingBoard

Managing
Director

1

<<isSubordinateTo>>

<<isSubordinateTo>>

Board
Member

2

<<isSubordinateTo>>

<<isSubordinateTo>>

<<isSubordinateTo>>

<<isSubordinateTo>>

<<isBenevolentTo>>

Customer:
Organization

<<providesResourceTo>>

Figure 4-1. The organization model of the ceramic factory.

144

4.1.5.2. Information Modelling

Principles of Creating Scheduling Ontologies

The OZONE scheduling ontology described in [Smith97] can be described as a meta-model of the
domain of scheduling. It provides a language for describing those aspects of the scheduling domain
that are relevant to construction of an application system, and a set of constraints on how concepts in
the language fit together to form consistent domain models. Consistency, in this context, relates to the
information and knowledge required to insure executability of the model. Generally speaking, the
ontology serves to map user-interpretable descriptions of an application domain to application system
functionality [Smith97]. As such, the principles underlying the OZONE ontology can be applied to the
modelling and simulation of the ceramic factory’s business processes from the point of view of
scheduling and managing of schedules.

Scheduling is defined in OZONE as a process of feasibly synchronizing the use of RESOURCES
by ACTIVITIES to satisfy DEMANDS over time, and application problems are described in terms of
this abstract domain model. Figure 4-2, adopted from [Smith97], illustrates the base concepts involved
and their structural relationships. A DEMAND is an input request for one or more PRODUCTS,
which designate the GOODS or SERVICES required. Satisfaction of DEMANDS centers around the
execution of ACTIVITIES. An ACTIVITY is a process that uses RESOURCES to produce goods or
provide services. The use of RESOURCES and the execution of ACTIVITIES are restricted by a set
of CONSTRAINTS. These five base concepts of the ontology – DEMAND, ACTIVITY,
RESOURCE, PRODUCT, and CONSTRAINT – together with the inter-relationships depicted in
Figure 4-2, define an abstract model of a scheduling domain, and a framework for analyzing and
describing particular application environments. Associated with each concept definition are
terminologies for describing basic properties and capabilities. Properties define attributes or
parameters of relevance to specifying an executable scheduling model [Smith97]. Capabilities roughly
correspond to methods of object types (i.e., of concepts) related to the scheduling functionality, such
as Find-Schedulable-Time associated with an ACTIVITY.

According to [Smith97], plans and schedules are represented as networks of ACTIVITIES in
OZONE, with an ACTIVITY containing various decision variables (e.g., start time, end time, assigned
resources). To construct a schedule that satisfies a given input DEMAND, it is necessary to first
instantiate a set of ACTIVITIES that will produce (provide) the designated PRODUCT.

To schedule an ACTIVITY, it is necessary to choose specific RESOURCES, which involves
determining intervals where resources have capacity available to support execution of the ACTIVITY,
and subsequently allocating capacity of chosen RESOURCES to ensure that they will not be used by
other ACTIVITIES. The semantics of allocating (and de-allocating) resource capacity varies according
to the type of RESOURCE involved. To this end, a RESOURCE maintains a representation of its
available capacity over time [Smith97].

Figure 4-2. Abstract domain model of the OZONE ontology.

145

The Scheduling Ontology of the Ceramic Factory

The domain model of the ceramic factory depicted in Figure 4-3 is based on the principles of creating
scheduling ontologies that were presented in the previous subsection. In Figure 4-3, the institutional
agent CeramicFactory includes (instances of) the institutional internal agent types FactoryManagement,
SalesDepartment, ProductionDepartment, and ResourceUnit. For the latter the subclasses MouldmakingUnit,
RawMaterialStore, and CompletedProductionStore are shown in Figure 4-3. All of them were introduced in
section 4.1.5.1. The agents have knowledge/information about their proprietary object types and about
object types that are shared between agents of different types.

In the ontology depicted in Figure 4-3, the concept DEMAND of Figure 4-2 is represented by the
object type ProductionOrder. It is shared between the agent CeramicFactory and the agent type Customer.
A ProductionOrder is characterized by a number of attributes, the most important ones of which are
releaseTime, dueTime, productCode, and quantity, and by the shared status predicate isCompleted. The
attributes releaseTime and dueTime are respectively the earliest and latest time when the production
activities for producing the product set corresponding to the ProductionOrder can start and end,
respectively. The attributes productCode and quantity respectively specify the type and number of the
products in the product set requested. The internal representation of the object type ProductionOrder
within the agent CeramicFactory satisfies one of the following status predicates: isPreliminary,
isScheduled, isProposed, isAccepted, isRejected, or isDelivered.

There is a shared object type Invoice connected to the informational entity types ProductionOrder,
Customer, and CeramicFactory. It includes a number of attributes like orderID, productCode, quantity, price,
subtotal, VAT, and total. In addition, its internal representation within the SalesDepartment is possessed
of the status predicates isPreliminary, isSent, and isPaid.

In Figure 4-3, the type of the products requested is modelled by the association between the object
types ProductionOrder and ProductType. An instance of ProductType is identified by its attributes
productName (e.g., “coffee cup Kirke”) and productCode (e.g., “22882”). The internal representation of
the object type ProductType within the agent type ProductionDepartment differs from its base object type
by a number of relations to other object types. Among them, an ordered sequence of instances of
ProductionActivityType associated with an instance of ProductType define the product type in question.
Specific products to be produced to satisfy production orders are represented as instances of ProductSet
which corresponds to the concept PRODUCT in Figure 4-2. Each ProductSet references an ordered
sequence of instances of ProductionActivity which form the set of processing steps required to produce
the ProductSet. There are associations of the type PrecedenceInterval between instances of
ProductionActivityType. Each association specifies the lower bound and upper bound of the temporal
separation between production activities of two types. In conformance with [Smith89], the
associations of the type PrecedenceInterval are intended to provide a basis for describing generic
manufacturing processes, defining sets of possible ProductionActivity sequences. Precedence relations
between instantiated production activities, i.e. sequences of production activities that are known with
certainty, are derived from possible sequences and instances of ProductionActivity by means of
derivation rules provided in Appendix D.

As well as the OZONE ontology briefly described in the previous section, the scheduling ontology
of the ceramic factory adopts an activity-centered modelling viewpoint. In the center of the ontology
represented in Figure 4-3 is thus the shared object type ProductionActivity, corresponding to the concept
ACTIVITY in Figure 4-2. An object of the type ProductionActivity can have the status isUnscheduled,
isScheduled, isInProcess, or isCompleted. An instance of ProductionActivity is characterized by the
following attributes: activityID, typeName, earliestStartTime, quantity, startTime, and endTime. The
identifier attribute activityID contains the identifier of the production activity which is automatically
assigned to it upon creation of the corresponding object. The attribute typeName repeats the value of
the attribute activityName of the activity’s ProductionActivityType which is discussed below. The action of
scheduling a ProductionActivity results in determining values for the attributes startTime and endTime.
The attribute earliestStartTime indicates the earliest time at which the given ProductionActivity can be
performed, considering the endTime of the previous activity scheduled or the releaseTime of the
ProductionOrder in case of the first production activity. Each instance of ProductionActivity belongs to
some ProductionActivityType which is represented by the corresponding many-to-one relationship in
Figure 4-3. An instance of ProductionActivityType is characterized by the name of the activity type
(activityName) and the average speed of performing an activity of the corresponding type
(numberOfProductsPerHour). The latter includes the time required for setting up the resources before a

146

ProductionActivity of the given type can actually start. The object type ProductionActivity has a specific
internal representation within the agent type ProductionDepartment. It complements the status predicate
isScheduled with the internal intensional predicate hasTimeConflict(ProductionOrder) because a time
conflict between scheduled activities is always detected within the ProductionDepartment. The
intensional predicate hasTimeConflict (ProductionOrder) can be expressed as the following OCL operation
attached to the object type ProductionActivity where the helper operation getEarliestStartTime
(ProductionOrder) of ProductionActivity is defined in Appendix D:

context ProductionActivity::hasTimeConflict (order : ProductionOrder) : Boolean
post: result = (self.getEarliestStartTime(order) > self.startTime)

Also important in a scheduling ontology is the concept of a resource. It is represented as a shared
object type Resource in Figure 4-3 which corresponds to the concept RESOURCE in Figure 4-2. Each
institutional agent of the type ResourceUnit has knowledge about objects of at least one of the
proprietary subtypes ReusableResource and DiscreteStateResource of Resource. A ReusableResource,
like a set of ceramic moulds, is a resource whose capacity becomes available for reuse after the
ProductionActivity to which it has been allocated finishes. An instance of ReusableResource is
characterized by two attributes: its cumulativeUsageTimes, which is the total amount of resource uses
permitted (e.g., the number of times that the use of a MouldSet is permitted for moulding or casting),
and the numberOfResources. A DiscreteStateResource, like a worker or a machine or a combination of
them, is a resource whose availability is a function of some discrete set of possible state values (e.g.,
idle and busy). Each instance of DiscreteStateResource consists of the internal object :Capacity and
instances of the internal object type CapacityInterval. The Capacity specifies the numberOfResources and
batchSize. The latter is the number of products that the resource can process simultaneously. The
capacity of a resource is represented as an ordered sequence of instances of CapacityInterval, e.g., work
shifts, with each interval indicating the instances of ProductionActivity that are anticipated to be
consuming capacity within its temporal scope and the capacity that remains available [Smith89]. For
each CapacityInterval, the startTime and endTime of the interval are thus specified. The specializations of
CapacityInterval, not shown in Figure 4-3, are WorkMonth, WorkWeek, and WorkShift. They are present in
the simulation environment of the ceramic factory that will be briefly described in section 4.1.5.6.
Successful scheduling results in attaching a CapacityInterval to one or more instances of
ProductionActivity. For determining whether a CapacityInterval can be allocated to the given
ProductionActivity, the object type CapacityInterval has the intensional predicate isSchedulable
(ProductionActivity). There are two versions of this intensional predicate because the allocation of
capacity intervals of a DiscreteStateResource to production activities is different for instances of its two
subclasses UnitCapacityResource and BatchCapacityResource. An instance of UnitCapacityResource, like a
worker, can process only one product at a time, i.e., its batchSize is 1, whereas a BatchCapacityResource,
like a kiln, can process simultaneously up to batchSize products. This is also reflected by the respective
two subclasses of CapacityInterval: UnitCapacityInterval and BatchCapacityInterval. While the available
capacity of a UnitCapacityInterval is characterized by the attribute availableDuration (e.g., per work shift),
the available capacity of a BatchCapacityInterval is represented by the number of products
(availableCapacity) that the resource (e.g., a kiln) is capable of processing at a time. The intensional
predicates isSchedulable(ProductionActivity) for UnitCapacityInterval and BatchCapacityInterval are defined in
Appendix D. The first of them looks like as follows:

context UnitCapacityInterval::isSchedulable (a : ProductionActivity) : Boolean =
a.earliestStartTime <= endTime and requiredDuration(a) <= availableDuration and
self.unitCapacityResource.unitCapacityInterval->select(a.earliestStartTime <= endTime and
requiredDuration(a) <= availableDuration)->forAll(self.startTime <= startTime)

The intensional predicate above makes use of the helper operation requiredDuration(ProductionActivity) of
UnitCapacityInterval which calculates the time (in minutes) that the given UnitCapacityResource needs for
performing the ProductionActivity. The select-operation of OCL returns all the capacity intervals that can
be allocated to the instance of ProductionActivity referred to by a, and the forAll-operation following it
makes sure that only the earliest capacity interval among them is allocated to the ProductionActivity.

All the resource types represented in Figure 4-3 are human resources. According to [Smith90],
human resources are resources that comprise the human work done. Depending on the characteristics
of a given manufacturing environment, human resources might be defined as either primary or
secondary resources from the standpoint of allocation. For example, a burner is a secondary resource

147

because its allocation accompanies the allocation of a resource of another type – kiln, while a caster is
a primary resource.

148

Ceramic
Factory

Factory
Management

ProductionActivityType

Customer

SalesDepartment

Invoice

Resource
Unit

precedes

activityName: String
numberOfProductsPerHour:
Real

ProductionOrder

follows Production
Department

ProductType

ProductSet

{ordered}

Mouldmaking
Unit

MouldSet
productName:
String
productCode:
String

isPreliminary

isProposed

isAccepted

isRejected

isScheduled

isPreliminary

isSent

isPaid

{ordered}

DiscreteStateResource

:Capacity
numberOfResources:
Integer
batchSize: Integer

UnitCapacityResource

UnitCapacityInterval
availableDuration: Integer

BatchCapacityResource

CapacityInterval
startTime: Date
endTime: Date

ReusableResource

cumulativeUsageTimes: Integer
numberOfResources: Integer

Completed
Production
Store

ProductionOrder
orderID: String
customerID: String
contactPerson:
String
phoneNumber:
String
releaseTime: Date
productCode: String
dueTime: Date
quantity: Integer
price: Currency

Invoice
accountNumber:
String
orderID: String
productCode: String
quantity: Integer
price: Currency
subtotal: Currency
VAT: Currency
total: Currency
paidBy: Date

<<represents>

<<represents>

isCompleted

isDelivered

ProductType
productName:
String
productCode:
String

<<represents>

1

0..*

1

0..*

1

0..*

11..*

1

1

0..1

0..*

0..*

1

0..*

1

ProductionActivity

Resource

resourceName: String

1..* 0..*

0..1

11

1

BatchCapacityInterval
availableCapacity:
Integer

Supply
Department

Raw
Material
Store

isScheduled
hasTimeConflict

(ProductionOrder)

ProductionActivity
activityID: String
typeName: String
earliestStartTime:
Date
quantity: Integer
startTime: Date
endTime: Date

isUnscheduled

isScheduled

isInProcess

isCompleted

<<represents>

0..*

1

1

0..*

0..*

1 0..*

PrecedenceInterval

lowerBound: Integer
upperBound: Integer

0..1 0..1

isSchedulable
(Production

Activity)
hasCapacityConflict

1

1

1..*

1

1

1

1..*

Figure 4-3. The domain model of the ceramic factory.

149

4.1.5.3. Interaction Modelling

The interaction frames in the extended interaction frame diagram depicted in Figure 4-4 correspond to
the use cases represented in Tables 4-1 – 4-26.

The first communicative action event type in the interaction frame between the agent type Customer
and the internal agent type SalesDepartment of the CeramicFactory represents a request by the Customer
to provide it with the product set which is identified by the product code (?String) and quantity needed
(?Integer). Since there is an isBenevolentTo relationship between the agent types SalesDepartment and
Customer in the organization model of Figure 4-1, the next three communicative action event types
model a proposal by the SalesDepartment to provide the Customer with the product set according to the
production order created by the SalesDepartment, and its acceptance or rejection by the Customer. The
instance of the production order, which includes a specific due time, is described by the data element
?ProductionOrder of the corresponding communicative action event. If the proposal is accepted, the
SalesDepartment commits on behalf of the CeramicFactory towards the Customer to provide it with the
product set corresponding to the production order. A commitment/claim of this type is satisfied by an
action event of the type provideProductSet(?ProductionOrder) which is coupled with the corresponding
commitment/claim type. The next action event types are used after the product set has been produced.
The SalesDepartment first informs the Customer about the completion, and the latter then issues to the
CompletedProductionStore (an internal institutional agent of the SalesDepartment) a request to release the
product set identified by the corresponding ProductionOrder. The CompletedProductionStore provides the
Customer with the product set in question and also sends to the Customer the invoice (?Invoice). This
creates for the SalesDepartment a claim against the Customer that it would pay for the product set
according to the invoice. The claim is satified by actual paying for the product set by the Customer.

The starting point for creating the interaction frame between the internal agent types
SalesDepartment and ProductionDepartment is the providesResourceTo relationship between them in
Figure 4-1. The ProductionDepartment thus provides the SalesDepartment with the resources needed for
selling the products of the factory. The first communicative action event type of the interaction frame
models a request by the SalesDepartment to the ProductionDepartment to schedule the production order
described by the action event’s data element ?ProductionOrder. Since neither scheduling a production
order nor producing a product set according to it can be immediately perceived by the SalesDepartment,
both are represented in terms of the domain model of the ceramic factory shown in Figure 4-3 as
making true the respective status predicates isScheduled and isCompleted of the corresponding instance
of ProductionOrder. After the ProductionDepartment has returned the scheduled production order to the
SalesDepartment, it receives from the SalesDepartment a request to either have the production order
completed or to delete it which is reflected by the corresponding communicative action event types. In
the first case, a stit-commitment/claim of the type achieve(isCompleted(?ProductionOrder)) is formed
between the ProductionDepartment and SalesDepartment. The satisfaction of this commitment/claim is
expressed by an instance of the corresponding achieve construct type.

The interaction frame between the agent types ProductionDepartment and ResourceUnit in Figure 4-4
is largely determined by the isSubordinateTo relationship between their internal agent types
ProductionManager and Worker which is reflected at the level of their comprising organization units.
This means that a ResourceUnit schedules and performs a production activity as requested by the
ProductionDepartment and reports to the latter. The first communicative action event type between the
agent types ProductionDepartment and ResourceUnit models a request by the ProductionDepartment to
schedule the production activity that is described by the action event’s data element ?ProductionActivity.
In addition to initial scheduling of a production activity, a message of this type is also sent if a time
conflict in the schedule is detected within the ProductionDepartment. The second message type models
the confirmation of a scheduling by the ResourceUnit. The third message type, representing a request to
delete the scheduled production activity described by ?ProductionActivity, is used only if the scheduled
production order, which includes the production activity to be deleted, has been rejected by the
Customer. Since the completion of a production activity cannot be directly perceived, it is modelled
through the achieve construct type achieve(isCompleted(?ProductionActivity)) between the agent types
ResourceUnit and ProductionDepartment. The achieve construct type is coupled with the corresponding
stit-commitment/claim type because the completion of a production activity is preceded by the
formation of the corresponding commitment/claim of this type. Communicative action event types
inform(isScheduled(?ProductionActivity)), inform(isInProcess(?ProductionActivity)), and inform(isCompleted
(?ProductionActivity)) are for informing the ProductionDepartment about the status changes of the
production activity described by ?ProductionActivity.

150

CeramicFactory

Resource
Unit

request achieve
(isScheduled

(?ProductionActivity))

inform
(isScheduled

(?ProductionActivity))

Production
Department

inform
(isInProcess

(?ProductionActivity))

achieve
(isCompleted

(?ProductionActivity) ?Date)
achieve

(isCompleted
(?ProductionActivity))

inform
(isCompleted

(?ProductionActivity))

request achieve
(isScheduled

(?ProductionOrder))

inform
(isScheduled

(?ProductionOrder))

request delete
(ProductionOrder

(?String))

achieve
(isCompleted

(?ProductionOrder) ?Date)
achieve

(isCompleted
(?ProductionOrder))

inform
(isCompleted

(?ProductionOrder))

Sales
Department

Completed
Production
Store

request delete
(?ProductionActivity)

request
provideProductSet
(?String ?Integer)

propose
provideProductSet
(?ProductionOrder)

accept-proposal
provideProductSet

(ProductionOrder(?String))

inform
(isCompleted

(ProductionOrder(?String))

Customer

reject-proposal
provideProductSet

(ProductionOrder(?String))

provideProductSet
(?ProductionOrder

?Date)

provideProductSet
(?ProductionOrder)

request
provideProductSet

(ProductionOrder(?String))

request
payInvoice
(?Invoice)

payInvoice
(?Invoice ?Date)

payInvoice
(?Invoice)

request achieve
(isCompleted

(ProductionOrder(?String)))

Figure 4-4. The extended interaction frame diagram of the CeramicFactory.

151

4.1.5.4. Function and Goal Modelling

By following guideline 1 of the recursive procedure described in section 3.8.4.1, main scenarios of the
descriptions of the business/manufacturing processes of the ceramic factory by goal-based use cases
presented in Tables 4-1 − 4-26 are turned into the corresponding activity types of the proper agent
types. In Appendix F, the activity types distinguished at the stage of function and motivation
modelling are presented in bold.

Firstly, the main scenarios of the primary tasks triggered by external agents are modelled according
to guideline 1 in section 3.8.4.1. For example, the main scenarios of use cases 1 (“Have the product set
produced”) and 5 (“Have the product set delivered”) with the sales department in focus are represented
in Appendix F as the respective activity types “Manage production order” and “Manage product
delivery” of the internal agent type SalesDepartment of the CeramicFactory. Analogously, the main
scenarios of use cases 7 (“Create the product set and schedule the production order”) and 11
(“Complete the production order”) with the production department in focus are turned in Appendix F
into the respective activity types “Process production order” and “Complete production order” of the
internal agent type ProductionDepartment. According to guideline 2 in section 3.8.4.1, the triggers of the
primary tasks mentioned are modelled in Appendix F as the respective reaction rules R1, R11, R19, and
R27. The main scenarios of use cases 17 (“Perform the production activity”) and 19 (“Reschedule the
production activity”) with the resource unit in focus are represented in Appendix F as the respective
activity types “Schedule and perform production activity” and “Reschedule production activity” of the
internal agent type ResourceUnit. The triggers of these primary tasks are modelled in Appendix F as the
respective reaction rules R44 and R48.

Next, subordinate use cases (subfunctions) of the primary tasks are turned into the respective
subactivity types of the activity types modelled as is described in guidelines 3 − 5 in section 3.8.4.1.
The subfunctions “Have the production order scheduled” (Use Case 2), “Make a proposal and process
the reply” (Use Case 3), and “Have the production order completed” (Use Case 4) of the primary task
“Have the product set produced” (Use Case 1) are thus modelled as the respective sequential
subactivity types “Have production order scheduled”, “Manage proposal”, and “Manage completion”
of the internal agent type SalesDepartment of the CeramicFactory.

Following the same guidelines, the activity type “Process production order” of the internal agent
type ProductionDepartment, corresponding to the primary task “Create the product set and schedule the
production order” (Use Case 7), is refined into the subactivity types “Instantiate production plan” and
“Schedule production order”. The subfunction “Follow the production activities” (Use Case 12) of the
primary task “Complete the production order” (Use Case 11) is represented as the corresponding
subactivity type “Follow production activities” of the activity type “Complete production order”
pertaining to the internal agent type ProductionDepartment. The activity type “Follow production
activities” is, in turn, refined into the subactivity type “Have production activities shifted”.

Analogously, the subfunctions “Allocate the resources” (Use Case 18), “Register the start of the
production activity” (Use Case 22), “Register the end of the production activity” (Use Case 23), and
“Resolve the capacity conflict” (Use Case 24) of the primary task “Perform the production activity”
(Use Case 17) are represented in Appendix F as the respective subactivity types “Allocate resources”,
“Register the start of the production activity”, “Register the end of the production activity”, and
“Resolve the capacity conflict” of the internal agent type ResourceUnit. The last three subactivity types
mentioned are triggered by an internal agent of the type Worker of ResourceUnit. The triggers of these
activity types are modelled as the respective reaction rules R58, R60, and R62. Still according to
guidelines 3 - 5 in section 3.8.4.1, the activity type “Reschedule production activity” of the internal
agent type ResourceUnit, corresponding to the use case “Reschedule the production activity” (Use Case
19), is modelled as consisting of the subactivity types “Delete allocations” and “Allocate resources”.
The subactivity type “Delete allocations” is also included by the activity type “Delete production
activity and commitment” which corresponds to the primary task “Delete the production activity” (Use
Case 21).

The process described by guidelines 3 - 5 in section 3.8.4.1 is recursively repeated for all
subfunctions and steps of a primary task as long as the modelling precision of the desired level is
achieved. If the step of a scenario does not include any subfunctions, it is modelled as a sequential
elementary activity type. For example, step 1 of the primary task “Have the product set produced”
(Use Case 1) and steps 1 and 4 of the primary task “Create the product set and schedule the production
order” (Use Case 7) are modelled as the elementary activity types “Create production order” of

152

SalesDepartment, and “Create product set” and “Send scheduled production order” of
ProductionDepartment. The subfunctions “Register the start of the production activity” (Use Case 22)
and “Register the end of the production activity” (Use Case 23) are modelled as the elementary
activity types of the same names of the internal agent type ResourceUnit.

In function and motivation models we do not represent types of activities that are repeated for each
instance of some (possibly constrained by a predicate) informational entity type because activity
diagrams of function and motivation models do not lend themselves to expressing conditions (of
repeating). For example, as Appendix F shows, the activity types “Instantiate production activity” and
“Have production activity scheduled” of the internal agent type ProductionDepartment, whose instances
are repeated for each instance of ProductionActivity, are not represented in function and motivation
models.

As we stated in section 3.8.4.2, preconditions and goals are defined for activity types as
propositions by means of OCL. In Table 4-27, the precondition and goal defined for each activity type
of the function model of the case study of the ceramic factory is presented.

The goal defined for the activity type “Manage production order” of the internal agent type
SalesDepartment means that the product set specified by the customer using the product code and
quantity required has been produced and the SalesDepartment has a commitment towards the Customer
to provide it with the product set by the due time specified in the instance of ProductionOrder which has
been returned to the Customer. The commitment is satisfied within an activity of the type “Manage
product delivery” whose precondition states that the instance of ProductionOrder referred to by the
value of the input parameter order exists and has the status isCompleted. The status predicate
isCompleted is defined in Appendix D. The meaning of the goal defined for the activity type “Manage
product delivery” is that the product set corresponding to the production order, which is referred to by
the value of the activity’s input parameter order of the type ProductionOrder, has been delivered, the
commitment has been satisfied (i.e., does not exist any more), and there exists the corresponding
invoice that has been sent to the customer.

Analogously, the precondition defined for the activity type “Process production order” of the
internal agent type ProductionDepartment is the existence of the instance of ProductionOrder with the
status isPreliminary that is referred to by the value of the activity’s input parameter order and is
associated with the instance of ProductType identified by the value of the production order’s attribute
productCode. The association mentioned is created by reaction rule R19 in Appendix F upon receiving
the production order from the SalesDepartment. The goal defined for the activity type “Process
production order” means that there exists the instance of ProductSet, corresponding to the instance of
ProductionOrder, and that the production order has been scheduled. According to the derivation rule
defined in Appendix D, an instance of ProductionOrder has the status isScheduled if every instance of
ProductionActivity of the corresponding ProductSet has the status isScheduled.

The precondition defined for the activity type “Complete production order” is that within the
corresponding agent of the type ProductionDepartment exists the instance of ProductionOrder with the
status isScheduled that is referred to by the value of the activity’s input parameter order. The goal
defined for the same activity type expresses that the product set specified by the production order has
been produced which is reflected by the status isCompleted of the ProductionOrder. The status predicate
isCompleted of the object type ProductionOrder is defined in Appendix D.

The precondition defined for the activity type “Schedule production activity” of the internal agent
type ResourceUnit is the existence of the instance of ProductionActivity with the status isPreliminary that is
referred to by the value of the activity’s input parameter activity and is associated with the instance of
ProductionActivityType identified by the production activity’s attribute activityTypeName. The association
mentioned is created by reaction rule R44 in Appendix F upon receiving the production activity from
the ProductionDepartment. The meaning of the goal defined for the activity type “Schedule production
activity” is that the corresponding production activity is scheduled and the ResourceUnit has the see-to-
it-that commitment towards the ProductionDepartment to complete the production activity by its
scheduled end time. The status predicate isScheduled of the object type ProductionActivity is defined in
Appendix D.

For the production activity type “Reschedule production activity”, the precondition requires the
value of the input parameter activity to refer to an instance of ProductionActivityType with the status
isScheduled. The goal defined for the activity type mentioned is the same as that defined for the activity
type “Schedule production activity”.

153

Table 4-27. Activities of the case study of the ceramic factory with their preconditions and goals.

Activity type and
input parameter(s)

Precondition Goal

Manage production
order

(code : String,
quant : Integer,

senderID : String)

- ProductionOrder.allInstances->exists
(o : ProductionOrder | o.isCompleted

and o.productCode = code and o.quantity =
quantity and

provideProductSet.allInstances->exists
(about = o and

dueTime = o.dueDate and
sourceID = self.agentID and

targetID = senderID))
Create production

order
- ProductionOrder.allInstances->exists

(o : ProductionOrder | o.isPreliminary and
o.productCode = code and

o.quantity = quantity)
Manage scheduling

and completion
(order :

ProductionOrder)

ProductionOrder.allInstances->exists
(o : ProductionOrder | o.isPreliminary

and o.productCode = code and
o.quantity = quantity and order = o)

order.isCompleted and
provideProductSet.allInstances->exists

(about = order and
dueTime = order.dueDate and
sourceID = self.agentID and

targetID = senderID)
Have production
order scheduled

- order.isScheduled

Request scheduling - order.isPreliminary
Register scheduling - order.isScheduled
Manage proposal - order.isAccepted and

provideProductSet.allInstances->exists
(about = order and

dueTime = order.dueDate and
sourceID = self.agentID and

targetID = senderID)
Authorize and send

proposal
- order.isProposed

Manage completion - order.isCompleted
Request completion - -
Register completion - order.isCompleted
Inform the customer - -

Manage product
delivery
(order :

ProductionOrder,
senderID : String)

ProductionOrder.allInstances->exists
(o : ProductionOrder |

o.isCompleted and order = o)

order.isDelivered and
not(provideProductSet.allInstances->exists

(about = order and
dueTime = order.dueDate and
sourceID = self.agentID and
targetID = senderID)) and

Invoice.allInstances->exists(i : Invoice |
i.isSent and i.orderID = order.orderID and

order.invoice = i and
i.productionOrder = order)

Deliver product set - order.isDelivered and
not(provideProductSet.allInstances->exists

(about = order and
dueTime = order.dueDate and
sourceID = self.agentID and

targetID = senderID))
Create invoice - Invoice.allInstances->exists

(i : Invoice | i.isPreliminary and
i.orderID = order.orderID and

order.invoice = i and
i.productionOrder = order)

Send invoice - order.invoice.isSent

154

Table 4-27 (continued). Activities of the case study of the ceramic factory with their preconditions and goals.

Create claim - payInvoice.allInstances->exists
(about = order.invoice and

dueTime = order.invoice.paidBy and
sourceID = senderID and
targetID = self.agentID)

Register payment
(invoice : Invoice,
originID : String)

Invoice.allInstances->exists
(i : Invoice | i.isSent and invoice = i)

invoice.isPaid and
not(payInvoice.allInstances->exists

(about = invoice and dueTime =
invoice.paidBy and

sourceID = originID and
target ID = self.agentID))

Process production
order (order :

ProductionOrder)

ProductionOrder.allInstances->exists
(o : ProductionOrder |
o.isPreliminary and

o.productType =
ProductType.allInstances->any

(pt: ProductType |
pt.productCode = o.productCode and
pt.productionOrder->includes(o)) and

order = o)

ProductSet.allInstances->exists
(ps : ProductSet |

ps.productionOrder = order and
order.productSet = ps and

ps.productType = order.productType and
order.productType->includes(ps)) and

order.isScheduled

Create
product set

- ProductSet.allInstances->exists
(ps : ProductSet |

ps.productionOrder = order and
order.productSet = ps and

ps.productType = order.productType and
order.productType->includes(ps))

Instantiate
production plan

- order.isPreliminary and
order.productType.productionActivityType->

forAll(t : productionActivityType |
t.productionActivity->exists

(a: ProductionActivity | a.isUnscheduled and
a.typeName = t.activityName and
a.productionActivityType = t and

order.productSet->includes(a) and
a.productSet = order.productSet))

Schedule
production order

- order.isScheduled

Send scheduled
production order

- -

Complete
production order

(order :
ProductionOrder)

ProductionOrder.allInstances->exists
(o : ProductionOrder |

o.isScheduled and order = o)

order.isCompleted

Follow production
activities
(order :

ProductionOrder)

- order.isCompleted

Have production
activities
shifted

(a :
ProductionActivity)

ProductionActivity.allInstances->exists
(pa : ProductionActivity |

(pa.isScheduled or pa.isCompleted) and
a = pa)

not(ProductionActivity.
allInstances->exists

(productSet.order = order and
hasTimeConflict(order)))

Delete
production order
and product set

(order :
ProductionOrder)

ProductionOrder.allInstances->exists
(o : ProductionOrder |

o.isScheduled and order = o)

not(ProductSet.allInstances->
exists(productionOrder = order and

productType = order.productType)) and
not(ProductionOrder.allInstances->exists

(o : ProductionOrder | o = order))
Have production

activities
deleted

- not(ProductionActivity.
allInstances->exists

(productSet.order = order))
Delete

product set
- not(ProductSet.allInstances->

exists(productionOrder = order and
productType = order.productType))

155

Table 4-27 (continued). Activities of the case study of the ceramic factory with their preconditions and goals.

Delete production
order

- not(ProductionOrder.allInstances->exists
(o : ProductionOrder | o = order))

Schedule
production activity

(activity :
ProductionActivity)

ProductionActivity.allInstances->exists
(a : ProductionActivity |
a.isUnscheduled and

a.productionActivityType =
ProductionActivityType->any
(t: ProductionActivityType |

t.activityName = a.typeName and
t.productionActivity->includes(a)) and

activity = a)

activity.isScheduled and
self.stitCommitmentClaim->exists

(achieve = activity.isCompleted and
dueTime = activity.endTime and

sourceID = self.agentID and
targetID = senderID)

Allocate resources - activity.productionActivityType.
discreteStateResource->forAll

(capacityInterval->exists
(ci : CapacityInterval |

ci.productionActivity->includes(activity) and
activity.capacityInterval = ci))

Reschedule
production activity

(activity :
ProductionActivity)

ProductionActivity.allInstances->exists
(a : ProductionActivity |

a.isScheduled and activity = a)

activity.isScheduled and
self.stitCommitmentClaim->exists

(achieve = activity.isCompleted and
dueTime = activity.endTime and

sourceID = self.agentID and
targetID = senderID)

Delete commitment - not(self.stitCommitmentClaim->exists
(achieve = activity.isCompleted and

dueTime = activity.endTime and
sourceID = self.agentID and

targetID = senderID))
Delete allocations - activity.productionActivityType.

discreteStateResource->forAll
(not(capacityInterval->exists

(productionActivity = activity)))
Allocate resources - activity.productionActivityType.

discreteStateResource->forAll
(capacityInterval->exists

(ci : CapacityInterval |
ci.productionActivity->includes(activity) and

activity.capacityInterval = ci))
Delete production

activity and
commitment

(activity :
ProductionActivity)

ProductionActivity.allInstances->exists
(a : ProductionActivity |

a.isScheduled and activity = a)

not(self.stitCommitmentClaim->exists
(achieve = activity.isCompleted and

dueTime = activity.endTime and
sourceID = self.agentID and
targetID = senderID)) and

not(ProductionActivity.allInstances->exists
(a : ProductionActivity | a = activity))

Delete commitment - not(self.stitCommitmentClaim->exists
(achieve = activity.isCompleted and

dueTime = activity.endTime and
sourceID = self.agentID and

targetID = senderID))
Delete allocations - activity.productionActivityType.

discreteStateResource->forAll
(not(capacityInterval->exists

(productionActivity = activity)))
Delete

production activity
- not(ProductionActivity.allInstances->exists

(a : ProductionActivity | a = activity))

156

Table 4-27 (continued). Activities of the case study of the ceramic factory with their preconditions and goals.

Register the start of
the production

activity
(activity :

productionActivity)

ProductionActivity.allInstances->exists
(a : ProductionActivity |

a.isScheduled and activity = a)

activity.isInProcess

Register the end of
the production

activity
(activity :

ProductionActivity)

ProductionActivity.allInstances->exists
(a : ProductionActivity |

a.isInProcess and activity = a)

activity.isCompleted and
not(self.stitCommitmentClaim->exists
(achieve = activity.isCompleted and

dueTime = activity.endTime and
sourceID = self.agentID and

targetID = productionDepartment.agentID))
Resolve capacity

conflict
(resource :

DiscreteState
Resource)

DiscreteStateResource.
allInstances->exists

(r : DiscreteStateResource |
r.hasCapacityConflict and resource = r)

not resource.hasCapacityConflict

Delete
commitments
and resource

allocations

- not resource.hasCapacityConflict and
resource.productionActivityType->forAll

(productionActivity->forAll(a :
ProductionActivity |

not a.isScheduled and not
self.stitCommitmentClaim->exists

(achieve = a.isCompleted and
dueTime = a.endTime and

sourceID = self.agentID and
targetID = productionDepartment.agentID)))

Reschedule
production activities

- resource.productionActivityType->forAll
(productionActivity->select(not isInProcess

and not isCompleted)->forAll
(a : ProductionActivity |

a.isScheduled and
self.stitCommitmentClaim->exists

(achieve = a.isCompleted and
dueTime = a.endTime and

sourceID = self.agentID and
targetID = productionDepartment.agentID))

157

4.1.5.5. Behaviour Modelling

At the step of behaviour modelling, function and motivation models of business processes by the goal-
based use cases presented in Tables 4-1 - 4-26 are transformed into behaviour models by following the
guidelines provided in section 3.8.5.2.

According to guideline 1, the <time or sequence factor> “The invoice is authorized by the sales
manager” of step 3 of use case 5 (“Have the product set delivered”) is represented as the non-
communicative action event type authorizeInvoice connected to reaction rule R14.

 Behaviour modelling based on the same guideline also enables to represent the behavioural pattern
“Deferred choice” which was described in section 3.8.5.3. For example, the <time or sequence
factor> components “The acceptance of the proposal is received from the customer” and “The
rejection of the proposal is received from the customer” of steps 2 and 2a of use case 3 (“Make a
proposal and process the reply”) are modelled in Appendix F as the respective communicative action
event types accept-proposal and reject-proposal which are connected to reaction rules R6 and R7,
respectively. Action events of both types are triggered by an external agent of the type Customer.
Analogously, the three alternative steps of use case 12 (“Follow the production activities”) are
modelled in Appendix F as reaction rules R30, R31, and R32 which are triggered by an external agent
of the type ResourceUnit.

According to guideline 2 presented in section 3.8.5.2, the <condition> component “Until the
production order is completed” of step 2 of use case 11 (“Complete the production order”) is modelled
in Appendix F as reaction rule R36 with the corresponding precondition that invokes an activity of the
type “Follow production activities” if the instance of ProductionOrder under processing does not have
the status isCompleted. This results in a “Repeat-Until” behavioural pattern that was described in
section 3.8.5.3.

Based on the same guideline, the <condition> component of a use case step expressing the
repetition for a number of instances of some informational entity type is represented as the
corresponding reaction rule along with its precondition. For example, the <condition> components
included by use cases 8 (“Instantiate the production plan”) and 9 (“Schedule the production order”) are
turned in Appendix F into reaction rules R21 and R23, respectively, which form the corresponding
“For-Each” loop patterns described in section 3.8.5.3.

According to guideline 4 provided in section 3.8.5.2, a precondition arrow of either reaction rule
mentioned above is augmented by an OCL equation limiting the set of instances of the informational
entity type for which the “For-Each” loop is performed. The OCL expression {productType =
order.productType} attached to the precondition arrow of reaction rule R21 specifies that the action part
of the rule (starting an activity of the type “Instantiate production activity”) is repeated for each
instance of ProductionActivityType that is associated with the same instance of ProductType as the
instance of ProductionOrder referred to by the value of the input parameter order. In the same way, the
OCL expression {productSet.productionOrder = order and isNextActivity(order)} attached to the precondition
arrow of reaction rule R23 specifies that the action part of the rule (starting an activity of the type
“Have production activity scheduled”) is repeated for each instance of ProductionActivity that is
associated with the instance of ProductSet corresponding to the given ProductionOrder. At each step of
the loop, the intensional predicate isNextActivity(ProductionOrder) evaluated for the current instance of
the object type ProductionActivity determines the next production activity for which an activity of the
type “Have production activity scheduled” is started. The intensional predicate mentioned, which is
defined in Appendix D, thus determines the order of scheduling production activities.

As another example of an augmented condition arrow, the OCL expression {orderID = ?String}
attached in Appendix F to the precondition arrow of reaction rule R11 determines that the action part
of the rule is performed (i.e., an activity of the type “Manage product delivery” is started) only for the
instance of ProductionOrder the value of whose attribute orderID is equal to the value of the
corresponding data item ?String included by the triggering communicative action event. An example of
a more complicated precondition is {discreteStateResource = resource and isSchedulable(activity)} of
reaction rule R46 stating that the instance of CapacityInterval to be assigned to the ProductionActivity by
the rule is the one that (1) belongs to the given instance of DiscreteStateResource, which is referred to
by the value of the input parameter resource, and (2) can be scheduled to the given instance of
ProductionActivity. The schedulability of a capacity interval is determined by evaluating the intensional
predicate isSchedulable (ProductionActivity) of the object type CapacityInterval. This predicate is defined in
Appendix D.

158

Following guideline 3 provided in section 3.8.5.2, in Appendix F the symbols for the
communicative action event types request achieve(isCompleted(ProductionOrder(?String))) and
inform(isCompleted(?ProductionOrder)) are connected to the respective reaction rules R8 and R9 which are
included by the elementary activity types “Request completion” and “Register completion”,
respectively. In the same way, the symbol for the communicative action event type propose
provideProductSet(?ProductionOrder) is connected to reaction rule R5 which is included by the
elementary activity type “Authorize and send proposal”. The mental effect arrow originating in the
same activity type is also connected to reaction rule R5. Analogously, the symbol for the non-
communicative action event type provideProductSet(?ProductionOrder) and the arrow defining the
accompanying mental effect are connected to reaction rule R12 which is included by the elementary
activity type “Deliver product set”. Based on the same guideline, the arrow denoting the activity
starting action type START ACTIVITY “Manage scheduling and completion” is connected to reaction
rule R2. The activity type “Manage scheduling and completion” is added because it enables to process
the production order created. It does not have a counterpart in the goal-based use cases presented in
Tables 4-1 − 4-26.

As was described in section 3.6.5, a mental effect arrow of a reaction rule may be augmented by a
logical OCL expression that (re)defines the mental effect of the rule. For example, the OCL expression
{productCode = code and quantity = quantity} attached to the mental effect arrow of reaction rule R2 in
Appendix F determines that the values of the attributes productCode and quantity of the instance of
ProductionOrder to be created by the rule should be equal to the values of the respective input
parameters code and quant of the enclosing activity of the type “Manage production order”.

According to guideline 4 provided in section 3.8.5.2, also a precondition arrow may be augmented
by an OCL expression. For example, in addition to specifying the creation of an instance of
ProductionOrder, the augmented precondition arrow and the mental effect arrows of reaction rule R19 in
Appendix F jointly determine the association to be created by the rule between the instance of
ProductionOrder created by the rule and the instance of ProductType that is identified by the value of its
attribute productCode which must be equal to the value of the production order’s attribute of the same
name. The precondition and mental effects of reaction rule R22 determine that the instance of
ProductionActivity created has the status isUnscheduled; its attribute typeName has the same value as the
attribute activityName of the instance of ProductionActivityType that is referred to by the value of the input
parameter type, and the ProductionActivity is associated with the instance of ProductionActivityType
mentioned. In addition, the same reaction rule determines that there should be the two-way association
between the instance of ProductionActivity created and the instance of ProductSet associated with the
given instance of ProductionOrder which is referred to by the value of the input parameter order.

Analogously, the precondition and mental effect of reaction rule R46 determine that there should be
the bidirectional association between the instance of CapacityInterval within the scope of the rule,
referred to by the rule’s internal variable CapacityInterval, and the instance of ProductionActivity to be
scheduled, referenced by the value of the input parameter activity. In the same way, according to the
mental effect expression of rule R47, the values of the attributes startTime and endTime of the instance
of ProductionActivity to be scheduled by the rule are to be equal to respectively the starting time of the
earliest and ending time of the latest CapacityInterval that is allocated to the ProductionActivity.

Another complicated example of augmentation is the OCL equation {earliestStartTime =
getEarliestStartTime(order)} which is attached to the mental effect arrows of reaction rules R23, R33, and
R37. This mental effect expression determines that the value of the attribute earliestStartTime of the
ProductionActivity to be scheduled should be equal to the earliest start time of the production activity
that is calculated by using the OCL definition getEarliestStartTime(ProductionOrder) presented in
Appendix D. According to the definition mentioned, the earliest start time of the production activity is
equal to either the release date of the production order (in case of its first production activity) or to the
end time of the production order’s last ProductionActivity scheduled so far increased by the shortest
possible interval between an activity of that type and an activity of the given type.

159

4.1.5.6. Simulation of the Models on the JADE Agent Platform

In [Wagner03b] it has been shown that, with some minor extensions, AOR models can be used for a
certain form of agent-based discrete event simulation, called Agent-Object-Relationship Simulation
(AORS). An AORS system includes an environment simulator that is responsible to simulate
exogenous events and the causality laws of the physical environment. Such a simulator can also be
created for the case study of the ceramic factory. When applied jointly with the principles of creating
executable process models worked out in this thesis, AORS enables to create powerful simulation
environments. For simulating the business/manufacturing processes described by the models of the
ceramic factory, the models described in section 4.1.5.1 to 4.1.5.5 were implemented in the Java
language [JAVA] on the JADE agent platform in the way described in section 3.8.6. We will next treat
by views of agent-oriented modelling how the executable JADE-based models corresponding to the
executable models of the ceramic factory expressed by means of the extended AORML were created.

Organizational and Informational View

The types of institutional agents represented in the organization model of the ceramic factory shown in
Figure 4-1 were implemented as the corresponding subclasses of the JADE’s object class
jade.core.Agent. This way, the Java classes CustomerAgent, SalesDepartmentAgent,
ProductionDepartmentAgent, and ResourceUnitAgent were obtained. Their instances form the agents of the
simulation environment that has been worked out as a part of the case study of the ceramic factory.

The informational entity types of the problem domain’s information model represented in the agent
diagram of Figure 4-3 were turned into the corresponding Java classes ProductionOrder, ProductSet,
ProductType, Invoice, ProductionActivity, ProductionActivityType, Resource, Capacity, CapacityInterval, and
PrecedenceInterval. Sets of their instances form the VKB’s of the corresponding agents. In the example
presented below, instantiations of the object classes ProductionOrder, ProductSet, ProductType,
ProductionActivity, ProductionActivityType, PrecedenceInterval, and Resource form the VKB of the
corresponding agent instance of the class ProductionDepartmentAgent:

public class ProductionDepartmentAgent extends jade.core.Agent {

 /** Virtual Knowledge Base */
 public HashMap productionOrder = new HashMap();
 public HashMap productionActivity = new HashMap();
 public HashMap productionActivityType = new HashMap();
 public HashMap resource = new HashMap();
 public HashMap productType = new HashMap();
 public HashSet precedenceInterval = new HashSet();

 /** Information about ontology */
 private Codec codec = new SLCodec();
 private Ontology ontology = TEKTOntology.getInstance();

 /** Earliest start time of the current production activity */
 public Date earliestStartTime;

 /** Latest end time of the current production activity */
 public Date latestEndTime;

 ...

}Out of the object classes mentioned, ProductType, ProductionActivityType, and PrecedenceInterval are
pre-initialized within the agent instance.

In compliance with the agent diagram of Figure 4-3, the class Resource has the subclasses
ReusableResource and DiscreteStateResource. The latter has been further divided into the subclasses
UnitCapacityResource and BatchCapacityResource, and the class CapacityInterval has accordingly the
subclasses UnitCapacityInterval and BatchCapacityInterval. The instances of UnitCapacityInterval and
BatchCapacityInterval are included by the instances of UnitCapacityResource and BatchCapacityResource,
respectively. The representation of the agent type Customer within the instance of SalesDepartmentAgent
has been implemented as the Java object class of the same name. The attributes of an informational
entity type modelled in Figure 4-3 have been implemented as attributes of the corresponding Java
class, while status and intensional predicates of an informational entity type have been implemented as
functions attached to the corresponding Java class. For example, the intensional predicate
isSchedulable(ProductionActivity) of the object type CapacityInterval in Figure 4-3 has been implemented as
the Java function with the signature public boolean isSchedulable(ProductionActivity activity). One-to-one
associations between informational entity types have been implemented as references between

160

instances of the corresponding object classes, like is shown in the example below. One-to-many
associations have been implemented as ordered Java collections containing references to the
appropriate object instances. In the example below, a reference within an instance of ProductSet to the
ordered sequence of instances of ProductionActivity, which define the set of processing steps required to
produce the ProductSet, has been implemented by means of a Java collection of the type ArrayList. An
association class like PrecedenceInterval has been implemented as an ordinary Java class where any
instance includes the references to the instances of the Java object classes that correspond to the
informational entity types the association applies to.

The Java object class corresponding to the object type ProductSet of the informational view looks
like as follows:

public class ProductSet extends Object implements Concept {

 /** References */
 private ProductionOrder productionOrder;
 private ProductType productType;

 /** Ordered list of activities of the product */
 private ArrayList productionActivity = new ArrayList();

 /** Creates new ProductSet for the given ProductionOrder */
 public ProductSet(ProductionOrder order) {
 productionOrder = order;
 productType = productionOrder.getProductType();
 }

...
}

Interactional View

Since the agents of the simulation system must understand messages received from each other, the
JADE-based ontology of the problem domain was created. This ontology corresponds to the union of
shared object types and action event types that are defined by the extended AORML models of the
informational and interactional views. The ontology of the ceramic factory extends the basic ontology
that is defined in the JADE development library (jade.content.onto.Ontology).
 According to the principles laid out in section 3.8.6.2, the concept schemas of the
CeramicFactoryOntology were created for all Java classes that implement the informational entity types
of the information model. Each schema added to the ontology was associated with the corresponding
Java class. For example, the schema for the ProductionActivity concept was associated with the class
ProductionActivity. When using the ontology, expressions indicating production activities are instances
of the ProductionActivity class. All Java classes corresponding to concept schemas implement the
jade.content.Concept interface.
 The non-communicative action event types modelled in Figure 4-4 were mapped into the
corresponding agent action schemas defining the structure of the agent actions relevant to the domain
addressed. Since each schema added to the ontology must be associated with a Java class [JADE], the
Java classes provideProductSet, payInvoice, and achieve implementing the jade.content.AgentAction
interface were created. This was followed by the creation of the corresponding agent action schemas
of the ontology. While an agent action of the type provideProductSet or payInvoice is used with a concept
or primitive, an action of the achieve type is always accompanied by a predicate. The
CeramicFactoryOntology thus includes the predicate schemas corresponding to the status predicates
isScheduled, isInProcess, and isCompleted. For these schemas were also created the corresponding Java
objects implementing the jade.content.Predicate interface.
 Agent messages modelled in Figure 4-4 either directly contain concepts like ?ProductionOrder or just
reference them by using a concept’s identifier attribute like ProductionOrder(?String). In the first case,
the representation of the corresponding concept within an agent message includes as primitives the
values of some or all attributes of the corresponding Java object. In the second case, the representation
of the concept consists of just the value of the object’s identifier attribute.

Functional and Behavioural Views

The behavioural constructs represented in the activity diagrams of the case study in Appendix F were
rather straightforwardly mapped to the corresponding constructs of the JADE framework. Firstly, as is
described in section 3.8.6.3, an object class MessageHandler for processing incoming agent messages
and starting first-level activities was defined for each agent type and instantiated for each agent

161

instance of the simulation environment. For example, the instance of MessageHandler of the agent
SalesDepartment incorporates the behaviours prescribed by reaction rules R1, R11, and R17.
Analogously, the instance of MessageHandler created for the agent ProductionDepartment processes
incoming agent messages and starts first-level activities as is determined by reaction rules R19, R27,
and R28. For processing input from a human agent through a GUI, the object class InputHandler was
defined for each agent type and instantiated for each agent instance of the simulation environment. For
example, the InputHandler of a ResourceUnit incorporates the actions specified by reaction rules R58,
R60, and R62.
 Next, the Java classes corresponding to the activity types of the behaviour model were created. For
example, according to the guidelines provided in section 3.8.6.3, the activity type “Manage production
order” was implemented as the object class Manage_production_order which extends the JADE’s class
SequentialBehaviour. An instance of the class Manage_production_order executes in sequential order its
sub-behaviours corresponding to the instances of the activity types “Create production order” and
“Manage scheduling and completion”. The first of these activity types has been implemented as the
subclass Create_production_order of OneShotBehaviour, while the second activity type has been
represented by the class Manage_scheduling_and_completion extending the JADE’s class
SequentialBehaviour. Passing the value of the input parameter of the type ProductionOrder from the
preceding activity of the first type to the following activity of the second type has been implemented
through the use of the corresponding public variable order of their “father” activity of the class
Manage_production_order. The activity type “Manage scheduling and completion”, which has been
implemented by the behaviour class of the same name, in turn consists of the subactivity types “Have
production order scheduled”, “Manage proposal”, and “Manage completion”. All of them have been
implemented as the corresponding subclasses of jade.core.behaviours.SequentialBehaviour. The class
Manage_proposal, which is presented as an example below, implements the behavioural pattern
“Deferred choice” by creating a subclass of the JADE’s class jade.core.behaviours.ParallelBehaviour
whose instance executes concurrently as many children behaviours of the class
jade.core.behaviours.ReceiverBehaviour as there are options for different messages received by the agent.
As soon as any of the sub-behaviours is done, i.e. the corresponding message has been received, the
parallel behaviour terminates. Messages of two kinds − “accept-proposal” and “reject-proposal” − can be
received in the “Deferred choice” construct presented below:
 class Manage_proposal extends SequentialBehaviour {

 /** Placeholder for the received message */
 private ACLMessage receivedMessage;

 /** Production order under processing */
 private ProductionOrder productionOrder;

 /** Constructor of the behaviour */
 public Manage_proposal(ProductionOrder order, ACLMessage msg) {
 super(agent);
 productionOrder = order;
 receivedMessage = msg;
 }

 public void action() {
 addSubBehaviour(new Authorize_and_send_proposal(order, msg));
 myAgent.addBehaviour(new TemporaryParallelBehaviour (WHEN_ANY));
 }
 }

 class TemporaryParallelBehaviour extends ParallelBehaviour {

 public void action() {
 MessageTemplate mt1 =
 MessageTemplate.MatchPerformative(ACLMessage.ACCEPT_PROPOSAL);
 MessageTemplate mt2 =
 MessageTemplate.MatchPerformative(ACLMessage.REJECT_PROPOSAL);

 // Add sub-behaviours
 addSubBehaviour(new ReceiverBehaviour1(myAgent, -1, mt1));
 addSubBehaviour(new ReceiverBehaviour2(myAgent, -1, mt2));
 }
 }

162

With the help of the visual user interface of the simulation system created for the ceramic factory,
the user is, for example, able to describe an instance of ProductionOrder by evaluating the attributes
releaseDate, dueDate, quantity, and specifying a reference to the corresponding ProductType. After that,
the system computes the preliminary schedule and presents it to the user. We also plan to introduce the
“performing” of the schedule by the agent-based simulation system and reactions to capacity and time
conflicts resulting from it, as described in [Smith95]. Later on, the system can be connected to the
actual production environment where it would be used for the creation and dynamical adjustment of
production schedules.

163

4.2. THE CASE STUDY OF ADVERTISING

Since the paradigm of agent-orientation promotes autonomous action and decision-making, it is highly
relevant for modelling and implementing business processes involving different enterprises with their
respective information systems. Considering this, we have used the methodology proposed by us for
modelling inter-enterprise business processes types of the advertising domain. This can be seen as the
first step towards automating these processes.

4.2.1. Overview of the Domain

According to [Antikainen01], advertising is an important source of revenue for newspapers. Classified
ads are migrating to the Internet and in many countries newspapers have lost their market share to
other media. To maintain and improve their position, newspapers need to be active and start
developing electronic advertising processes in co-operation with their customers. The newspaper
industry should make newspaper advertising as easy as possible for its customers to maintain and
improve its competitive position. Also, it is essential that newspapers develop the advertising
processes in order to reduce costs and improve productivity. Process development requires co-
operation between all parties that are involved in the advertising process. This way costs can be
reduced not only in newspapers, but also in the whole advertising chain making newspapers a more
attractive advertising media.

The analysis of current processes performed in [Antikainen01] revealed that a characteristic feature
in newspaper advertising processes is the large number of parties. Publishing an ad in a newspaper
typically needs contributions from an advertiser, media agency, ad agency, repro house, and courier
service provider. The number of parties’ means that many of people are involved, which makes the
communication costs high. The need for communication is increased also by the number of changes in
ad space reservations and ad orders. The hassle in advertising processes affects the whole chain and
results in a considerable number of errors in invoicing. For these reasons, it is very important that the
newspaper duly has all the information that is needed to process and place an ad. This is also for the
benefit of the advertising customer [Antikainen01] .

Typically, the ad order process in European countries is paper based. Newspapers receive ad space
reservations by phone and ad orders by fax or mail. Ad orders and the corresponding artwork are
manually connected to each other. Copies of ad orders are used to control ad production and ad
placement in newspapers. After the publication, ad sizes are measured and tearsheets may be cut and
attached manually to the invoice. To lower cost, these manual processes need to be developed and
transferred into electronic processes [Antikainen01] .

Electronic artwork delivery from computer to computer is already common practice in many
countries. But unfortunately many newspapers support too many ways to receive electronic artwork.
The worst is to accept email attachments, which may never arrive in the newspapers. Also, the
information on the artwork may be incomplete making it impossible to place and process the artwork
without further inquiries.Many electronic artwork delivery services help the newspapers to receive
artwork files that are according the newspaper’s requirements by preflighting them and returning those
that do not pass the preflight check and even advising in correcting them. Some electronic artwork
delivery services have introduced or are planning to introduce a possibility to deliver electronic ad
orders as well. In these services the material transfer form is extracted from the electronic ad order.
These services combine the electronic ad order and electronic artwork automatically – a time
consuming task that is usually done manually in newspapers [Antikainen01].

4.2.2. Goals of the Case Study

As the overview presented in section 4.2.1 revealed, at present there is not much automation in the
advertising domain. In our opinion, the first step towards introducing more automation into the
domain is developing proper modelling notations and methodologies which enable to integrate
seamlessly the modelling of business processes and information they make use of. The business
processes modelled should cover the whole advertising campaign. A possible next step would be
further developing of web auctions for selling surplus advertising space mentioned in [Antikainen01].
According to the same source, there is usually not enough time to sell surplus ad space in web
auctions. An automation solution possibly making use of software agents would be in the position of
making advertising processes to work almost in real time. Such a solution could be used for selling
premium ad space in addition to the surplus one. This would result in the increase of the speed of
advertising business processes which would be positively reflected by the participants’ cash flows.

164

4.2.3. Analysis with Goal-Based Use Cases

The use cases in Tables 4-28 – 4-52 describe the inter-organizational business process types of
advertising with different types of actors, sketched as a part of the analysis step, in focus. In Table 4-
28, use case 1 “Carry out the advertising campaign”, which has the media agency in focus, is
presented. This use case is triggered by receiving from an advertiser a request to perform the
advertising campaign specified by the campaign order of a predefined and agreed between the actors
form. The goal of the first use case, “expecting all the ad orders corresponding to the advertising
campaign to be created and submitted”, is given in its context in an informal way. It is semi-
formalized in section 4.2.4.3 at the modelling phase of design. The use case is modelled from the
perspective of the advertiser with the media agency in focus (scope) which means that the goal of the
use case is the so-called user goal, the goal of the actor (i.e., the advertiser) trying to get work
(primary task) done. Since the use case “Carry out the advertising campaign” is triggered by the
advertiser, the advertiser is called the primary actor of the use case. The publication and artwork
designer are termed secondary actors because they are the ones from which the actor in focus, the
media agency, needs assistance to satisfy the user goal internalized by it. The artwork designer, in
turn, has the artwork producer as its secondary actor. Other primary tasks, i.e. use cases that are
triggered by primary actors, are use cases 8, 10, 11, 12, 14, 15, 18, 23, and 25 below.

Use case 1 includes as subfunctions use cases 2, 3, 6, and 7. As we learned in section 3.7.1, the goal
of a subfunction, which is a subgoal of some user goal, is attached to the actor in focus. For example,
the goal “expecting ad space to be reserved in the publications according to the campaign order” of the
subfunction “Have ad space reserved in the publications” (use case 3), which is a subgoal of the user
goal “expecting all the ad orders corresponding to the advertising campaign to be created and
submitted”, is attached to the media agency. The second-level subfunction of the use case mentioned,
use case 5 “Evaluate the ad space reservation proposal” includes the main scenario for the case the ad
space reservation proposal is accepted by the internal actor ‘media agency secretary’ and the extension
scenario for the opposite case.

A special group of subfunctions are subfunctions that are triggered by internal actors. In the
example of advertising, to this group belong use cases 6, 7, 17, 19, and 24. For example, use case 6 is
triggered by the media agency secretary, while use case 7 is triggered by the internal actor ‘timer’ of
the media agency.

In Tables 4-28 to 4-52, the <time or sequence factor> and <condition> components of use case
steps are distinguished by representing them in italic.
Table 4-28. Extended use case for the business process “Carry out the advertising campaign”.

USE CASE 1 Carry out the advertising campaign.
Goal in Context An advertiser expects all the ad orders corresponding to the advertising campaign to be

created and submitted.
Scope & Level Media agency, primary task.
Preconditions
Success End
Condition

All the ad orders corresponding to the advertising campaign have been created and
submitted.

Primary Actor
Secondary Actors

Advertiser.
Publication, artwork designer.

Trigger A request by the advertiser to perform the advertising campaign according to the
campaign order.

DESCRIPTION Step Action
 1 The advertising campaign is authorized by the media agency secretary: the

media agency sends to the advertiser an agreement to perform the advertising
campaign and commits towards the advertiser to perform the campaign.

 2 The campaign order includes an artwork description: the media agency orders
the artwork to be designed (Use Case 2).

 3 The media agency has ad space reserved in the publications according to the
campaign order (Use Case 3).

 4 A request to update the ad space reservation by the media agency secretary is
received: have the ad space reservation updated (Use Case 6).

 5 A request by the timer to request printing of the ad is received: request
printing of the ad (Use Case 7).

165

Table 4-29. Extended use case for the business process “Request artwork design”.

USE CASE 2 Request artwork design.
Goal in Context The media agency expects the artwork to be designed according to the campaign order.
Scope & Level Artwork designer, subfunction.
Preconditions The media agency has agreed and committed to perform the advertising campaign.
Success End
Condition

The artwork designer has agreed to design the artwork.

Primary Actor
Secondary Actors

Advertiser.
Artwork designer.

Trigger
DESCRIPTION Step Action
 1 The media agency sends to the artwork designer a request to design the

artwork.
 2 The media agency receives from the artwork designer an agreement to design

the artwork.

Table 4-30. Extended use case for the business process “Have ad space reserved in the publications”.

USE CASE 3 Have ad space reserved in the publications.
Goal in Context The media agency expects ad space to be reserved in the publications according to the

campaign order.
Scope & Level Media agency, subfunction.
Preconditions The media agency has agreed and committed to perform the advertising campaign.
Success End
Condition

The ad space has been reserved in the publications according to the campaign order.

Primary Actor
Secondary Actors

Advertiser.
Publication.

Trigger
DESCRIPTION Step Action
 1 For each ad insertion included by the campaign order: have ad space reserved

in the corresponding publication according to the ad insertion (Use Case 4).

Table 4-31. Extended use case for the business process “Have ad space reserved according to the ad insertion”.

USE CASE 4 Have ad space reserved according to the ad insertion.
Goal in Context The media agency expects ad space to be reserved in the publication according to the

ad insertion.
Scope & Level Media agency, subfunction.
Preconditions The media agency has agreed and committed to perform the advertising campaign.
Success End
Condition

The ad space has been reserved in the publication according to the ad insertion.

Primary Actor
Secondary Actors

Advertiser.
Publication.

Trigger
DESCRIPTION Step Action
 1 The media agency creates an ad space reservation request for the ad specified

by the ad insertion.
 2 The media agency sends the ad space reservation request to the corresponding

publication.
 3 The media agency receives from the publication a proposal for ad space

reservation: the proposal is evaluated within the media agency (Use Case 5).
EXTENSIONS Step Branching Action
 3a The media agency receives from the publication a refusal to reserve ad space:

the ad space reservation request is deleted and the business process ends.

166

Table 4-32. Extended use case for the business process “Evaluate the ad space reservation proposal”.

USE CASE 5 Evaluate the ad space reservation proposal.
Goal in Context The media agency expects the ad space reservation to be created.
Scope & Level Media agency, subfunction.
Preconditions The media agency has received from the publication a proposal for ad space

reservation.
Success End
Condition

The ad space reservation has been created.

Primary Actor
Secondary Actors

Advertiser.
Publication.

Trigger
DESCRIPTION Step Action
 1 The proposal is accepted by the media agency secretary: the ad space

reservation is created, the publication is informed about the acceptance, and
the timer is requested to turn the ad space reservation into the ad order at the
time specified in the ad order.

EXTENSIONS Step Branching Action
 1a The proposal is rejected by the media agency secretary: the ad space

reservation request is deleted and the business process ends.

Table 4-33. Extended use case for the business process “Have the ad space reservation updated”.

USE CASE 6 Have the ad space reservation updated.
Goal in Context The media agency expects the ad space reservation to be updated.
Scope & Level Media agency, subfunction.
Preconditions The ad space reservation has been created.
Success End
Condition

The ad space reservation has been updated.

Primary Actor
Secondary Actors

Advertiser.
Publication.

Trigger A request to update the ad space reservation by the media agency secretary.
DESCRIPTION Step Action
 1 The media agency sends to the publication a request to update the ad space

reservation.
 2 The media agency receives from the publication a confirmation on the update

of the ad space reservation, and registers it.

Table 4-34. Extended use case for the business process “Request printing of the ad”.

USE CASE 7 Request printing of the ad.
Goal in Context The media agency expects the ad space reservation to be turned into the ad order.
Scope & Level Media agency, subfunction.
Preconditions The ad space reservation has been created.
Success End
Condition

The ad space reservation has been turned into the ad order.

Primary Actor
Secondary Actors

Advertiser.
Publication.

Trigger A request by the timer to request printing of the ad.
DESCRIPTION Step Action
 1 The media agency sends to the publication a request to provide it with the

printed ad corresponding to the ad space reservation.
 2 The media agency receives from the publication an agreement to provide it

with the printed ad along with the corresponding confirmed ad order, and
registers the ad order.

167

Table 4-35. Extended use case for the business process “Complete the advertising campaign”.

USE CASE 8 Complete the advertising campaign.
Goal in Context The publication expects the printing of the ad to be registered.
Scope & Level Media agency, primary task.
Preconditions The ad order corresponding to the ad provided by the publication exists.
Success End
Condition

The printing of the ad has been registered.

Primary Actor
Secondary Actors

Publication.
Advertiser.

Trigger Arrival of the printed ad from the publication.
DESCRIPTION Step Action
 1 The media agency registers the printing of the ad.
 2 The advertising campaign has been performed (ads described by all the ad

orders corresponding to the campaign order have been printed): the media
agency creates an invoice and sends it to the advertiser (Use Case 9).

Table 4-36. Extended use case for the business process “Create and send an invoice to the advertiser”.

USE CASE 9 Create an invoice and send it to the advertiser.
Goal in Context The media agency expects an invoice corresponding to the advertising campaign

performed to be created and sent to the advertiser.
Scope & Level Media agency, subfunction.
Preconditions The advertising campaign has been performed.
Success End
Condition

The media agency invoice has been created and sent to the advertiser.

Primary Actor
Secondary Actors

Publication.
Advertiser.

Trigger
DESCRIPTION Step Action
 1 The media agency creates the media agency invoice.
 2 The media agency invoice is approved by the media agency secretary: the

media agency sends the invoice to the advertiser and creates the claim against
the advertiser to pay for the advertising campaign according to the invoice.

Table 4-37. Extended use case for the business process “Register the payment by the advertiser”.

USE CASE 10 Register the payment by the advertiser.
Goal in Context The advertiser expects the media agency to accept the payment for the advertising

campaign.
Scope & Level Media agency, primary task.
Preconditions The media agency invoice has been created and sent to the advertiser.
Success End
Condition

The media agency has accepted the payment by the advertiser according to the media
agency invoice.

Primary Actor
Secondary Actors

Advertiser.

Trigger Receiving of a payment by the advertiser.
DESCRIPTION Step Action
 1 The media agency registers the payment and satisfies the claim against the

advertiser to pay for the campaign according to the media agency invoice.

168

Table 4-38. Extended use case for the business process “Process the publication invoice”.

USE CASE 11 Process the publication invoice.
Goal in Context The publication expects the media agency to pay for the ad according to the publication

invoice.
Scope & Level Media agency, primary task.
Preconditions The ad corresponding to the publication invoice has been printed.
Success End
Condition

The media agency has agreed to pay for the ad according to the publication invoice.

Primary Actor
Secondary Actors

Publication.

Trigger A request by the publication to pay for the ad according to the publication invoice.
DESCRIPTION Step Action
 1 The invoice is accepted by the media agency secretary: the media agency

sends to the publication an agreement and commits to pay for the ad according
to the publication invoice.

EXTENSIONS Step Branching Action
 1a The invoice is rejected by the media agency secretary: the media agency sends

to the publication a refusal to pay for the ad according to the publication
invoice.

Table 4-39. Extended use case for the business process “Reserve ad space”.

USE CASE 12 Reserve ad space.
Goal in Context The media agency expects ad space to be reserved for the ad according to the ad space

reservation request.
Scope & Level Publication, primary task.
Preconditions
Success End
Condition

The ad space reservation has been created.

Primary Actor
Secondary Actors

Media agency.

Trigger An ad space reservation request by the media agency.
DESCRIPTION Step Action
 1 There is sufficiently ad space or alternative ad space for the reservation

request in question: the publication sends to the media agency a proposal for
ad space reservation and processes the reply by the media agency (Use Case
13).

EXTENSIONS Step Branching Action
 1a There is not enough ad space or alternative ad space: the publication deletes

the ad space reservation request and sends to the media agency a refusal to
reserve ad space.

169

Table 4-40. Extended use case for the business process “Process the reply by the media agency”.

USE CASE 13 Process the reply by the media agency.
Goal in Context The publication expects the proposal for ad space reservation to be accepted by the

media agency.
Scope & Level Media agency, subfunction.
Preconditions There is sufficiently ad space or alternative ad space for the reservation request

received by the publication.
Success End
Condition

The ad space reservation has been created.

Primary Actor
Secondary Actors

Media agency.

Trigger
DESCRIPTION Step Action
 1 The acceptance of the proposal for ad space reservation is received from the

media agency: the publication creates the ad space reservation.
EXTENSIONS Step Branching Action
 1a The rejection of the proposal for ad space reservation is received from the

media agency: the publication deletes the ad space reservation request and the
business process ends.

Table 4-41. Extended use case for the business process “Update the ad space reservation”.

USE CASE 14 Update the ad space reservation.
Goal in Context The media agency expects the ad space reservation to be updated.
Scope & Level Publication, primary task.
Preconditions The ad space reservation has been created.
Success End
Condition

The ad space reservation has been updated.

Primary Actor
Secondary Actors

Media agency.

Trigger A request by the media agency to update the ad space reservation.
DESCRIPTION Step Action
 1 The publication updates the ad space reservation and sends the updated ad

space reservation to the media agency.

Table 4-42. Extended use case for the business process “Have the ad printed”.

USE CASE 15 Have the ad printed.
Goal in Context The media agency expects the ad to be printed.
Scope & Level Publication, primary task.
Preconditions The ad space reservation has been created.
Success End
Condition

The ad space reservation has been turned into the corresponding ad order.

Primary Actor
Secondary Actors

Media agency.
Artwork producer.

Trigger A request by the media agency to provide it with the printed ad.
DESCRIPTION Step Action
 1 The publication turns the ad space reservation into the ad order, sends the

confirmed ad order to the media agency, and commits towards the media
agency to provide it with the printed ad.

 2 The order includes an artwork description: receive the artwork (Use Case 16).
 3 A signal by the publication secretary on printing of the ad is received: the

printing of the ad is registered (Use Case 17).

170

Table 4-43. Extended use case for the business process “Receive the artwork”.

USE CASE 16 Receive the artwork.
Goal in Context The publication expects to receive the artwork and connect it to the ad order.
Scope & Level Publication, subfunction.
Preconditions The order includes an artwork description.
Success End
Condition

The artwork has been received and connected to the ad order.

Primary Actor
Secondary Actors

Media agency.
Artwork producer.

Trigger The arrival of the artwork sent by the artwork producer.
DESCRIPTION Step Action
 1 The artwork is connected to the ad order.

Table 4-44. Extended use case for the business process “Deal with the publication invoice”.

USE CASE 17 Deal with the publication invoice.
Goal in Context The publication is willing to provide the media agency with the printed ad and expects

to receive from the media agency an agreement to pay for the ad according to the
publication invoice.

Scope & Level Publication, subfunction.
Preconditions The ad order has been created.
Success End
Condition

The ad has been sent to the media agency and the media agency has agreed to pay for
the ad according to the publication invoice.

Primary Actor
Secondary Actors

Media agency.

Trigger Registration of the printing of the ad by the publication secretary.
DESCRIPTION Step Action
 1 The publication provides the media agency with the printed ad.
 2 The publication secretary measures the size of the printed ad and updates the

ad size in the ad order.
 3 The publication creates the publication invoice.
 4 The publication invoice is approved and, optionally, changed by the

publication secretary: the publication sends the publication invoice to the
media agency and creates the claim against the media agency to receive a
payment for the ad according to the invoice.

 5 An agreement to pay for the ad according to the publication invoice is
received from the media agency: the business process ends.

EXTENSIONS Step Branching Action
 5a A refusal to pay for the ad according to the publication invoice is received

from the media agency: go to step 4.

Table 4-45. Extended use case for the business process “Design the artwork”.

USE CASE 18 Design the artwork.
Goal in Context The media agency expects the artwork specified by the campaign order to be designed.
Scope & Level Artwork designer, primary task.
Preconditions The campaign order includes the artwork description.
Success End
Condition

The artwork has been designed.

Primary Actor
Secondary Actors

Media agency.
Advertiser.

Trigger A request by the media agency to design the artwork.
DESCRIPTION Step Action
 1 The artwork design request is approved by the artist: the artwork designer

commits to design the artwork and sends a confirmation to the media agency.
 2 A signal on completing the artwork design by the artist is received: register

the designing of the artwork (Use Case 19).

171

Table 4-46. Extended use case for the business process “Register the designing of the artwork”.

USE CASE 19 Register the designing of the artwork.
Goal in Context The artwork designer expects the designing of the artwork to be registered.
Scope & Level Artwork designer, subfunction.
Preconditions A request to design the artwork has been received by the artwork designer and

approved by the artist
Success End
Condition

The artwork has been designed and the designing has been registered.

Primary Actor
Secondary Actors

Media agency.
Advertiser.

Trigger A signal on completing the artwork design by the artist.
DESCRIPTION Step Action
 1 The artwork designer stores the artwork design.
 2 The artwork designer sends a proof to the advertiser.
 3 An acceptance of the proof is received from the advertiser: the artwork

designer satisfies the commitment towards the media agency to design the
artwork and has the artwork produced (Use Case 20).

EXTENSIONS Step Branching Action
 3a A rejection of the proof is received from the advertiser: the subfunction ends.

Table 4-47. Extended use case for the business process “Have the artwork produced”.

USE CASE 20 Have the artwork produced.
Goal in Context The artwork designer expects the artwork to be produced.
Scope & Level Artwork designer, subfunction.
Preconditions The artwork has been designed.
Success End
Condition

The artwork has been produced.

Primary Actor
Secondary Actors

Media agency.
Artwork producer.

Trigger
DESCRIPTION Step Action
 1 The artwork designer creates the artwork production order.
 2 The artwork designer sends to the artwork producer a request to produce the

artwork.
 3 The artwork designer receives from the artwork producer an agreement to

produce the artwork.
 4 The artwork designer receives from the artwork producer a proof of the

artwork.
 5 The proof is accepted by the artist: the artwork designer informs the artwork

producer about the acceptance of the proof and has the artwork distributed
(Use Case 21).

EXTENSIONS Step Branching Action
 5a The proof is rejected by the artist: the artwork designer informs the artwork

producer about the rejection of the proof.

Table 4-48. Extended use case for the business process “Have the artwork distributed”.

USE CASE 21 Have the artwork distributed.
Goal in Context The artwork designer expects the artwork to be sent to the publications included by the

campaign order.
Scope & Level Artwork designer, subfunction.
Preconditions The artwork has been produced.
Success End
Condition

The artwork producer has been requested to send the artwork to the publications
included by the campaign order.

Primary Actor
Secondary Actors

Media agency.
Artwork producer.

Trigger
DESCRIPTION Step Action
 1 For each publication included by the campaign order: request the artwork

producer to provide the publication with the artwork (Use Case 22).

172

Table 4-49. Extended use case for the business process “Request distribution”.

USE CASE 22 Request distribution.
Goal in Context The artwork designer expects the artwork provider to accept the request to provide the

publication with the artwork.
Scope & Level Artwork designer, subfunction.
Preconditions The artwork has been produced.
Success End
Condition

The artwork producer has agreed to provide the publication with the artwork.

Primary Actor
Secondary Actors

Media agency.
Artwork producer.

Trigger
DESCRIPTION Step Action
 1 The artwork designer sends to the artwork producer a request to provide the

given publication with the artwork.
 2 The artwork designer receives from the artwork producer an agreement to

provide the given publication with the artwork.

Table 4-50. Extended use case for the business process “Produce the artwork”.

USE CASE 23 Produce the artwork.
Goal in Context The artwork designer expects the artwork specified by the artwork production order to

be produced.
Scope & Level Artwork producer, primary task.
Preconditions The artwork production order including the artwork design has been created.
Success End
Condition

The artwork has been produced.

Primary Actor
Secondary Actors

Artwork designer.
Publication.

Trigger A request by the artwork designer to produce the artwork specified by the artwork
production order.

DESCRIPTION Step Action
 1 The artwork production request is approved by the production manager: the

artwork producer commits to produce the artwork according to the artwork
production order and sends a confirmation to the artwork designer.

 2 A signal on completing the artwork production by the production manager is
received: register the producing of the artwork (Use Case 24).

Table 4-51. Extended use case for the business process “Register the producing of the artwork”.

USE CASE 24 Register the producing of the artwork.
Goal in Context The production manager expects the producing of the artwork to be registered.
Scope & Level Artwork producer, subfunction.
Preconditions The request to produce the artwork according to the artwork production order has been

received by the artwork producer and approved by the artist.
Success End
Condition

The artwork has been produced and the producing has been registered.

Primary Actor
Secondary Actors

Media agency.
Publication.

Trigger A signal on completing the artwork production by the production manager.
DESCRIPTION Step Action
 1 The artwork producer stores the artwork.
 2 The artwork producer sends a proof to the artwork designer.
 3 An acceptance of the proof is received from the atwork designer: the artwork

producer satisfies the commitment towards the artwork designer to produce
the artwork and registers the acceptance.

EXTENSIONS Step Branching Action
 3a A rejection of the proof is received from the advertiser: the subfunction is

ended.

173

Table 4-52. Extended use case for the business process “Provide the publication with the artwork”.

USE CASE 25 Provide the publication with the artwork.
Goal in Context The artwork designer expects the publication to be provided with the artwork.
Scope & Level Artwork producer, primary task.
Preconditions The artwork has been produced.
Success End
Condition

The publication has been provided with the artwork.

Primary Actor
Secondary Actors

Artwork designer.
Publication.

Trigger A request by the artwork designer to provide the publication specified by the artwork
connected to the artwork production order specified.

DESCRIPTION Step Action
 1 The artwork producer commits to provide the publication with the artwork and

sends a confirmation to the artwork designer.
 2 The artwork producer provides the publication with the artwork.

174

4.2.4. Design By Extended AOR Modelling

4.2.4.1. Organization and Information Modelling

Since in an inter-organizational setting every agent must have a knowledge of all the other agents and
about objects of the problem domain, it is not reasonable or even always possible to separate
organization and information models from each other. Therefore the organization and information
models of the case study of advertising, which have been created based on [Antikainen01], are both
represented in the agent diagram of Figure 4-5. The organization model of the advertising domain
depicted in Figure 4-5 consists of the agent types Advertiser, MediaAgency, Publication, ArtworkDesigner,
and ArtworkProducer. All of them are subtypes of the agent type Organization which is not shown in
Figure 4-5. Any company can be an Advertiser. The agent types MediaAgency and Publication are
subclasses of the institutional roles BuyerOfAdSpace and SellerOfAdSpace, respectively. The agent type
MediaAgency includes the human agent type MediaAgencySecretary and the agent type Timer, both with
just one instance. The agent type Publication consists of the human agent type ChiefEditor, which has
exactly one instance, and of the following subtypes of OrganizationUnit: PrintingPlant, PrepressProduction,
EditorialDepartment, and AdvertisingDepartment. For the latter is modelled the internal human agent type
PublicationSecretary with one instance. Naturally, there is a control (isSubordinateTo) relationship
between the human agent types PublicationSecretary and ChiefEditor. Since inter-organizational business
processes are based on agreements between parties, there are also dependency (providesResourceTo)
and benevolence (isBenevolentTo) relationships between the agent types shown in Figure 4-5. The
agent types ArtworkDesigner and ArtworkProducer include the respective internal human agent types Artist
and ProductionManager. All the agent types of the organization model of advertising define the
identifier attribute agentID of the type String. In Figure 4-5, this attribute is shown for Publication.

The information model of the advertising domain includes the shared object types CampaignOrder
and AdOrder. The instances of CampaignOrder are exchanged by agents of the types Advertiser,
ArtworkDesigner, and MediaAgency, while instances of AdOrder are passed between agents of the types
MediaAgency and Publication. A CampaignOrder can have the status isPreliminary, isArtworkDesigned, or
isPerformed. An instance of AdOrder always has one of the following statuses: isPreliminary, isReserved,
isRejected, isUpdated, isConfirmed, and isPrinted. The status predicate isPerformed of the object type
CampaignOrder is defined as follows by using the extended OCL:

context CampaignOrder inv:
self.isPerformed IF self.adInsertion->forAll(adOrder->exists(isPrinted or isRejected))

An instance of CampaignOrder is associated with one or more instances of AdInsertion describing the
particular ad to be published in the particular issue of the publication whose representation is included
by the AdInsertion. A CampaignOrder also includes the object instance :AdDescription, which, in turn,
consists of the internal object :AdSize, and, optionally, the object instance :ArtworkDescription. As
Figure 4-5 shows, each :ArtworkDescription is associated with the instance of ArtworkDesign that it
“describes”. An instance of ArtworkDesign, in turn, is included by an object of the type
ArtworkProductionOrder. The instances of the latter are exchanged by agents of the types ArtworkDesigner
and ArtworkProducer. An ArtworkProductionOrder is characterized by the attribute of the type dueDate and
the status predicates isPreliminary and isProduced. For an ArtworkProducer, an instance of ArtworkDesign
determines the corresponding instance of Artwork which is consumed by agents of the type Publication.
Both ArtworkDesign and Artwork, which are represented in a digital form, have the status predicate isOK
which is used in the business processes of proof evaluation. The attributes of :AdDescription and
:ArtworkDescription are not shown in Figure 4-5. The status predicates isArtworkDesigned of
CampaignOrder and isProduced of ArtworkProductionOrder are defined in the following way:

context CampaignOrder inv:
self.isArtworkDesigned IF ArtworkDesign.allInstances->exists
(d : ArtworkDesign | d.artworkDescription = self.adDescription.artworkDescription and
self.adDescription.artworkDescription.artworkDesign = d and d.isOK)

context ArtworkProductionOrder inv:
self.isProduced IF Artwork.allInstances->exists(aw : Artwork |
aw.artworkDesign = self.artworkDesign and self.artworkDesign.artwork = aw and aw.isOK)

The agent type Publication includes the private object type Issue with the status predicate isPublished
and intensional predicates hasAdSpaceFor and hasAlternativeAdSpaceFor. Either intensional predicate
determines on the basis of the value of the derived attribute availableArea of the corresponding instance

175

of Issue whether there is enough ad space for the ad described by the given AdOrder. The intensional
predicate hasAlternativeAdSpace is defined analogously to the intensional predicate hasAdSpace with the
exception of the alternative date the ad is to be published on according to the prior agreement
concerning alternative ad space between the Media Agency and Publication.

Advertiser

MediaAgency

Publication

<<Human
Agent>>
MediaAgency
Secretary

Artwork
Producer

Artwork
Designer

<<Human
Agent>>
Artist

Advertising
Department

MediaAgency
Invoice

:AdDescription

CampaignOrder

Timer

Issue

hasAdSpaceFor
(AdOrder)

AdOrder

isPreliminary

isConfirmed

isUpdated

isPrinted

isReserved

ArtworkDesign

Artwork

:Artwork
Description

ArtworkProduction
Order

isPreliminary

isPerformed

0..1

0..1

0..*

1

0..*
1

0..*
1

0..*

0..*

1

0..* 0..*1

0..*

1

1 0..* 1 0..*1

1 1

1

1

0..* 1

<<Human
Agent>>
Publication
Secretary

Editorial
Department

Prepress
Production

Printing
Plant

1

1

1

1

<<HumanAgent>>
ChiefEditor

<<
is

S
ub

or
di

na
te

To
>><<Institutional

Agent>>
OrganizationUnit

1

1..*

<<Role>>
SellerOf
AdSpace

<<Role>>
BuyerOf
AdSpace

:AdSize

1

width, length: Real
area: Real

availableArea: Real
date: Date

isPublished

1

1

1

1

0..* 0..*

0..*
1

AdInsertion

1..*

hasAlternative
AdSpaceFor

(AdOrder)

isOK

isOK

1

MediaAgency
Invoice

isSent

isPaid

isPreliminary

Publication
Invoice

isSent

isPaid

isPreliminary

<<re-
pre-

sents>>

1

1
1

1

orderID: String
dueDate: Date
updateTime: Date

<<providesResourceTo>> <<isBenevolentTo>>

<<providesResourceTo>>

<<providesResourceTo>>

1
1

orderID: String
dueDate: Date
artworkDesignDD: Date
advertiserID: String

paidBy: Date

<<repre-
sents>>

0..*

date: Date

:Publication <<represents>>

1 0..1

0..1

1
0..1

0..1

isPreliminary

isProduced

isArtworkDesigned

Publication
Invoice
orderID: String
paidBy: Date

orderID: String
paidBy: Date

Issue

<<represents>>

0..*

0..*

date: DatedesignerID:String
producerID: String

isRejected

dueDate: Date

1

<<HumanAgent>>
ProductionManager

1
agentID: String

Figure 4-5. The organization and information models of the advertising case study.

176

4.2.4.2. Interaction Modelling

The interaction frames in the extended interaction frame diagram depicted in Figure 4-6 model the
interactions described by the use cases represented in Tables 4-28 – 4-52.

The first communicative action event type in the interaction frame of the business process type of
carrying out an advertising campaign models a request by the Advertiser, which can be any company, to
the MediaAgency to have the advertising campaign performed. The campaign is described by the
instance of CampaignOrder that is contained by the data item ?CampaignOrder of the corresponding
communicative action event. Since there is a providesResourceTo relationship between the agent types
MediaAgency and Advertiser in the organization model represented in Figure 4-5, the MediaAgency
always agrees to have the campaign performed and forms a see-to-it-that commitment of the type
achieve(isPerformed(?CampaignOrder) ?Date) towards the Advertiser. When the advertising campaign has
been performed, the MediaAgency sends to the Advertiser a MediaAgencyInvoice which creates for the
MediaAgency a claim against the Advertiser that it would pay for the campaign. The claim is satisfied
through actual paying for the campaign. The invoicing process described is modelled through the
corresponding action event types.

The interaction frame between the agent types MediaAgency and Publication describes the business
process type of publishing an ad. In accordance with the isBenevolentTo relationship between the agent
types Publication and MediaAgency, room is left for refusals and negotiations regarding ad space
between agents of the types MediaAgency and Publication. The first communicative action event type of
the interaction frame models a request by the MediaAgency to the Publication to reserve ad space for the
ad described by the data element ?AdOrder of the action event. In reply to a message of this type, the
Publication either proposes an ad space to be reserved or refuses the ad space reservation request by
using the respective communicative action event type propose or refuse. If the MediaAgency receives a
proposal for ad space reservation, it, in turn, either accepts or rejects it by creating a communicative
action event of the type accept-proposal or reject-proposal, respectively. In case of the acceptance, the ad
space reservation can be updated by exchanging messages of the types request achieve(isUpdated
(?AdOrder)) and inform(isUpdated(?AdOrder)). The ad order is actually submitted by sending a message of
the type request providePrintedAd(?AdOrder) from the MediaAgency to the Publication by which the
MediaAgency requests a “hard copy” of the publication’s issue containing the printed ad. This message
is followed by sending a confirmation message of the type agree providePrintedAd(?AdOrder) in the
opposite direction. At this stage, the Publication can not any more refuse the ad order. The occurrence
of an action event of the type providePrintedAd(?Issue) between the Publication and MediaAgency, which
models the physical delivery of the issue of the publication where the printed ad has appeared, is
preceded by the formation of the corresponding commitment/claim of the type providePrintedAd(?Issue
?Date). The occurrence of a communicative action event of the type request
payForAd(?PublicationInvoice) represents sending an invoice from the Publication to the MediaAgency. It
results in a commitment/claim of the type payForAd(?PublicationInvoice ?Date) which is satisfied by the
occurrence of an action event of the corresponding type initiated by the MediaAgency.

The first action event type between the MediaAgency and ArtworkDesigner models a request by the
MediaAgency to design the artwork which is accompanied by the corresponding CampaignOrder
containing the description of the artwork. In our simplified models, this request is always followed by
a communicative action event of the type agree achieve(isArtworkDesigned(?CampaignOrder)) by the
ArtworkDesigner, representing an agreement to have the artwork designed, and by the formation of the
corresponding stit-commitment/claim of the type achieve(isArtworkDesigned(?CampaignOrder) ?Date)
between the ArtworkDesigner and MediaAgency. The commitment is satisfied by actual completion of the
artwork design. The next communicative action event type models a request from the ArtworkDesigner
to the ArtworkProducer to provide the Publication, which is referred to by the identifier attribute agentID,
with the artwork. This request is also never refused because of the providesResourceTo relationship
between the agent types involved in the organization model in Figure 4-5. After receiving a request to
provide the artwork, the ArtworkProducer commits towards the Publication to provide it with the artwork.
Consequently, here the creditor of the commitment to perform an action (Publication) is different from
the agent who requested it’s performing (ArtworkDesigner).

In addition to the interaction frames described, there are interaction frames related to sending and
approving/rejecting proofs. The ArtworkDesigner and ArtworkProducer send proofs to the Advertiser and
ArtworkDesigner, respectively, and receive yes-no replies from them. A proof-related business process is
repeated as long as the proof is accepted. The square brackets in the inform([not](isOK(?ArtworkDesign)))
and inform ([not](isOK(?Artwork))) communicative action event types stand for optionality.

177

PublicationMedia Agency

request achieve
(isReserved
(?AdOrder))

request
providePrintedAd

(?AdOrder)

agree
providePrintedAd

(?AdOrder)

inform
(isUpdated
(?AdOrder))

request
payForAd

(?PublicationInvoice)

payForAd
(?PublicationInvoice

?Date)

payForAd
(?PublicationInvoice)

providePrintedAd
(?Issue ?Date)

providePrintedAd
(?Issue)

Advertiser
request achieve

(isPerformed
(?CampaignOrder))

agree achieve
(isPerformed

(?CampaignOrder))

achieve
(isPerformed

(?CampaignOrder) ?Date)
achieve

(isPerformed
(?CampaignOrder))

request
payForCampaign

(?MediaAgencyInvoice)

payForCampaign
(?MediaAgencyInvoice

?Date)

payForCampaign
(?MediaAgencyInvoice)

propose/refuse
achieve(isReserved

(?AdOrder))

request achieve
(isUpdated
(?AdOrder))

accept-proposal/
reject-proposal achieve
(isReserved(?AdOrder))

agree/refuse
payForAd

(?PublicationInvoice)

Artwork
Designer

qu
er

y-
if(

is
O

K
(?

Ar
tw

or
kD

es
ig

n)
)

in
fo

rm
([n

ot
](i

sO
K

(?
Ar

tw
or

kD
es

ig
n)

))

request achieve
(isArtworkDesigned
(?CampaignOrder))

achieve
(isArtworkDesigned

(?CampaignOrder) ?Date)
achieve

(isArtworkDesigned
(?CampaignOrder))

Artwork
Producer

inform
([not](isOK
(?Artwork)))

request provideArtwork
(Publication(?String)

?ArtworkProductionOrder)

provideArtwork
(?Artwork)

provideArtwork
(?Artwork)agree provideArtwork

(Publication(?String)
?Artwork ProductionOrder)

agree achieve
(isArtworkDesigned
(?CampaignOrder))

query-if
(isOK(?Artwork))

Figure 4-6. The extended interaction frame diagram of the advertising domain.

178

4.2.4.3. Function and Goal Modelling

By following guideline 1 of the recursive procedure described in section 3.8.4.1, the main scenarios of
the descriptions of the business processes of advertising by the goal-based use cases presented in
Tables 4-28 − 4-52 are turned into the corresponding activity types of the proper agent types. In
Appendix G, the activity types distinguished at the stage of function and motivation modelling are
presented in bold.

Firstly, the main scenarios of the primary tasks triggered by external agents are modelled according
to guideline 1 in section 3.8.4.1. For example, the main scenarios of use cases 1 (“Carry out the
advertising campaign”) and 8 (“Complete the advertising campaign”) with the media agency in focus
are represented in Appendix G as the respective activity types “Manage advertising campaign” and
“Complete advertising campaign” of the agent type MediaAgency. In the same way, the main scenarios
of use cases 12 (“Reserve ad space”) and 15 (“Have the ad printed”) with the publication in focus are
turned in Appendix G into the respective activity types “Manage ad space reservation” and “Manage
ad publishing” of the agent type Publication. According to guideline 2 in section 3.8.4.1, the triggers of
the primary tasks mentioned are modelled in Appendix G as the respective reaction rules R1, R22, R33,
and R39. The main scenarios of use cases 18 (“Design the artwork”) and 23 (“Produce the artwork”)
with the artwork designer and artwork producer in focus, respectively, are represented in Appendix G
as the activity types “Manage artwork design” and “Manage artwork production” of the respective
internal agent types ArtworkDesigner and ArtworkProducer. The triggers of these primary tasks are
modelled in Appendix G as the respective reaction rules R51 and R67.

Next, subordinate use cases (subfunctions) of the primary tasks are turned into the respective
sequential subactivity types as is described in guidelines 3 − 5 in section 3.8.4.1. The subfunctions
“Request artwork design” (Use Case 2), “Have ad space reserved in the publications” (Use Case 3),
“Have the ad space reservation updated” (Use Case 6), and “Request printing of the ad” (Use Case 7)
of the primary task “Carry out the advertising campaign” (Use Case 1) are thus modelled as the
respective sequential subactivity types “Manage artwork design”, “Manage ad space reservations”,
“Have the ad space reservation updated”, and “Request printing of the ad” of the activity type
“Manage advertising campaign”. All the activity types mentioned belong to the agent type
MediaAgency. The subactivity types “Have the ad space reservation updated” and “Request printing of
the ad” are triggered by the respective internal agents :MediaAgencySecretary and :Timer.

Following the same guidelines, for the activity type “Manage ad space reservation” of the agent
type Publication, corresponding to the primary task “Reserve ad space” (Use Case 12), is distinguished
the subactivity type “Wait for and process reply”, corresponding to the primary task’s subfunction
“Process the reply by the media agency” (Use Case 13). The subfunctions “Receive the artwork” (Use
Case 16) and “Deal with the publication invoice” (Use Case 17) of the primary task “Have the ad
printed” (Use Case 15) are modelled as the respective sequential subactivity types “Receive and insert
artwork” and “Manage ad invoicing” of the agent type Publication.

The process described by guidelines 3 − 5 in section 3.8.4.1 is recursively repeated for all
subfunctions and steps of a primary task as long as the modelling precision of the desired level is
achieved. If the step of a scenario does not include any subfunctions, it is modelled as an elementary
activity type. For example, the four steps of the main scenario of the subfunction “Deal with the
publication invoice” (Use Case 17) are modelled as the elementary activity types “Provide printed ad”,
“Update ad size”, “Create publication invoice”, and “Send publication invoice” of the agent type
Publication.

According to guidelines 3 − 5 in section 3.8.4.1, the activity type “Manage artwork design” of the
agent type ArtworkDesigner, corresponding to the primary task “Design the artwork”, is modelled as the
sequence of two activity types: the elementary activity type “Confirm and commit to design artwork”
and the subactivity type “Register artwork design”. Analogously, the activity type “Manage artwork
production” is modelled as consisting of the elementary activity type “Confirm and commit to produce
artwork” and the subactivity type “Register artwork production” next to it.

179

In function and motivation models we do not represent activities that are repeated for each instance
of some (possibly constrained by a predicate) informational entity type because activity diagrams of
function and motivation models do not lend themselves to expressing conditions (of repeating). For
example, as Appendix G shows, the activity types “Manage ad order” of MediaAgency and “Manage
publication” of ArtworkDesigner, whose instances are repeated for each instance of AdOrder and
Publication, respectively, are not represented in function and motivation models.

As we explained in section 3.8.4.2, preconditions and goals are defined for activity types as
propositions by means of OCL. Table 4-53 includes the precondition and goal defined for each activity
type represented by the function model of the case study of advertising.

The precondition defined for the activity type “Manage advertising campaign” of the agent type
MediaAgency in Table 4-53 means that within an agent of this type exists the instance of CampaignOrder
that (1) has the status isPreliminary, (2) has the value of its attribute agentID equal to the value of the
activity’s input parameter senderID, and (3) is referred to by the value of the activity’s input parameter
co. The meaning of the goal defined for the same activity type is that all the advertising orders
included by the CampaignOrder are either confirmed or rejected and the MediaAgency has the see-to-it-
that commitment towards the Advertiser to perform the campaign. The latter is reflected by achieving
the status isPerformed of the corresponding instance of CampaignOrder. According to the derivation rule
defined in section 4.2.4.1, an instance of CampaignOrder has the status isPerformed if each instance of
AdOrder connected to it through the instance of AdInsertion shared by both has the status isRejected or
isPrinted. The status predicate isPrinted of an instance of AdOrder is true if the publishing of the ad
corresponding to the AdOrder has been registered.

Analogously, the precondition defined for the activity type “Manage ad space reservation” of the
agent type Publication is the existence of the corresponding instance of AdOrder that has the status
isPreliminary and is referred to by the value of the activity’s input parameter co. Additionally, the object
mentioned has to be associated with the instance of the Publication’s private object type Issue, having
the same date as the AdInsertion included by the AdOrder, and with the instance of the representation of
the agent type MediaAgency, identified by the value of the input parameter senderID. The goal defined
for the activity type “Manage ad space reservation”, which is represented in Table 4-53, is that the
instance of AdOrder has either the status isReserved or the status isRejected.

The precondition defined for the activity type “Manage ad publishing” of the agent type Publication
is that within an agent of the type Publication exists the instance of AdOrder with the status isReserved or
isUpdated that is referred to by the value of the activity’s input parameter ao of the type AdOrder. The
goal defined for the same activity type specifies that (1) the ad specified by the advertising order has
been printed, which is reflected by the status isPrinted of the corresponding instance of AdOrder, (2) the
PublicationInvoice has been sent to the media agency, which is reflected by its status isSent, and (3) the
corresponding see-to-it-that claim against the MediaAgency to pay for the ad according to the invoice
has been created, and optionally, if the ad order includes the description of the artwork, (4) the artwork
associated with the corresponding artwork description exists.

The definition of the goal of an agent of the type ArtworkDesigner to design the artwork is attached
to the corresponding activity type “Manage artwork design”. The goal is defined as the conjunction of
the expressions for the desired status isArtworkDesigned of the corresponding instance of CampaignOrder
and the existence of the instance of ArtworkProductionOrder associated with the corresponding
ArtworkDesign. According to the derivation rule defined in section 4.2.4.1, an instance of CampaignOrder
has the status isArtworkDesigned if there is the instance of ArtworkDesign connected to it with the status
isOK, which is the case after the proof of the artwork design has been accepted by the advertiser. The
precondition defined for the activity type “Manage artwork design” is that within the ArtworkDesigner
exists the instance of CampaignOrder with the status isPreliminary that is associated with the
corresponding instance of the representation of the agent type MediaAgency, and is referred to by the
value of the activity’s input parameter co.

Analogously, the precondition defined for the activity type “Manage artwork production” specifies
the existence of the instance of ArtworkProductionOrder that is associated with the instance of the
representation of the agent type ArtworkDesigner. The latter is identified by the value of the input
parameter senderID. The goal defined for the activity type “Manage artwork production” is that the
artwork specified by the artwork production order has been produced which is reflected by the status
predicate isProduced of the ArtworkProductionOrder. The latter is defined in section 4.2.4.1.

180

Table 4-53. Activities of the case study of advertising with their preconditions and goals.

Activity type and
input parameter(s)

Precondition Goal

Manage advertising
campaign

(co : CampaignOrder,
senderID: String)

CampaignOrder.
allInstances->exists

(c : CampaignOrder |
c.isPreliminary and

c.advertiserID = senderID and
co = c)

co.adInsertion->forAll
(adOrder->exists

(ao : AdOrder | ao = co.adInsertion and
(ao.isConfirmed or ao.isRejected))) and

self.stitCommitmentClaim->exists
(achieve = co.isPerformed and

dueTime = co.dueDate and
sourceID = self.agentID and

targetID = senderID)
Agree and commit to

perform campaign
- self.stitCommitmentClaim->exists

(achieve = co.isPerformed and
dueTime = co.dueDate and
sourceID = self.agentID and

targetID = senderID)
Manage artwork

design
- -

Send artwork design
request

- -

Receive agreement - -
Manage
ad space

reservations

- co.adInsertion->forAll
(adOrder->exists

(ao : AdOrder | ao = co.adInsertion and
(ao.isConfirmed or ao.isRejected)))

Have the ad space
reservation updated

(ao : AdOrder)

AdOrder.allInstances->exists
(o : AdOrder |

o.isReserved or o.isUpdated and
ao = o)

ao.isUpdated

Request update - -
Register update - ao.isUpdated

Request printing of
the ad

(ao : AdOrder)

AdOrder.allInstances->exists
(o : AdOrder |

o.isReserved or o.isUpdated and
ao = o)

ao.isConfirmed

Request printing - -
Register confirmation - ao.isConfirmed
Complete advertising

campaign
(ao : AdOrder,

sourceID : String)

AdOrder.allInstances->exists
(o : AdOrder |

o.isConfirmed and ao = o)

ao.isPrinted or
(ao.isPrinted and

ao.adDescription.campaignOrder.
isPerformed and

MediaAgencyInvoice.allInstances->exists
(mi: MediaAgencyInvoice | mi.isSent and

mi.orderID = co.orderID and
co.mediaAgencyInvoice = mi and

mi.campaignOrder = co) and
payForCampaign.allInstances->exists

(about = ao.adDescription.campaignOrder.
mediaAgencyInvoice and

dueTime = ao.adDescription.campaignOrder.
mediaAgencyInvoice.paidBy and

sourceID =
ao.adDescription.campaignOrder.advertiser.

agentID and targetID = self.agentID))
Register printing of

the ad
- ao.isPrinted or (ao.isPrinted and

ao.adDescription.campaignOrder.isPerformed)

181

Table 4-53 (continued). Activities of the case study of advertising with their preconditions and goals.

Manage
media agency invoice
(co : CampaignOrder)

CampaignOrder.
allInstances->exists

(c : CampaignOrder |
c.isPerformed and c =

ao.adDescription.campaignOrder
and co = c)

MediaAgencyInvoice.allInstances->exists
(mi: MediaAgencyInvoice | mi.isSent and

mi.orderID = co.orderID and
co.mediaAgencyInvoice = mi and

mi.campaignOrder = co) and
payForCampaign.allInstances->exists
(about = co.mediaAgencyInvoice and

dueTime = co.mediaAgencyInvoice.paidBy
and sourceID = co.advertiser.agentID and

targetID = self.agentID)
Create media agency

invoice
- MediaAgencyInvoice.allInstances->exists

(mi: MediaAgencyInvoice |
mi.isPreliminary and

mi.orderID = co.orderID and
co.mediaAgencyInvoice = mi and

mi.campaignOrder = co)
Send media agency

invoice
- co.mediaAgencyInvoice.isSent and

payForCampaign.allInstances->exists
(about = co.mediaAgencyInvoice and

dueTime = co.mediaAgencyInvoice.paidBy
and sourceID = co.advertiser.agentID and

targetID = self.agentID)
Register the payment

(invoice :
MediaAgencyInvoice,

originID : String)

MediaAgencyInvoice-exists
(i : MediaAgencyInvoice |
i.isSent and invoice = i)

invoice.isPaid and
not(payForCampaign.allInstances->exists

(about = invoice and dueTime =
invoice.paidBy and

sourceID = originID and
targetID = self.agentID))

Deal with
publication invoice

(pi:
PublicationInvoice)

PublicationInvoice.
allInstances->exists

(i : PublicationInvoice |
i.adOrder->exists

(o: AdOrder | o.orderID = i.orderID
and o.publicationInvoice = i) and

pi = i)

payForAd.allInstances->exists
(about = pi and

dueTime = pi.paidBy and
sourceID = self.agentID and

targetID = senderID)

Manage ad space
reservation

(ao: AdOrder,
senderID : String)

AdOrder.allInstances->exists
(o : AdOrder | o.isPreliminary and

o.issue->exists
(is: Issue | is.date =

o.adInsertion.date and
is.adOrder->includes(o)) and

o.mediaAgency->exists
(ma: MediaAgency |

ma.agentID = senderID and
ma.adOrder->includes(o)) and

ao = o)

ao.isReserved or
ao.isRejected

Wait for and process
reply

- ao.isReserved or
ao.isRejected

Update ad space
reservation

(ao : AdOrder,
senderID : String)

AdOrder.allInstances->exists
(o : AdOrder |

o.isReserved or o.isUpdated and
ao = o)

ao.isUpdated

182

Table 4-53 (continued). Activities of the case study of advertising with their preconditions and goals.

Manage ad
publishing

(ao : AdOrder,
senderID : String)

AdOrder.allInstances->exists
(o : AdOrder |

o.isReserved or o.isUpdated and
ao = o)

(ao.isPrinted and
PublicationInvoice.allInstances->exists

(i : PublicationInvoice |
i.isSent and i.adOrder = ao and
ao.publicationInvoice = i) and
payForAd.allInstances->exists

(about = ao.publicationInvoice and
dueTime = ao.publicationInvoice.paidBy and

sourceID = ao.mediaAgency.agentID and
targetID = self.agentID)) or

(ao.isPrinted and
PublicationInvoice.allInstances->exists

(i : PublicationInvoice |
i.isSent and i.adOrder = ao and
ao.publicationInvoice = i) and
payForAd.allInstances->exists

(about = ao.publicationInvoice and
dueTime = ao.publicationInvoice.paidBy and

sourceID = ao.mediaAgency.agentID and
targetID = self.agentID)

and Artwork.allInstances->exists
(aw: Artwork | aw.artworkDescription =

ao.adDescription.artworkDescription and
ao.adDescription.artworkDescription = aw))

Confirm ad order - ao.isConfirmed and
providePrintedAd.allInstances->exists

(about = ao.issue and
dueTime = ao.dueDate and
sourceID = self.agentID and

targetID = senderID)
Receive and
insert artwork

(awd:
ArtworkDescription)

ArtworkDescription.
allInstances->exists

(d: ArtworkDescription |
d = ao.adDescription.

artworkDescription and
awd = d)

Artwork.allInstances->exists
(aw: Artwork | aw.artworkDescription = awd

and awd.artwork = aw)

Manage ad invocing
(ao : AdOrder)

AdOrder.allInstances->exists
(o : AdOrder |

o.isConfirmed and
ao = o)

ao.isPrinted and
not(providePrintedAd.allInstances->exists

(about = ao.issue and
dueTime = ao.dueDate and
sourceID = self.agentID and

targetID = ao.mediaAgency.agentID)) and
PublicationInvoice.allInstances->exists

(i : PublicationInvoice |
i.isSent and i.adOrder = ao and
ao.publicationInvoice = i) and
payForAd.allInstances->exists

(about = ao.publicationInvoice and
dueTime = ao.publicationInvoice.paidBy and

sourceID = ao.mediaAgency.agentID and
targetID = self.agentID)

Provide printed ad - ao.isPrinted and
not(providePrintedAd.allInstances->exists

(about = ao.issue and
dueTime = ao.dueDate and
sourceID = self.agentID and

targetID = ao.mediaAgency.agentID))
Update ad size - -

Create publication
invoice

- PublicationInvoice.allInstances->exists
(i : PublicationInvoice | i.isPreliminary and

i.adOrder = ao and ao.publicationInvoice = i)

183

Table 4-53 (continued). Activities of the case study of advertising with their preconditions and goals.

Send publication
invoice

(pi :
PublicationInvoice)

PublicationInvoice.
allInstances->exists

(i : PublicationInvoice |
i.isPreliminary and

i = ao.publicationInvoice and
pi = i)

pi.isSent and
payForAd.allInstances->exists

(about = pi and dueTime = pi.paidBy and
sourceID = ao.mediaAgency.agentID and

targetID = self.agentID)

Manage
artwork design

(co : CampaignOrder,
senderID : String)

CampaignOrder.
allInstances->exists

(o : CampaignOrder |
o.isPreliminary and

o.mediaAgency->exists
(ma: MediaAgency |

ma.agentID = senderID and
ma.campaignOrder->includes(o))

and co = o)

co.isArtworkDesigned and
Artwork.allInstances->exists

(a : Artwork | a.artworkDesign =
co.adDescription.artworkDescription.

artworkDesign and
co.adDescription.artworkDescription.

artworkDesign.artwork = a) and
ArtworkProductionOrder.allInstances->exists

(apo: ArtworkProductionOrder |
apo.isProduced and
apo.artworkDesign =

co.adDescription.artworkDescription.
artworkDesign and

co.adDescription.artworkDescription.
artworkDesign.artworkProductionOrder = apo)

Confirm and commit
to design artwork

- self.stitCommitmentClaim->exists
(achieve = co.isArtworkDesigned and
dueTime = co.artworkDesignDD and

sourceID = self.agentID and
targetID = senderID)

Register
artwork design

(ad : ArtworkDesign,
co : CampaignOrder)

CampaignOrder.
allInstances->exists

(o : CampaignOrder |
o.isPreliminary and

co = o)

co.isArtworkDesigned and
co.adDescription.

artworkDescription.artworkDesign = ad and
not

(self.stitCommitmentClaim->exists
(achieve = co.isArtworkDesigned and
dueTime = co.artworkDesignDD and

sourceID = self.agentID and
targetID = co.mediaAgency.agentID)) and

ArtworkProductionOrder.allInstances->exists
(apo: ArtworkProductionOrder |

apo.isProduced and apo.artworkDesign = ad
and ad.artworkProductionOrder = apo) and

Artwork.allInstances->exists
(aw : Artwork | aw.artworkDesign = ad and

ad.artwork = aw)
Store artwork design - ArtworkDesign.allInstances->exists

(d : ArtworkDesign | d.artworkDescription =
co.adDescription.

artworkDescription and co.adDescription.
artworkDescription.artworkDesign = d and

ad = d)
Have artwork

produced
- ArtworkProductionOrder.allInstances->exists

(apo: ArtworkProductionOrder |
apo.isProduced and

apo.artworkDesign = ad and
ad.artworkProductionOrder = apo) and

Artwork.allInstances->exists(a : Artwork |
a.artworkDesign = ad and ad.artwork = a)

Create artwork
production order

- ArtworkProductionOrder.allInstances->exists
(apo: ArtworkProductionOrder |

apo.isPreliminary and
apo.artworkDesign = ad and

ad.artworkProductionOrder = apo)

184

Table 4-53 (continued). Activities of the case study of advertising with their preconditions and goals.

Request production - -
Receive agreement -

Receive proof - Artwork.allInstances->exists(a : Artwork |
a.artworkDesign = ad and ad.artwork = a)

Manage artwork
distribution

- -

Manage
artwork production

(po : Artwork
ProductionOrder,
senderID : String)

ArtworkProductionOrder.
allInstances->exists

(o : ArtworkProductionOrder |
o.isPreliminary and

o.artworkDesigner->exists
(ad: ArtworkDesigner |

ad.agentID = senderID and
ad.artworkProductionOrder->

includes(o)) and po = o)

po.isProduced

Confirm and commit
to produce artwork

- self.stitCommitmentClaim->exists
(achieve = po.isProduced and

dueTime = po.dueDate and
sourceID = self.agentID and

targetID = senderID)
Register

artwork production
(aw : Artwork,
po : Artwork

ProductionOrder)

ArtworkProductionOrder.
allInstances->exists

(p : ArtworkProductionOrder |
p.isPreliminary and

po = p)

po.isProduced and
po.artworkDesign.artwork = aw and not

(self.stitCommitmentClaim->exists
(achieve = po.isProduced and

dueTime = po.dueDate and
sourceID = self.agentID and

targetID = po.
artworkDesigner.agentID))

Store artwork - Artwork.allInstances->exists
(a : Artwork | a.artworkDesign =

po.artworkDesign and po.
artworkDesign.artwork = a and aw = a)

Provide the
publication with the

artwork
(publicationID :

String,
po : Artwork

ProductionOrder,
senderID : String)

ArtworkProductionOrder.
allInstances->exists

(o : ArtworkProductionOrder |
o.isProduced and po = o)

-

Agree and commit to
provide artwork

- provideArtwork.allInstances->exists
(about = po.artworkDesign.artwork and

dueDate = now() + 1 and
sourceID = self.agentID and
targetID = publicationID)14

Provide artwork - not(provideArtwork.allInstances->exists
(about = po.artworkDesign.artwork and

dueDate = now() + 1 and
sourceID = self.agentID and
target ID = publicationID))

14 Since the to-do-commitment created here is discharged almost right away, if everything goes normally, to its
attribute dueDate is assigned the date of the next day.

185

4.2.4.4. Behaviour Modelling

At the step of behaviour modelling, function and motivation models of business processes by the goal-
based use cases presented in Tables 4-28 − 4-52 are transformed into behaviour models by following
the guidelines provided in section 3.8.5.2.

According to guideline 1, the <time or sequence factor> component “The advertising campaign is
authorized by the media agency secretary” of step 1 of use case 1 (“Carry out the advertising
campaign”) is modelled in Appendix G as the respective communicative action event type
authorizeCampaign connected to reaction rule R2. The latter is triggered by the internal agent
:MediaAgencySecretary. Following the same guideline, the <time or sequence factor> components “A
request to update the ad space reservation by the media agency secretary is received ” and “A request
by the timer to request printing of the ad is received” of steps 4 and 5 of use case 1 are represented as
the non-communicative action event types updateAdOrder(?AdOrder) and request achieve
(isPrinted(AdOrder(?String))) connected to reaction rules R16 and R19, respectively. The data element
?String in the latter action event type contains the value of the identifier attribute orderID of the
corresponding instance of AdOrder. In the activity diagrams presented in Appendix G, the relevant
instances of AdOrder are identified by the precondition arrows which lead to the symbols of both last
mentioned reaction rules. The precondition arrow along with the OCL expression possibly attached to
it define the precise scope of a reaction rule, i.e. the set of entity instances that the action and
postcondition parts of the rule affect according to the principles laid out in section 3.6.4.

Behaviour modelling based on guideline 1 also enables to represent the behavioural pattern
“Deferred choice” which is described in section 3.8.5.3. For example, the alternative steps 1 and 1a of
use case 13 (“Process the reply by the media agency”) and 5 and 5a of use case 20 (“Have the artwork
produced”) are modelled in Appendix G as the respective pairs of reaction rules R35 and R36, and R62
and R63 which are triggered by an external agent of the type MediaAgency and an internal agent of the
type Artist, respectively.

According to guideline 2 presented in section 3.8.5.2, the <condition> component “The campaign
order includes an artwork description” of step 2 of use case 1 (“Carry out the advertising campaign”)
is modelled in Appendix G as reaction rule R4 that invokes an activity of the type “Manage artwork
design” if the CampaignOrder includes the ArtworkDescription or an activity of the type “Manage ad
space reservations” in the opposite case. Analogously, the <condition> component “There is
sufficiently ad space or alternative ad space for the reservation request in question” of step 1 of use
case 12 (“Reserve ad space”) is represented in Appendix G by reaction rule R34 that invokes an
activity of the type “Wait for and process reply” and sends to the MediaAgency the corresponding
message of the type propose achieve(isReserved(?AdOrder)) if there is enough ad space or alternative ad
space for the ad described by the AdOrder. In the opposite case, according to the same reaction rule a
refusal message is sent to the MediaAgency and the refusal is registered within the Publication. The
symbol for reaction rule R4 as well as that for reaction rule R34 includes the precondition arrow
augmented by an OCL expression that defines the precise scope of the precondition, as is described in
section 3.6.4.

Based on the same guideline, the <condition> components included by use cases 3 (“Have ad
space reserved in the publications”) and 21 (“Have the artwork distributed”) are turned in Appendix G
into reaction rules R7 and R64, respectively, which form the corresponding “For-Each” loop patterns
described in section 3.8.5.3.

According to guideline 4 provided in section 3.8.5.2, a precondition arrow of either reaction rule
mentioned above is augmented by an OCL equation limiting the set of instances of the informational
entity type for which the “For-Each” loop is performed. The OCL expression {campaignOrder = co}
attached to the precondition arrow of reaction rule R7 specifies that the action part of the rule (starting
an activity of the type “Manage ad order”) is repeated for each instance of AdInsertion that is included
by the instance of CampaignOrder that is referred to by the value of the input parameter co. In the same
way, the OCL expression {adInsertion.campaignOrder = co} pertaining to the precondition of reaction rule
R64 specifies that the action part of the rule (starting an activity of the type “Manage publication”) is
repeated for each instance of Publication that is included by the AdInsertion forming a part of the
instance of CampaignOrder that is referenced by the input parameter co.

Following guideline 3, in Appendix G the symbol for the communicative action event type agree
achieve (isPerformed(?CampaignOrder)) is connected to reaction rule R3 included by the elementary

186

activity type “Agree and commit to perform campaign”. In the same way, the symbols for the
communicative action event types request achieve (isUpdated(?AdOrder))) and inform(isUpdated(?AdOrder))
are connected to the respective reaction rules R17 and R18 included by the elementary activity types
“Request update” and “Register update”, respectively. The mental effect arrows originating in the
symbols for the activity types “Agree and commit to perform campaign” and “Register update” are
also connected to reaction rules R3 and R18, respectively. Analogously, the symbol for the non-
communicative action event type updateAdSize and the arrow standing for the accompanying mental
effect are connected to reaction rule R45 that is included by the elementary activity type “Update ad
size”.

As we explained in section 3.6.5, a mental effect arrow of a reaction rule may be augmented by an
OCL expression that (re)defines the mental effect of the rule. For example, the OCL expression
{advertiserID = SenderID} attached to the mental effect arrow of reaction rule R1 in Appendix G
determines that the value of the attribute advertiserID of the instance of CampaignOrder to be created by
the rule should be equal to the value of the reaction rule’s internal variable SenderID.

According to guideline 4 provided in section 3.8.5.2, also a precondition arrow may be augmented
by an OCL expression. For example, in addition to specifying the creation of an instance of AdOrder,
the augmented precondition arrow and the mental effect arrows of reaction rule R30 in Appendix G
determine the association to be created between the instance of PublicationInvoice within the scope of
the rule and the instance of AdOrder, identified by the value of its attribute orderID which must be equal
to the value of the attribute of the same name of the PublicationInvoice. Analogously, the precondiiton
and the mental effects of reaction rule R42 determine that there should be a two-way association
between the instance of Artwork to be created and the :ArtworkDescription that is referred to by the value
of the input parameter awd. As another example, the precondition and mental effects of reaction rule
R58 determine that (1) the instance of ArtworkProductionOrder created has the status isPreliminary, (2) the
instance of ArtworkProductionOrder created includes the instance of ArtworkDesign that is referred to by
the value of the input parameter ad, and (3) the ArtworkDesign mentioned also refers to the instance of
ArtworkProductionOrder created.

As was explained in section 3.8.5.3, an elementary activity type is not always needed because the
required actions and mental effects may be invoked and achieved, respectively, by a reaction rule
which is not included by any enclosing elementary activity type. This feature is capable of making
activity diagrams smaller and more compact. For example, reaction rule R34 in Appendix G sends by
itself the messages to be sent and achieves the mental effects to be achieved.

187

5. CONCLUSIONS AND OUTLOOK

5.1. THESIS SUMMARY

In section 1.6 we have stated that the goal of this thesis is to work out and apply a modelling notation
and methodology that enable to create and integrate business models of different perspectives. The
modelling technique should be usable at the analysis and design stages of business modelling and it
should lend itself to the creation of executable business process models. Another objective of the
dissertation has been declared in section 1.6, which is laying a cornerstone for a systematic
development approach of AOIS and CIS.

In order to meet these goals, we have worked out a modelling notation and methodology that
support business modelling under all six views of agent-oriented modelling proposed by us in section
1.5.6. Moreover, the modelling notation developed by us enables to represent the integrated models of
all six views in just one diagram.

Since, as we showed in section 1.5.7, reaction rules span all six views of agent-oriented modelling,
we have based our modelling notation on AORML which includes modelling by reaction rules. To
enable adequate modelling of business processes, we have extended AORML by activity diagrams
where activities are started and controlled by reaction rules. Executability of activity diagrams has
been ensured by extending the semantic framework of KPMC agents, that the operational semantics
for reaction rules is based on, with the operational semantics for activities. For the modelling of
derivation rules, and preconditions and goals of activities, we have adapted and, when necessary,
extended OCL.

We have also worked out a methodology which consists of the steps of analysis by goal-based use
cases and design by using the extended AORML. The design step, in turn, consists of the stages of
organization modelling, information modelling, interaction modelling, function and motivation
modelling, and behaviour modelling which correspond to the six views of agent-oriented modelling.

The modelling methodology proposed by us also serves as a systematic approach to the
development of AOIS and CIS because it is based on the six views of agent oriented modelling. As
empirical proofs of this serve the case studies of the ceramic factory and advertising which are aimed
at creating distributed agent-oriented information systems.

Finally, we brought reaction rules and activities straightforwardly to the implementation level and
demonstrated how they can be mapped to the notions of the JADE agent platform and simulated there

One result achieved in the thesis came as a surprise to even ourselves. Namely, we did not expect a
reaction rule proving to be so powerful construct for defining an agent’s behaviour. One may ask: are
behavioural rules true business rules any more? Our answer is: they are because they determine an
agent’s behaviour based on its knowledge state represented in its VKB which serves as an abstraction
of the internal information systems of a company containing business data.

In summary, the business modelling methodology of the Business Agents’ Approach proposed by
us in this thesis consists of the following steps:

1. Analysis:

1.1. Sketch the business agent types and instances (if applicable) of the problem domain.
1.2. Model the activities of the business agents by goal-based use cases.

2. Design:

2.1. Create the organization model of the problem domain by using an agent diagram of the
extended AORML.

2.2. Create the information model of the problem domain by using a combination of an agent
diagram of the extended AORML and extended OCL.

2.3. Create the interaction models of the problem domain by using interaction frame diagrams of
the extended AORML.

2.4. Create the function and motivation models of the problem domain by using activity
diagrams of the extended AORML and extended OCL expressions.

2.5. Refine the function models into the corresponding behaviour models by using activity
diagrams of the extended AORML and extended OCL expressions.

188

5.2. COMPARISON TO OTHER APPROACHES

In sections 2.1 through 2.3, we conducted a comparative study of eight business modelling techniques
that are related to agents/actors and/or business rules. Based on the evaluation of these techniques, the
need for a distinctive technique of agent-oriented modelling was identified. In Table 5-1, we compare
such a technique devised by us – the Business Agents’ Approach – with the business modelling
techniques that were reviewed and evaluated in Chapter 2.
 In addition to incorporating all the best features from UML, information modelling in the Business
Agents’ Approach complements UML by proposing extensions to OCL that enable to represent
properly all kinds of derivation rules – derived attributes, status predicates, and intensional predicates.
Moreover, while e.g. the Eriksson-Penker Business Extensions to UML do not present a general
method how to express derivation rules in a class diagram, we demonstrated in section 3.8.2.1 how
derivation rules can be represented and visualized. The informational view of agent-oriented
modelling is thus very strongly supported in the Business Agents’ Approach.

Organization modelling in the Business Agents’ Approach explicitly supports representing
institutional agents and their internal human and/or artificial agents. The organization modelling also
distinguishes between institutional and human roles. In addition, the organization modelling comprises
modelling of inheritance, aggregation, subordination, control, benevolence, and dependency
relationships between agent types and instances. Consequently, organization modelling in our
approach is more precise than e.g. in the Eriksson-Penker Business Extensions and CIMOSA.

Interaction modelling in the Business Agents’ Approach is based on the control, benevolence, and
dependency relationships. In addition to enabling precise communication modelling based on speech
acts, the Business Agents’ Approach also provides the means for modelling other forms of interaction
between agents, like delivering a physical object. Moreover, our approach also includes the notions of
deontic modelling such as commitments and claims and operations upon them. The support for the
interactional view can thus also be regarded as very strong in our approach.

Function modelling in the Business Agents’ Approach enables to represent function hierarchies and
control and data flows by means of activity diagrams. The motivational view is supported by assigning
preconditions and goals defined in OCL to activities performed by business agents. Since the Business
Agents’ Approach for the time being lacks the reasoning mechanism for justifying goals, and goals are
not assigned to activities at runtime, the motivational view is supported a bit more weakly than the
other views.

As we saw in section 3.8.5.3, the Business Agents’ Approach provides a stronger support for
behavioural patterns than e.g. UML. Additionally, since the operational semantics of activity diagrams
of the extended AORML is based on the extended semantic framework of KPMC agents, behaviour
modelling in our approach is free from the hierarchy constraints, which were briefly described in
section 2.1.2.2, that both activity diagrams of UML and behaviour models of CIMOSA suffer from.
Consequently, the Business Agents’ Approach provides a better support for the behavioural view than
the Eriksson-Penker Business Extensions and CIMOSA, let alone the other modelling techniques
compared.
Table 5-1. Comparison of the Business Agents’ Approach with the business modelling techniques studied in
sections 2.1 through 2.3.

 Informational Organiza-
tional

Interactional Functional Motivational Behavioural

Ross Notation +++ + - + ++ -

Eriksson-Penker
Business Extensions

++ ++ + ++ ++ ++

Role Activity Diagrams - ++ ++ +++ + ++

i* + ++ + ++ +++ -

CIMOSA ++ ++ + +++ + +++

BROCOM +++ ++ - ++ - +

EKD ++ ++ + ++ ++ +

GAIA + + ++ +++ + +

Business
Agents’ Approach

+++ +++ +++ +++ ++ +++

189

5.3. SUMMARY OF CONTRIBUTIONS

The main contributions of this thesis in the field of conceptual business modelling and design of
information systems can be grouped in the following way:

• Further systemization of the field of agent-oriented information systems:
o We have provided new, more precise definitions of business rules and business processes

and a classification of business rules which all comply with the principles of agent-
orientation (sections 1.4.1 and 1.4.2).

o Based on the comparison and evaluation of the existing business modelling frameworks,
we have proposed an improvement on them – six views of agent-oriented modelling
(section 1.5.6).

o A metamodel reflecting the six views of agent-oriented modelling has been put forward
(section 3.3).

• Promotion of agents as useful modelling abstractions that can be used at different logical
levels in the modelling of organizations and their information systems, instead of mere
technological building blocks. This contribution of ours has been acknowledged e.g. in
[Dignum02]. In particular:
o Business rules have traditionally been modelled and implemented in the narrow context of

(active) databases. We have adopted a broader view, and a more cognitive stance, by
proposing to model and implement business rules as the “rules of behaviour” of business
agents (section 3.2).

• Extension of AORML by activity diagrams (sections 3.6.1 – 3.6.7):
o An operational semantics for activity diagrams has been presented by extending the

semantic framework of KPMC agents with the operational semantics for activities (section
3.6.6). This ensures the executability of both function and behaviour models.

o To the best of our knowledge, our modelling approach is the first one where partially
specified function models by activity diagrams can be executed (section 3.6.6). This
facilitates iterative business modelling which is state-of-the-practice.

• Creation of a modelling process and methodology, based on the extended AORML, consisting
of the steps of analysis and design (sections 3.7 and 3.8):
o We have suggested applying goal-based use cases to the modelling step of analysis. This is

the first attempt to adapt goal-based use cases to agent-oriented modelling (section 3.7).
o A sequence of steps for transforming goal-based use cases into activity diagrams has been

presented (sections 3.8.4 – 3.8.5).
o An original way of using the extended AORML and OCL in a combined manner as a basis

for the design phase has been proposed (section 3.8).
o To enable the modelling of derivation rules and shared object types, we have extended

OCL by some additional constructs (section 3.8.2.1).
o An interaction ontology for agents has been suggested enabling them to store and share

knowledge about types and instances of messages and non-communicative action events to
be created and perceived, as well as of commitments/claims in force (section 3.8.3.3).

o We have shown that an activity diagram of the behavioural view enables to represent the
models of all six views of agent-oriented modelling in just one diagram.

o We have demonstrated that combinations of reaction rules and types of activities started
and sequenced by them allow them to represent 16 out of 19 behavioural workflow
patterns. The extended AORML thus provides a better support for workflow patterns than
any other business modelling language or notation we are aware of (section 3.8.5.3).

• Showing how activity diagrams can be simulated on the JADE agent platform:
o We have presented mappings from the notions of the extended AORML to the object

classes and methods of JADE (section 3.8.6).
• Applying the modelling methodology to the case studies of the ceramic factory and advertising:

o The purposes of the case study of the ceramic factory are simulating the
business/manufacturing processes of the factory and preparing for the creation of a
semiautomatic (agent-based) control system for the factory (section 4.1).

o The case study of advertising serves as the first step towards (agent-based) automation of
inter-enterprise business processes related to advertising (section 4.2)

190

5.4. LIMITATIONS AND OPEN ISSUES

Even though the extended AORML includes modelling of goals which are defined for activity types,
their usage is presently limited. In particular, they are used only at the time of modelling but are not
maintained and utilized by agents at runtime. Also, the Business Agents’ Approach currently lacks the
reasoning mechanism for justifying goals attached to activities.

As was mentioned in section 3.8.5.1, we do no treat goal-based generation of plans at runtime in
this thesis. The principles how this could be done on the basis of the approach by [Fikes71] are
presented in [Wagner00b]. However, the computational efficiency of the planning algorithm proposed
in [Wagner00b] needs to be improved.

The feature of querying an agent’s activity state, which is made possible by the operational
semantics of activity diagrams, presented in section 3.6.6, is currently not used. Since, as we stated in
section 3.6.1, elementary activities can be viewed as transactions, explicit transaction handling would
be one way to make the most of the feature mentioned.

At present, when an activity diagram is executed, only one outermost activity can be under
execution at any moment of time. We have to study how this restriction could be lifted which would
allow for many parallel first-level activities.

Currently there are no integrity rules for the case when multiple activities performed by an agent
need to update the same entity of the agent’s VKB. One way to achieve a solution to this problem
would be adopting the isolation rule as is suggested in [Eshuis02a]: an entity cannot be updated and
either read or updated at the same time.

The treatment of commitments/claims should be elaborated on. In particular, it should be precisely
specified how the proposition formula of a stit-commitment/claim type defines the type.

5.5. ONGOING RESEARCH WORK

In March 2003, a project called Plug-and-Trade B2B started at VTT (Technical Research Centre of
Finland) Information Technology. The project lasts until the end of April 2004. The Plug-and-Trade
B2B project is financed jointly by the National Technology Agency of Finland, the three Finnish
companies participating in it, and VTT Information Technology. The project aims at automating inter-
enterprise business processes where lots of simple activities, which could be easily automated, are still
performed manually. The goal of the project is to work out a prototype system where each party in, for
example, an ordering business process between enterprises, is represented by a software agent which
coordinates business activities of the party by exchanging messages in an agent communication
language with the agents representing the other parties involved.

At achieving its goal, the project builds on the present thesis by applying the methodology of the
Business Agents’ Approach to agent-oriented business modelling of the problem domain at hand and
for designing an agent-based system for business process automation. The automation system built in
the project directly utilizes activity diagrams of the extended AORML. The principle of automation in
the project is very straightforward: all the functionality described by the behaviour model of a business
process type is to be performed by a software agent, with the exception of situations where the
intervention by a human agent is absolutely necessary. For example, in a business process of the type
“Quoting” described by Figure 5-1, a human agent of the type Clerk approves each Quote to be sent to a
Buyer, even though in principle software agents of sellers and buyers could handle quoting all by
themselves. Intervention by a human agent is needed mainly for administrative or legal reasons, but
also in cases where the criteria for selecting e.g. a supplier are not clear-cut.

In the Plug-and-Trade B2B project, executable models of business process types in the extended
AORML are transformed into equivalent XML-based representations in order to enable the execution
of the models by software agents and to grant that all the parties in a business process use the
descriptions of the same business process type. To enable generation of XML-based representations of
business process models, we have developed the corresponding XML Schema [XMLS] whose
instances describe business process types in a machine-interpretable way. By using the schema, it is
possible to represent business process types from different perspectives. For example, the models of
the business process type “Quoting” are transformed into two XML-based representations that
describe the business process type “Quoting” from the perspectives of a Seller and Buyer, respectively.
There are plans of proposing the schema developed in the project to be adopted as a part of the
RuleML [RuleML] standard draft. An excerpt of the schema is presented below:

191

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="businessProcess" type="businessProcessType"/>
 <xs:complexType name="businessProcessType">
 <xs:sequence>
 <xs:element name="perspective" type="nameType"/>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="elementaryReactionRule" type="elementaryReactionRuleType"/>
 <xs:element name="forEachReactionRule" type="forEachReactionRuleType"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="reactionRuleType">
 <xs:all>
 <xs:element name="eventPart" type="eventPartType"/>
 <xs:element name="ruleName" type="nameType" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="elementaryReactionRuleType">
 <xs:complexContent>
 <xs:extension base="reactionRuleType">
 <xs:sequence maxOccurs="5">
 <xs:element name="conditionPart" type="conditionPartType" minOccurs="0"/>
 <xs:element name="mainActionPart" type="actionPartType" minOccurs="0"/>
 <xs:element name="mainEffectPart" type="mentalEffectPartType" minOccurs="0"/>
 <xs:element name="elseActionPart" type="actionPartType" minOccurs="0"/>
 <xs:element name="elseEffectPart" type="mentalEffectPartType" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="forEachReactionRuleType">
 <xs:complexContent>
 <xs:extension base="reactionRuleType">
 <xs:all>
 <xs:element name="actionPart" type="actionPartType"/>
 <xs:element name="conditionPart" type="conditionPartType"/>
 </xs:all>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
...
</xs:schema>

Each party in a business process is represented by a software agent. In a preparatory stage, the
agent reads the XML-based descriptions of the business process types that the party is involved in, and
creates the corresponding internal executable representations of these business process types. After
that, the descriptions of the business process types are ready to be interpreted by the agent in the
course of process instances. A business process instance is started in response to the corresponding
request by an internal human agent or in reaction to receiving the matching message from a software
agent representing some other party. For example, an instance of the quoting business process at the
buyer’s side is triggered by the buyer’s internal human agent of the type Clerk, while the same business
process at the seller’s side is started by receiving from the buyer a message of the request
inform(?Quote) type. The software agent communicates with human agents (e.g., clerks) via a graphical
user interface, while the messages exchanged between software agents are represented in the FIPA
ACL [ACL97].

An agent representing a company needs to interact with the internal information systems, e.g. with
Enterprise Resource Planning (ERP)- or Enterprise Application Integration (EAI)-systems, of the
company. Because of the heterogeneity of such systems, their modelling is not as straightforward as
that of business processes. In fact, the corresponding techniques and tools do not yet exist. However,
the extended AORML enables to describe interfaces to the internal systems of a company at a high
level of abstraction. For example, the interface to the product database of a Seller is represented as the
agent’s internal object :ProductDatabase shown in Figure 5-1 which includes the internal object type
ProductItem. The instances of the latter represent types of product items that the company sells. Each
instance of ProductItem is characterized by a number of attributes, like productID, productName, and
itemsAvailable, and the intensional predicate isAvailable(Integer). At the implementation level to this

192

predicate corresponds a method in Java [JAVA] with the signature isAvailable(int quantity) : boolean.
When the method is invoked by the agent, firstly the description of the corresponding product item is
retrieved from the product database by using the following SQL query where value stands for the
identifier of the product item:

select * from products where PRODUCT_ID = 'value'

After the attribute values of the product item retrieved have been copied into the respective attributes
unitPrice and itemsAvailable of the given instance of ProductItem, the method isAvailable calculates the
availability of the product item based on the values of the product item’s attribute itemsAvailable and
the method’s formal parameter quantity, and returns.

For graphical modelling of business process types, Integrated Business Process Editor has been
created based on the CONE (COnceptual NEtwork) Software worked out at VTT Information
Technology. The Integrated Business Process Editor also enables to transform graphical descriptions
of business process types in the extended AORML into their XML-based representations. An agent-
based prototype system consisting of the software agents representing the Seller and Buyer has been
implemented by using the FIPA-based JADE [JADE] agent platform. At both sides, the system
consists of the Business Process Interpreter and JADE agent that invoke each other.

Seller

inform
(?Quote)

Process
quote request

(q: Quote)

Confirm
quote

(quote: Quote)

Buyer

Process
line item

(item: QuoteLineItem)

R4

R1

U

Crequest inform
(?Quote)

Quote

QuoteLineItem

R2 {quote = q}

Clerk
approveQuote

Process
line items
(q: Quote)

R3

:Product
Database

ProductItem

isAvailable
(Integer)

U

isNoBid

QuoteLineItem
StatusCode

isBid

isPending

productID: String
unitPrice: Float
itemsAvailable: Integer

{isAvailable
(item.requestedQuantity) and

productID =
item.GlobalProductIdentifier}

inform
(?Quote)

RR triggering
event
pre-

condition

mental
effect

outgoing
message

action

Figure 5-1. The business process type “Quoting” with the Seller in focus.

193

5.6. FUTURE RESEARCH WORK AND APPLICATION AREAS

The methodology presented in this thesis is just the first step towards a more flexible modelling
approach and simulation system with a looser integration between models of business process types
and actual business process instances carried out between agents. In order to achieve this, agents
should be able to reason about their actions. This would enable a human or an automated (software)
agent to select at each step of a business process from many alternatives the most appropriate actions
to be performed. As it was pointed out in section 5.4, the first step towards this, which is allowing a
reaction rule to query an agent’s activity state at run time, has already been achieved. Such an
approach would require two kinds of rules: control rules used in behavioural constructs and meta-level
rules which would be used for selecting control rules to be applied based on the agent’s information
and activity states. In the present approach, these two kinds of rules are united. The resulting system
would resemble the Meta-Level Architecture proposed in [Genesereth83] where actions of an agent
include a set of base-level actions and a set of meta-level axioms that constrain how these actions are
to be used.
 An interesting research topic would be relating our modelling methodology to Web Services.
Before getting to this, the difference between an approach based on Web Services and an agent-
oriented approach like ours should be clarified. Firstly, even though Web Services Description
Language (WSDL) [WSDL] can represent message sequences consisting of e.g. receiving a message
and replying to it, this is far from the dynamics of agent communication protocols like FIPA Contract
Net [FIPA]. Secondly, in principle an interface to an agent can be modelled and implemented as an
interface based on Web Services, even though its feasibility still needs to be studied. We should thus
investigate, could the communication between agents based on speech acts be substituted in our
models with the parties’ calls of each other’s Web Services? What would be the added value of such
an approach?
 We should continue incorporating the extended AORML into business and ontology modelling
tools. As the first step, the support for the extended AORML within the CONE (Conceptual Network)
Software, which was mentioned in section 5.5, should be further enlarged. Secondly, one or more
other, possibly open domain, modelling tools should be complemented with the support for the
extended AORML.
 We should also investigate more thoroughly the relationship between our approach and Model
Driven Architecture (MDA) [MDA] of OMG, especially with regard to the simulation of business
process models on JADE. In connection with the latter, MDA was briefly described in section 3.8.6.
As it is reported in [MDASurvey], 75 percent of the companies surveyed by Compuware are currently
assessing MDA and 50 percent of them are planning to start implementation of MDA in their
organization within the next 12 months.
 Finally, it would be interesting to compare our approach with the new coming UML 2.0 standard
[OMG03b] which is claimed to be suitable for business process analysis [Adhikari03].

Some of the other new questions and research challenges that arise from our approach are:
• How to incorporate into our approach the modelling of goal-oriented proactive behaviour

based on planning and plan execution.
• How can commitments/claims be used in real agent-oriented information systems? What is

their operational semantics?
• How can we handle more systematically exceptions (now they are handled mainly by the

ELSE-constructs of reaction rules) to standard processes (for instance, when a customer does
not appear to pick up a car as agreed or when a response to a quote has not arrived in due
time)? Possibly as violations of commitments?

• How can we introduce the feature of learning by an agent based on instances of action events
and commitments/claims stored in the agent’s VKB?

• How can we more precisely model interfaces to human agents (now they are modelled by using
non-communicative action event types)?

The following areas of application can be envisioned for the Business Agents’ Approach:
• Precise business modelling.
• Simulation of business and manufacturing processes.
• Business and manufacturing process automation.

194

References

[Aalst00] Aalst, W. M. P. Interorganizational Workflows: An Approach based on Message Sequence Charts
and Petri Nets. Systems Analysis - Modelling - Simulation, 34(3):335-367, 1999.

[Aalst03a] van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., Barros, A. P.
Workflow Patterns. Distributed and Parallel Databases, 14(3), pp. 5-51, July 2003.

[Aalst03b] van der Aalst, W. M. P. Don’t go with the flow: Web services composition standards exposed. IEEE
Intelligent Systems, Jan/Feb 2003.

[ACL97] Agent Communication Language, FIPA 97 Specification, http://www.fipa.org
[Adhikari03] Adhikari, R. Is UML heading for fragmentation? Application Development Trends, October 2003,

Vol. 10, No. 10.
[AMICE93] ESPRIT Consortium AMICE, editor. CIMOSA – Open System Architecture for CIM. 2nd revised

and expanded edition, Springer-Verlag, Berlin, 1993.
[Antikainen01] Antikainen, H., Bäck, A. Challenges of electronic advertising processes in newspapers. IFRA

Special Report. VTT Information Technology, 2001.
[AOIS00] Wagner, G., Lesperance, Y., Yu, E. (eds.). Agent-Oriented Information Systems 2000. Proceedings

of the 2nd International Workshop at CAiSE*00, Stockholm, June 2000. iCue Publishing, Berlin,
2000.

[Austin62] Austin, J. How To Do Thing with Words. Urmson Editor, Clarenson Press, UK, 1962.
[Balzer00] Balzer, W., Tuomela, R. Social Institutions, Norms, and Practices. Proceedings of the Workshop

On Norms and Institutions in Multi-Agent Systems at the Fourth International Conference on
Autonomous Agents. Barcelona, Spain, June 4, 2000.

[Barbuceanu99] Barbuceanu, M., Gray, T., Mankovksi, S. Roles of Obligations in Multiagent Coordination,
Applied Artificial Intelligence, 13(1), 11–38, 1999.

[Bellifemine01] Bellifemine, F., Poggi, A., Rimassa, G. Developing multi-agent systems with a FIPA-
compliant agent framework. Software – Practice and Experience 31 (2001) 103-128.

[Berio99] Berio, G., Vernadat, F. B. New developments in enterprise modelling using CIMOSA. Computers in
Industry 40(1999), pp. 99-114.

[Berndtsson97] Berndtsson, M., Chakravarthy, S., Lings, B. Task Sharing Among Agents Using Reactive
Rules. Proceedings of the Second IFCIS Conference on Cooperative Information Systems
(CoopIS'97), Charlton, South Carolina, June 1997.

[Blanchard95] Blanchard, T. Meta Model Elements as a Foundation for Implementation of Business Rules.
Proceedings of the OOPSLA’95 Workshop on Metamodelling in OO, October 15, 1995,
http://saturne.info.uqam.ca/Labo_Recherche/Larc/MetamodellingWorkshop/Blanchard

[BPEL] Business Process Execution Language for Web Services version 1.1, http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[BPML] Business Process Modelling Language 1.0 and Business Process Modelling Notation 0.9,
http://www.bpmi.org/

[BR00] Defining Business Rules - What Are They Really? The Business Rules Group, formerly known as the
GUIDE Business Rules Project, Final Report, revision 1.3, July, 2000. Prepared by D. Hay and K. A.
Healy, http://businessrulesgroup.org/first_paper/br01c0.htm

[Brayshaw91] Brayshaw, M., Eisenstadt, M. A practical graphical tracer for Prolog. International Journal of
Man-Machine Studies, 35(5):597–631, 1991.

[Brazier97] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R., Treur, J. DESIRE: Modelling Multi-
Agent Systems in a Compositional Formal Framework. International Journal of Cooperative
Information Systems, 6(1), 67-94, 1997.

[Bubenko01] Bubenko, J. A. jr, Brash, D., Stirna, J. EKD User Guide. Kista, Dept. of Computer and Systems
Science, Royal Institute of Technology (KTH) and Stockholm University, Stockholm, Sweden, 2001,
http://www.dsv.su.se/~js/ekd_user_guide.html

[Bubenko93] Bubenko, J. A. Extending the Scope of Information Modelling. Proceedings of the 4th
International Workshop on the Deductive Approach to Information Systems and Databases, Costa
Brava, Catalonia, September 20-22, 1993, pp. 73-98.

195

[Bubenko94] Bubenko, J. A., jr, Kirikova, M. “Worlds” in Requirements Acquisition and Modelling. In:

Kangassalo, H., Wangler, B. (eds.), Proceedings of the 4th European - Japanese Seminar on
Information Modelling and Knowledge Bases, 31 May - 3 June 1994, Stockholm, Sweden. IOS Press,
Amsterdam, 1994.

[Burmeister98] Burmeister, B., Bussmann, S., Haddadi, A., Sundermeyer, K. Agent-Oriented Techniques for
Traffic and Manufacturing Applications: Progress Report. In: Jennings, N. R., Wooldridge, M. J.
(eds.), Agent Technology: Foundations, Applications, and Markets. Springer, 1998.

[Bussler94] Bussler, C., Jablonski, S. Implementing Agent Coordination for Workflow Management Systems
Using Active Database Systems. Proceedings of the 4th International Workshop on Research Issues in
Data Engineering: Active Database Systems (RIDE-ADS’94), Houston, Texas, USA, February 1994.

[Cockburn97a] Cockburn, A. Goals and Use Cases. Journal of Object-Oriented Programming, September
1997.

[Cockburn97b] Cockburn, A. Using Goal-based Use Cases. Journal of Object-Oriented Programming,
November/December 1997.

[Cockburn01] Cockburn, A. Writing Effective Use Cases. Addison-Wesley, 2001.
[Corcho03] Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A. Methodologies,tools and languages for

building ontologies. Where is their meeting point? Data &Knowledge Engineering 46 (2003), 41 – 64.
[Curtis92] Curtis, W., Kellner, M. I., Over, J. Process Modelling. Communications of the ACM, 35(9), 1992,

pp. 75-90.
[Davenport93] Davenport, T. H. Process Innovation: Reengineering Work through Information Technology.

Harvard Business School Press, 1993.
[Dayal88] Dayal, U. Active Database Management Systems. Proceedings of the 3rd International Conference

on Data and Knowledge Bases, San Metheo, 1988, pp. 150-169.
[DeMichelis97] De Michelis, G., Dubois, E., Jarke, M., et al. Cooperative Information Systems: A Manifesto,

http://www.sts.tu-harburg.de/projects/EUCAN/manifesto.html
[Dewar91] Dewar, A. D., Cleary, J. G. Graphical display of complex information within a Prolog debugger.

International Journal of Man-Machine Studies, 25(5):503–521, 1991.
[Dignum95] Dignum, F., Weigand, H. Modellling communication between cooperative systems. In: Lyytinen,

K., Iivari, J., Rossi, M. (eds.), Advanced Information Systems Engineering (LNCS-932), pages 140-
153. Springer-Verlag, Berlin, 1995.

[Dignum97] Dignum, F., Kuiper, R. Combining Dynamic Deontic Logic and Temporal Logic for the
Specification of Deadlines. Proceedings of the 30th Hawaiian International Conference on Systems,
Wailea, Hawaii, 1997.

[Dignum99] Dignum, F. Autonomous agents with norms. Artificial Intelligence and Law, volume 7, 1999, pp.
69-79.

[Dignum02] Dignum, V., Dignum, F. Towards an agent-based infrastructure to support virtual organisations.
In: Camarinha-Matos, L. M. (ed.), Proceedings of PRO-VE'02 - IFIP Int. Conf. on Infrastructures for
Virtual Enterprises, 1-3 May 2002, Sesimbra, Portugal. Kluwer Academic Publishers, 2002.

[ebXML] ebXML (Electronic Business using eXtensible Markup Language), http://www.ebxml.org/
[EDO99] The UML profile for enterprise distributed object computing. Technical Report, Cooperative

Research Centre for Enterprise Distributed Systems Technology (DSTC) and the University of
Newcastle, 1999.

[Elammari99] Elammari, M., Lalonde, W. An Agent-Oriented Methodology: High-Level and Intermediate
Models. Proceedings of the 1st International Bi-Conference Workshop on Agent-Oriented Information
Systems (AOIS’99). Seattle, USA, 1 May 1999 and Heidelberg, Germany, 14 – 15 June 1999. Seattle,
Heidelberg, 1999.

[Eriksson99] Eriksson, H.-E., Penker, M. Business Modelling with UML. Rose Architect, Fall 1999.
[Eriksson00] Eriksson, H.-E., Penker, M. Business Modelling with UML: Business Patterns at Work. John

Wiley & Sons, Inc., 2000.
[Eshuis02a] Eshuis, R. Semantics and Verification of UML Activity Diagrams for Workflow Modelling. Ph.D.

thesis, CTIT Ph.D.-thesis Series No. 02-44 Centre for Telematics and Information Technology
(CTIT), University of Twente, The Netherlands, 2002.

196

[Eshuis02b] Eshuis, R., Jansen, D. N., Wieringa, R. J. Requirements-level semantics and model checking of

object-oriented statecharts. Requirements Engineering Journal, 7(4):243-263, 2002.
[Farhoodi96] Farhoodi, F., Graham, I. A Practical Approach to Designing and Building Intelligent Software

Agents. Proceedings of the First International Conference and Exhibition on the Practical Application
of Intelligent Agents and Multi-Agent Technology (PAAM’96), London, UK, April 1996, pp. 181-204.

[Fikes71] Fikes, R. E. , Nilsson, N. J. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2(3/4): 189-208, 1971.

[FIPA] Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org
[Gates03] Gates, L. Data modelers, BPM gradually unite. Application Development Trends, February 2003,

Volume 10, Number 2.
[Genesereth83] Genesereth, M. An Overview of Meta-Level Architecture. Proceedings of the Third National

Conference on Artificial Intelligence (AAAI-83). Menlo Park, Calif., AAAI Press, 1983, 119-124.
[Genesereth94] Genesereth, M. R., Ketchpel, S. P. Software agents. Communication of the ACM, 37(7):48–53,

1994.
[Gottesdiener99] Gottesdiener, E. Business rules as requirements. Software Development, 7(12), December

1999.
[Gray93] Gray, J., Reuter, A. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San

Mateo, 1993.
[Gruber93] Gruber, T. R. A Translation Approach to Portable Ontologies. Knowledge Acquisition, 5(2), 199-

220, 1993, http://ksl-web.stanford.edu/knowledge-sharing/papers/README.html#ontolingua-intro
[Halpin96] Halpin, T. Business Rules and Object Role Modelling. Database Programming and Design,

October 1996.
[Hammer93] Hammer, M., Champy, J. Reengineering the Corporation. New York, Harper Collins, 1993.
[Harel87] Harel, D. Statecharts: A visual formalism for complex systems. Science of Computer Programming,

8:231–274, 1987.
[Hay97] Hay, D. C. The Zachman Framework: Introduction. The Data Administration Newsletter, Issue 1

(Summer, 1997), http://www.tdan.com
[Herbst95] Herbst, H. A Meta-Model for Specifying Business Rules in Systems Analysis. In: Iivari, J.,

Lyytinen, K., Rossi, M. (eds.), Proceedings of the Seventh Conference on Advanced Information
Systems Engineering (CAiSE’95). Springer, 1995, pp. 186 – 199.

[Herbst97] Herbst, H. Business Rule-Oriented Conceptual Modelling (Contributions to Management Science).
Springer-Verlag, 1997.

[Høydalsvik93] Høydalsvik, G. M., Sindre, G. On the Purpose of Object-Oriented Analysis. OOPSLA’93
Conference Proceedings, ACM Sigplan Notices, October 1993, pp. 240-253.

[Hurlbut98] Hurlbut, R.. Managing Domain Architecture Evolution Through Adaptive Use Case and Business
Rule Models. PhD thesis, Illinois Institute of Technology, USA, 1998.

[IDEF] IDEF Family of Methods − A structured approach to enterprise modelling and analysis,
http://www.idef.com

[IDEF94] Information Integration for Concurrent Engineering (IICE) IDEF5 Method Report. Prepared by
Knowledge Based Systems, Inc., 1994, http://www.idef.com/idef5.html

[Jacobson92] Jacobson, I., et al. Object-Oriented Software Engineering: A Use-Case Driven Approach.
Addison-Wesley, Reading, MA, 1992.

[JADE] JADE Programmer’s Guide, http://jade.cselt.it/
[JAVA] The Source for Java Developers, http://www.java.sun.com
[Jennings98] Jennings, N. R., Sycara, K., Wooldridge, M. A Roadmap of Agent Research and Development.

Autonomous Agents and Multi-Agent Systems, 1(1), 7-38, 1998.
[Jennings00] Jennings, N. R. On agent-based software engineering. Artificial Intelligence 117(2000), pp. 277-

296.

197

[Kappel98] Kappel, G., Rausch-Schott, S., Retschitzegger, W. Coordination in Workflow Management Systems

– A Rule-Based Approach. In: Conen, W., Neumann, G. (eds.), Coordination Technology for
Collaborative Applications – Organizations, Processes, and Agents, Springer LNCS 1364, pp. 99-120,
1998.

[Karageorgos02] Karageorgos, A., Mehandjiev, N., Thompson, S. RAMASD: a semi-automatic method for
designing agent organisations. The Knowledge Engineering Review, Vol. 17:4, 331-358.

[Kardasis03] Kardasis, P., Loucopoulos, P. Managing Business Rules during the Requirements Engineering
Process in Rule-Intensive IT Projects. In: Abramowicz, W., Klein, G. (eds.), Proceedings of the 6th
International Conference on Business Information Systems (BIS 2003), Colorado Springs, Colorado,
USA, 4-6 June, 2003.

[Kavakli98] Kavakli, V., Loucopoulos, P. Goal-Driven Business Process Analysis Application in Electricity
Deregulation. Proceedings of the 10th International Conference on Advanced Information Systems
Engineering (CAiSE’98). Springer, 1998.

[Kendall96] Kendall, E. A., Malkoun, M. T. , Jiang, C. A Methodology for Developing Agent Based Systems
for Enterprise Integration. In: Lukose, D., Zahng, C. (eds.), Proceedings of the First Australian
Workshop on Distributed Artificial Intelligence. Springer-Verlag, 1996.

[Kieser92] Kieser, A., Kubicek, H. Organisation. 3rd Edition, Berling/New York: De Gruyter, 1992.
[Kirikova00] Kirikova, M. Explanatory capability of enterprise models. Data & Knowledge Engineering, 33

(2000), pp. 119-136.
[KlasseObjecten] An introduction to MDA, http://www.klasse.nl/english/mda/mda-introduction.html
[KQML] Knowledge Query and Manipulation Language (KQML), http://www.cs.umbc.edu/kqml/
[Lesperance99] Lespérance, Y., Kelley, T. G., Mylopoulos, J., Yu, E. S. K. Modelling Dynamic Domains with

ConGolog. Proceedings of the 11th International Conference on Advanced Information Systems
Engineering (CAiSE-99). LNCS Vol. 1626, Springer-Verlag, Berlin, pp. 365-380.

[Loucopoulos91] Loucopoulos, P. Theodoulidis, B., Pantazis, D. Business Rules Modelling: Conceptual
Modelling and Object Oriented Specifications. Object Oriented Approach. In: Information Systems,
Proceedings of the IFIP TC8/WG8.1 Working Conference, Netherlands, 28-31 Nov. 1991, pp. 323-
342, 1991.

[Lubell02] Lubell, J. XML Representation of Process Descriptions (PSL-XML). National Institute of Standards
and Technology (NIST), Manufacturing Systems Integration Division, 2002,
http://ats.nist.gov/psl/xml/process-descriptions.html

[Manna92] Manna, Z., Pnueli, A. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag,
1992.

[Martin98] James Martin and James Odell. Object-Oriented Methods: A Foundation (UML Edition). Prentice-
Hall, 1998.

[McCarthy82] McCarthy, W. E. The REA accounting model: A generalized framework for accounting systems
in a shared data environment. The Accounting Review, LVII(3):554–578, July 1982.

[MDA] OMG Model Driven Architecture, http://www.omg.org/mda/
[MDASurvey] MDA starts to take off. SIGS Application Development Advisor, Nov/Dec 2003, Vol. 7, No. 6.
[MDC99] Meta data coalition open information model, business engineering model, business rules. Review

draft. Kista, Dept. of Computer and Systems Science, Royal Institute of Technology (KTH) and
Stockholm University, July 1999.

[Medina-Mora92] Medina-Mora, R., Winograd, T., Flores, R., Flores, C.-F. The Action Workflow Approach to
Workflow Management Technology. Proceedings of the 4th ACM Conference on CSCW, Toronto,
Canada, 31 October – 4 November 1992, pp. 281–288.

[Metsker97] Metsker, S. J. Thinking Over Objects. Object Magazine, May, 1997.
[Moriarty93] Moriarty, T. The Next Paradigm. Database Programming and Design, Vol. 6, No. 2, pp. 66-69,

1993.
[Mylopoulos01] Mylopoulos, J., Kolp, M., Castro, J. UML for Agent-Oriented Software Development: the

Tropos Proposal. Proceedings of the Fourth International Conference on the Unified Modelling
Language, Toronto, Canada, October 2001.

[Neufeld97] Neufeld, E., Kusalik, A., Dobrohoczki, M. Visual metaphors for understanding logic program
execution. In: Davis, W., Mantel, M., Klassen, V. (eds.), Graphics Interfaces, pages 114–120, 1997.

198

[Nilsson98] Nilsson, A. G. Perspectives on Business Modelling: Key Issues in Corporate, Organisational and

Systems Development. Keynote Address at the Eight Annual Workshop on Information Technologies
and Systems (WITS'98), Helsinki, Finland, December 12 - 13, 1998.

[OBP00] Organizing Business Plans. The Standard Model for Business Rule Motivation. Prepared by the
Business Rules Group, November 15, 2000, revision 1.0, www.businessrulesgroup.org

[Odell95] Odell, J. Meta-Modelling. Proceedings of the OOPSLA’95 Workshop on Metamodelling in OO,
October 15, 1995,
http://www.info.uqam.ca/Labo_Recherche/Larc/MetamodellingWorkshop/Odell/metamodelling/

[Odell99] Odell, J. A Flock is Not a Bird: Agents and Beyond. Data To Knowledge Newsletter, Vol. 27, No. 1,
January / February 1999.

[Odell00]. Odell, J. H., Van Dyke Parunak, H., Bauer, B. Extending UML for Agents. Proceedings of the
Second International Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS-2000),
5-6 June 2000, Stockholm (Sweden) and 30 July 2000, Austin (Texas, USA).

[Oja01] Oja, M., Tamm, B., Taveter, K. Agent-based software design. Proc. Estonian Acad. Sci. Eng., 2001, 7,
1, 5-21.

[OMG92] Object Management Group. Object-oriented analysis and design, reference model. Discussion paper,
November 1992, http://www.omg.org/

[OMG03a] OMG Unified Modelling Language Specification, Version 1.5, March 2003, http://www.uml.org/
[OMG03b] Unified Modelling Language: Superstructure. Version 2.0, August 2003, http://www.uml.org/
[OPEN] Object-oriented Process, Environment, and Notation (OPEN), http://www.open.org.au/
[Ould95] Ould, M. A. Business Processes: Modelling and Analysis for Re-Engineering and Improvement. John

Wiley & Sons, 1995.
[Ow88] Ow, S. P., Smith, S. F., Howie, R. A. Cooperative Scheduling System. In: Oliff, M. D. (ed.), Expert

Systems and Intelligent Manufacturing, Proceedings of the Second International Conference on Expert
Systems and the Leading Edge in Production Planning and Control, May 3-5, 1988, Charleston, South
Carolina. Elsevier Science Publishing Co., Inc., 1988.

[PapiNet] PapiNet, http://www.papinet.org/
[Patterns03] Workflow Patterns, http://tmitwww.tm.tue.nl/research/patterns/
[Pernice95] Pernice, A., Doare, H., Rienhoff, O. (eds.): Healthcare Card Systems: EUROCARDS Concerted

Action Results and Recommendations. Technology and Informatics 22, Amsterdam; IOS Press 1995.
Annex p. 185 ff.

[Presley97] Presley, A. R. A Representation Method to Support Enterprise Engineering. Ph.D. thesis, the
University of Texas at Arlington, USA, May 1997.

[Reyneri99] Reyneri, C. Operational building blocks for business process modelling. Computers in Industry
40(1999), pp. 115-123.

[RosettaNet] Rosetta Net, http://www.rosettanet.org/
[Ross97] Ross, R. G. The Business Rule Book: Classifying, Defining and Modelling Rules. Second Edition,

Boston, Massachusetts, Database Research Group, Inc., 1997.
[Ross03] Ross, R. G. Principles of the Business Rule Approach. Addison-Wesley, 2003.
[RuleML] The Rule Markup Initiative, http://www.ruleml.org
[Salminen95] Salminen, A. EDIFACT for Business Computers: Has it Succeeded? StandardView Vol. 3, No. 1,

March/1995.
[Sandy99] Sandy, G. Rules the Missing Link in Requirements Engineering. Internal Working Paper,

http://www.business.vu.edu.au/infosyspapers/docs/1999/Sandy.pdf
[Searle85] Searle, J., Vanderverken, D. Foundations of the Illocutionary Logic. Cambridge University Press,

UK, 1985.
[Shoham93] Shoham, Y. Agent-Oriented Programming. Artificial Intelligence, 60(1), 51-92, 1993.
[Singh99] Singh, M. An Ontology for Commitments in Multiagent Systems: Toward a Unification of

Normative Concepts. Artificial Intelligence and Law 7 (1999) 97-113.

199

[Singh00] Singh, M. P. Synthesizing Coordination Requirements for Heterogeneous Autonomous Agents.

Autonomous Agents and Multi-Agent Systems, 3, 2000, pp. 107-132.
[Sladek96] Sladek, A., Wolski, A. Modelling inter-organizational workflows. Proceedings of the International

Symposium on Applied Corporate Computing (ISACC’96), Monterrey, Mexico, 30 Oct. – 1 Nov.
1996, pp. 13 – 22.

[Smith89] Smith, S. The OPIS Framework for Modelling Manufacturing Systems. Tech. report CMU-RI-TR-
89-30, Robotics Institute, Carnegie Mellon University, December, 1989.

[Smith90] Smith, S., Ow, P. S., Muscettola, N., Potvin, J. Y., Matthys, D. OPIS: An Opportunistic Factory
Scheduling System. Proceedings of the Third International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, pp. 268-274. May, 1990.

[Smith95] Smith, S. Reactive Scheduling Systems. In: Brown, D. E., Scherer, W. T. (eds.), Intelligent
Scheduling Systems. Kluwer Press, 1995.

[Smith97] Smith, S. F., Becker, M. A. An Ontology for Constructing Scheduling Systems. Working Notes of
1997 AAAI Symposium on Ontological Engineering. AAAI Press, March, 1997.

[Smith03] Smith, H., Fingar, P. Business Process Mangement: The Third Wave. 1st ed., Meghan-Kiffer Press,
Tampa, Florida, USA, 2003.

[Sowa92] Sowa, J. F., Zachman, J. A. Extending and formalizing the framework for information systems
architecture. IBM Systems Journal 31 (3) (1992).

[Sowa00] Sowa, J. F. Knowledge Representation: Logical, Philosophical, and Computational Foundations.
Brooks Cole, 2000.

[Sterling86] Sterling, L., Shapiro, E. The Art of Prolog: Advanced Programming Techniques. The MIT Press,
1986.

[Tamm87] Tamm, B. G., Puusepp, R., Tavast, R. Analiz i modelirovanije proizvodstvennyh sistem (Analysis
and Modelling of Production Systems). Finansy i Statistika, Moskva, 1987. In Russian.

[Tamm96] Tamm, B., Taveter, K. A List-based Virtual Machine for COBOL. Software - Practice and
Experience, Vol. 26 (12) (December 1996).

[Taveter01c] Taveter, K., Wagner, G. Agent-Oriented Enterprise Modelling Based on Business Rules. In:
Kunii, H. S., Jajodia, S., Sølvberg, A. (eds.): Conceptual Modelling – ER 2001, 20th International
Conference on Conceptual Modelling, Yokohama, Japan, November 27-30, 2001, Proceedings.
Lecture Notes in Computer Science 2224, Springer, 2001, 527-540.

[Taveter02a] Taveter, K., Wagner, G. A Multi-perspective Methodology for Modelling Inter-enterprise
Business Processes. In: Arisawa, H., Kambayashi, Y., Kumar, V., Mayr, H.C., Hunt, I. (eds.):
Conceptual Modelling for New Information Systems Technologies, ER 2001 Workshops HUMACS,
DASWIS, ECOMO, and DAMA, Yokohama, Japan, November 27-30, 2001, Revised Papers. Lecture
Notes in Computer Science 2465, Springer, 2002, 403 – 416.

[TKT] Tallinna Keraamikatehas AS, http://www.keraamikatehas.ee/
[UMM] UN/CEFACT Modelling Methodology (UMM), http://www.ebxml.org/
[Uschold98] Uschold, M., King, M., Moralee, S., Zorgios, Y. The Enterprise Ontology. The Knowledge

Engineering Review, 13(1), 31-90, 1998.
[VanAssche88] Van Assche, F., Layzell, P. J., Loucopoulos, P., Speltincx, G. Information systems

development: a rule-based approach, Journal of Knowledge-Based Systems, 1(4), 227-234, 1988.
[Vernadat98] Vernadat, F. B. The CIMOSA languages. In: Handbook on Architectures of Information Systems,

Springer-Verlag, Berlin, 1998, pp. 243–263.
[Wagner96] Wagner, G. Vivid Agents - How they Deliberate, How They React, How They Are Verified,

http://tmitwww.tm.tue.nl/staff/gwagner/VividAgents.pdf. Extended version of: Wagner, G. A Logical
And Operational Model of Scalable Knowledge- and Perception-Based Agents. In: Van de Velde, W.,
Perram. J. W. (eds.), Agents Breaking Away, Proceedings of MAAMAW'96, Springer Lecture Notes in
Artificial Intelligence 1038, 1996.

[Wagner98] Wagner, G. Foundations of Knowledge Systems with Applications to Databases and Agents.
Volume 13 of Advances in Database Systems, Kluwer Academic Publishers, 1998.

[Wagner99] Wagner, G. Agent-Oriented Enterprise and Business Process Modelling. Proceedings of the First
International Workshop on Enterprise Management and Resource Planning Systems (EMRPS’99),
Venice, November 1999.

200

[Wagner00a] Wagner, G. Agent-Object-Relationship Modelling. Proceedings of the Second International

Symposium "From Agent Theory to Agent Implementation" (AT2AI-2), Vienna, Austria, April 2000.
[Wagner00b] Wagner, G., Schroeder, M. Vivid Agents: Theory, Architecture, and Applications. Journal of

Applied Artificial Intelligence 14:7 (2000).
[Wagner01] Wagner, G. Agent-Oriented Analysis and Design of Organizational Information Systems. In:

Barzdins, J., Caplinskas, A. (eds.), Databases and Information Systems, 4th International Baltic
Workshop, Baltic DB&IS, Selected Papers. Vilnius, Lithuania, 1 – 5 May 2000. Kluwer Academic
Publishers, Dordrecht, 2000.

[Wagner02] Wagner, G. A UML Profile for External AOR Models. Proceedings of Third International
Workshop on Agent-Oriented Software Engineering (AOSE-2002), held at Autonomous Agents &
Multi-Agent Systems (AAMAS 2002), Palazzo Re Enzo, Bologna, Italy – July 15, 2002. LNAI 2585,
Springer-Verlag, 2002.

[Wagner03a] Wagner, G. The Agent-Object-Relationship Meta-Model: Towards a Unified View of State and
Behaviour. Information Systems 28:5 (2003),
http://tmitwww.tm.tue.nl/staff/gwagner/AORML/AOR.pdf

[Wagner03b] Wagner, G., Tulba, F. Agent-Oriented Modeling and Agent-Based Simulation. In: Giorgini, P.,
Henderson-Sellers, B. (eds.), Conceptual Modeling for Novel Application Domains. Volume 2814 of
Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 205-216.

[Wang01] Wang, X., Lesperance, Y. Agent-Oriented Requirements Engineering Using ConGolog and i*. In:
Wagner, G., Karlapalem, K., Lesperance, Y., Yu., E. (eds.), Agent-Oriented Information Systems
2001, Proceedings of the Third International Bi-Conference Workshop AOIS-2001. iCue Publishing,
Berlin, 2001.

[Weigand97] Weigand, H., Verharen, E., Dignum, F. Dynamic Business Models as a Basis for Interoperable
Transaction Design. Information Systems, Vol. 22, No. 2/3, pp. 139-154, 1997.

[Wooldridge00] Wooldridge, M., Jennings, N. R., Kinny, D. The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems, 3, 285-312, 2000.

[WS] Web Services Activity of W3C, http://www.w3.org/2002/ws/
[WSDL] Web Services Description Language (WSDL) Version 1.2. W3C Working Draft 3 March 2003,

http://www.w3.org/TR/2003/WD-wsdl12-20030303/
[XMLS] XML Schema 1.0, http://www.w3.org/XML/Schema.
[XPDL] Workflow Process Definition Interface - XML Process Definition Language (XPDL), October 25,

2002, Version 1.0 , http://www.wfmc.org/standards/standards.htm
[Yourdon96] Yourdon, E., Whitehead, K., Thomann, J., Oppel, K., Nevermann, P. Mainstream Objects: An

Analysis and Design Approach for Business. Yourdon Press, 1996.
[Yu95a] Yu, E. Modelling Strategic Relationships for Process Reengineering. PhD thesis, Department of

Computer Science, University of Toronto, 1995.
[Yu95b] Yu, E. S. K., Mylopoulos, J.: From E-R to ‘A-R’ - Modelling Strategic Actor Relationships for

Business Process Reengineering. International Journal of Intelligent and Cooperative Information
Systems 2/3 (1995) 125-144.

[Zachman87] Zachman, J. A. A framework for information systems architecture. IBM Systems Journal 26 (3)
(1987).

[Zambonelli01] Zambonelli, F., Jennings, N. R., Wooldridge, M. Organisational Abstractions for the Analysis
and Design of Multi-Agent Systems. In: Ciancarini, P. and Wooldridge, M. (eds.), Agent-Oriented
Software Engineering, LNCS 1957, pages 127-141. Springer-Verlag, 2001.

[Zave97a] Zave, P. Classification of Research Efforts in Requirements Engineering. ACM Computing Surveys,
Vol. 29, No. 4, 1997, pp. 315-321.

[Zave97b] Zave, P., Jackson, M. Four Dark Corners of Requirements Engineering. ACM Transactions on
Software Engineering and Methodology, 1997, pp. 1-30.

[Zeng99] Zeng, D. D., Sycara, K. Dynamic Supply Chain Structuring for Electronic Commerce Among Agents.
In: Klusch, M. (ed.), Intelligent Information Agents: Agent-Based Information Discovery and
Management on the Internet. Springer, 1999.

201

Appendix A. The grammar for the proposed modification of OCL

oclFile := ("package" packageName
oclExpressions
"endpackage"

)+
packageName := pathName
oclExpressions := (constraint)*
constraint := contextDeclaration

(("def" defExpression)
|
(stereotype name? ":" oclExpression)
)+

contextDeclaration := "context"
(operationContext | classifierContext)

classifierContext := nameList
 nameList := (name (":" name)?)
 ("," name (":" name)?)*

operationContext := name "::" operationName
"(" formalParameterList ")"
(":" returnType)?

stereotype := ("pre" | "post" | "inv")
operationName := name | "=" | "+" | "-" | "<" | "<=" |

">=" | ">" | "/" | "*" | "<>" |
"implies" | "not" | "or" | "xor" | "and" | “IF”

formalParameterList := (name ":" typeSpecifier
("," name ":" typeSpecifier)*
)?

typeSpecifier := simpleTypeSpecifier
| collectionType

collectionType := collectionKind
"(" simpleTypeSpecifier ")"

oclExpression := (letExpression* "in")? expression
returnType := typeSpecifier
expression := logicalExpression
letExpression := "let" name

("(" formalParameterList ")")?
(":" typeSpecifier)?
"=" expression

defExpression := name
("(" formalParameterList ")" | (":" typeSpecifier))
("=" expression)?

ifExpression := "if" expression
"then" expression
"else" expression
"endif"

logicalExpression := relationalExpression
(logicalOperator
relationalExpression
)*

relationalExpression := additiveExpression
(relationalOperator
additiveExpression
)?

202

Appendix A (continued). The grammar for the proposed modification of OCL

additiveExpression := multiplicativeExpression
(addOperator
multiplicativeExpression
)*

multiplicativeExpression := unaryExpression
(multiplyOperator
unaryExpression
)*

unaryExpression := (unaryOperator
postfixExpression

)
| postfixExpression

postfixExpression := primaryExpression
(("." | "->")propertyCall)*

primaryExpression := literalCollection
| literal
| propertyCall
| "(" expression ")"
| ifExpression

propertyCallParameters := "(" (declarator)?
(actualParameterList)? ")"

literal := string
| number
| enumLiteral

enumLiteral := name "::" name ("::" name)*
simpleTypeSpecifier := pathName
literalCollection := collectionKind "{"

(collectionItem
("," collectionItem)*
)?
"}"

collectionItem := expression (".." expression)?
propertyCall := pathName

(timeExpression)?
(qualifiers)?
(propertyCallParameters)?

qualifiers := "[" actualParameterList "]"
declarator := name ("," name)*

(":" simpleTypeSpecifier)?
(";" name ":" typeSpecifier "="
expression
)?
"|"

pathName := name ("::" name)*
timeExpression := "@" "pre"
actualParameterList := expression ("," expression)*
logicalOperator := "and" | "or" | "xor" | "implies" | “IF”
collectionKind := "Set" | "Bag" | "Sequence" | "Collection"
relationalOperator := "=" | ">" | "<" | ">=" | "<=" | "<>"
addOperator := "+" | "-"
multiplyOperator := "*" | "/"
unaryOperator := "-" | "not"
typeName := charForNameTop charForName*
name := charForNameTop charForName*
charForNameTop := /* Characters except inhibitedChar and ["0"-"9"]; the available

characters shall be determined by the tool implementers ultimately.*/
charForName := /* Characters except inhibitedChar; the available

characters shall be determined by the tool implementers ultimately.*/

203

Appendix A (continued). The grammar for the proposed modification of OCL

inhibitedChar := /* The available inhibited characters shall be determined by the tool
implementers ultimately.*/

number := ["0"-"9"] (["0"-"9"])*
("." ["0"-"9"] (["0"-"9"])*)?
(("e" | "E") ("+" | "-")? ["0"-"9"] (["0"-"9"])*
)?

 string := "’"
((~["’","\\","\n","\r"])
| ("\\"
(["n","t","b","r","f","\\","’","\""]
| ["0"-"7"]
(["0"-"7"] (["0"-"7"])?)?
)
)
)*
"'"

204

Appendix B. The activity modelling language

businessProcessType := (reactionRule)+
reactionRule := “CONTEXT” classifierContext+ defExpression*
 “ON” eventPart (preconditionPart)?

“THEN” (actionPart | postconditionPart)+
(“ELSE” (actionPart | postconditionPart)+)?

eventPart := eventExpression ((“AND” | “OR” | “XOR”) eventExpression)*
preconditionPart := “IF” expression
actionPart := immediateActionPart | deferredActionPart
immediateActionPart := actionExpression (& actionExpression)*
deferredActionPart := (“OR” | “XOR”)? (reactionRule)+
postconditionPart := “EFFECT” expression
eventExpression := “RECEIVE MESSAGE” messageTemplate
 “FROM” agentID |

 “PERCEIVE ACTION EVENT” actionTemplate
 “CREATED BY” agentID |
 “PERCEIVE NON-ACTION EVENT” actionTemplate |
 “END” activityID |
 “START” activityTemplate

actionExpression := “SEND MESSAGE” messageReference “TO” agentID |
 “PERFORM ACTION” actionReference “FOR” agentID |
 “START ACTIVITY” activityReference (number TIMES)?
 "CANCEL" activityType |
 "CANCEL PROCESS"

messageTemplate := performativeName contentTemplate?
contentTemplate := “(“ term1 “)”
term1 := actionTemplate | formalParameterList
actionTemplate := actionID | actionID “(“ term1 “)”
performativeName := “accept-proposal” | “agree” | “cancel” | “cfp” | “confirm” | “disconfirm” |
 “failure” | “inform” | “not-understood” | “propose” | “query-if” | “refuse” |
 “reject-proposal” | “request”
activityTemplate := activityID | activityID “(“ term2 “)”
term2 := formalParameterList
messageReference := performativeName contentExpression?
contentExpression := “(“ term3 “)”
term3 := actionReference | actualParameterList | “ACHIEVE” expression
actionReference := actionID | actionID “(“ term3 “)”
activityReference := activityType | activityType “(“ actualParameterList “)”
actionID := name
activityID := name
agentID := name

205

Appendix C. Derivation rules for the case study of car rental

context CarGroup::hasCapacity(pt: Date, dt: Date): Boolean
post: result = (self.rentalCar->exists(not(isScheduledForService) and not(hasOverlappingRentalOrder(pt, dt))))

context RentalOrder
def: overlaps (pt: Date, dt: Date): Boolean = (dt >= pickUpTime and dt <= dropOffTime) or
(pt >= pickUpTime and pt <= dropOffTime) or (pt <= pickUpTime and dt >= dropOffTime) or
(pt >= pickUpTime and dt <= dropOffTime)

context RentalCar
def: isSchedulable (r : RentalOrder): Boolean = (serviceStartTime <= r.pickUpTime and serviceEndTime <= r.pickUpTime)
or (serviceStartTime >= r.dropOffTime and serviceEndTime >= r.dropOffTime)
def: hasOverlappingRentalOrder (pt: Date, dt: Date) : Boolean = branch.rentalOrder->exists(overlaps(pt, dt))

context RentalCar inv:
self.isAvailable IF
self.isPresent and
self.rentalOrder->isEmpty() and
not self.requiresService and
not self.isScheduledForService

context RentalCar inv:
self.isAvailableWithMinMileage IF
self.isAvailable and self.carGroup.rentalCar->select(isAvailable)->forAll(self.mileage <= mileage)

context RentalCar::isAvailableOfOwnGroup(r: RentalOrder): Boolean
post: result = (carGroup = r.carGroup and isAvailableWithMinMileage)

context RentalCar::isAvailableOfNextHigherGroup(r: RentalOrder): Boolean
post: result = (carGroup.nextLowerGroup->notEmpty() and
carGroup.nextLowerGroup = r.carGroup) and isAvailableWithMinMileage)

context RentalCar::isAvailableWithBumpedUpgrade(r : RentalOrder): Boolean
post: result = (carGroup.nextLowerGroup->notEmpty() and
carGroup.nextLowerGroup.nextLowerGroup->notEmpty() and
carGroup.nextLowerGroup.nextLowerGroup = r.carGroup) and isAvailableWithMinMileage)

context RentalOrder::canBeReAllocated(r: RentalOrder): Boolean
post: result =(self = RentalOrder->any(isAllocated and carGroup = r.nextHigherCarGroup and
pickUpTime >= r.pickUpTime and dropOffTime <= r.dropOffTime))

context RentalCar::isAvailableOfNextLowerGroup(r: RentalOrder): Boolean
post: result = (carGroup.nextHigherGroup->notEmpty() and
carGroup.nextHigherGroup = r.carGroup) and isAvailableWithMinMileage)

context RentalCar::isAvailableNotPresent(r: RentalOrder): Boolean
post: result = (r.carGroup.rentalCar->select(isPickedUp and
not rentalOrder.overlaps(r.pickUpTime, r.dropOffTime))->forAll(self.mileage <= mileage))

context Proposal inv:
self.isCheapest IF
branch.proposal->forAll(self.priceForTransfer <= priceForTransfer)

context Customer inv:
self.isQualifiedForRental IF
self.age >= 25

self.hasCar IF
self.rentalOrder->notEmpty() and self.rentalOrder->exists(isEffective)

206

Appendix D. Derivation rules for the case study of the ceramic factory

context UnitCapacityInterval inv:
availableDuration = 480 * unitCapacityResource.capacity.numberOfResources –
productionActivity.getDuration(startTime, endTime)->sum()

context UnitCapacityInterval
def: capacityPerHour (a : ProductionActivity) : Real = a.productionActivityType.numberOfProductsPerHour *
unitCapacityResource.capacity.numberOfResources
def: requiredDuration (a : ProductionActivity) : Integer = (a.quantity / capacityPerHour(a)) * 60

context UnitCapacityInterval::isSchedulable (a : ProductionActivity): Boolean =
a.earliestStartTime <= endTime and requiredDuration(a) <= availableDuration and
self.unitCapacityResource.unitCapacityInterval->select(a.earliestStartTime <= endTime and
requiredDuration(a) <= availableDuration)->forAll(self.startTime <= startTime)

context BatchCapacityInterval inv:
availableCapacity = batchCapacityResource.capacity.numberOfResources * batchCapacityResource.capacity.batchSize –
productionActivity.quantity->sum()

context BatchCapacityInterval::isSchedulable (a : ProductionActivity) : Boolean =
a.earliestStartTime <= startTime and a.quantity <= availableCapacity and
self.batchCapacityResource.batchCapacityInterval->select(a.earliestStartTime <= startTime and
a.quantity <= availableCapacity)->forAll(self.startTime <= startTime)

context UnitCapacityResource inv:
self.hasCapacityConflict IF
self.unitCapacityInterval->exists(availableDuration<0)

context BatchCapacityResource inv:
self.hasCapacityConflict IF
self.batchCapacityInterval->exists(availableCapacity<0)

context ProductionActivity::hasTimeConflict (order : ProductionOrder) : Boolean
post: result = (self.getEarliestStartTime(order) > self.startTime)

context ProductionActivity inv:
self.isScheduled IF
self.productionActivityType->exists() and self.productionActivityType.discreteStateResource->notEmpty() and
self.productionActivityType.discreteStateResource->forAll(capacityInterval->exists
(ci : CapacityInterval | ci.productionActivity->includes(self) and self.capacityInterval->includes(ci))) and self.startTime =
self.capacityInterval->sortedBy(startTime)->first().startTime and
self.endTime = self.capacityInterval->sortedBy(endTime)->last().endTime
def: getDuration (startTime: Date, endTime: Date) : Integer = endTime - startTime
def: getEarliestStartTime (o : ProductionOrder) : Date =
if self.productionActivityType.precedenceInterval[follows]->isEmpty() then
(o.releaseDate) else (self.productionActivityType.precedenceInterval[follows]->first().
productionActivityType.productionActivity->any(productSet.productionOrder = o).endTime +
self.productionActivityType.precedenceInterval[follows]->first().lowerBound)
def: isNextActivity (o : ProductionOrder) : Boolean =
if self.isUnscheduled and (self.productionActivityType.precedenceInterval[follows]->isEmpty() or
self.productionActivityType.precedenceInterval[follows]->first().
productionActivityType.productionActivity->any(productSet.productionOrder = o).isUnscheduled then
(true) else (false).

207

Appendix D (continued). Derivation rules for the case study of the ceramic factory

context ProductionOrder inv:
self.isScheduled IF
self.productType->exists() and
self.productSet->exists() and
self.productType.productionActivityType->notEmpty() and
self.productType.productionActivityType->forAll(t : productionActivityType | t.productionActivity->exists
(a: ProductionActivity | a.isScheduled and a.typeName = t.activityName and a.productionActivityType = t and
self.productSet->includes(a) and a.productSet = self.productSet))
self.isCompleted IF
self.productSet.productionActivity->forAll(isCompleted)

208

Appendix E. AOR activity diagrams for the case study of car rental

Pick-UpBranch

Headquarters

Customer

isBlacklisted

Check the
customer for

blacklistedness
(c: Customer)

hasCar

Check the
customer for
another car

(c: Customer)

Inform
the Headquarter

on pick-up
(r: RentalOrder)

inform
(isEffective

(?RentalOrder))
R7

isAllocated

isEffective

RentalOrder

isReserved

rentalCharge
isCalculated

isDroppedOff

Send
query

(c: Customer)

R1
query-if

(isBlacklisted
(Customer(?String)))

Send
query

(c: Customer)

R4

Receive
reply

(c: Customer)

R5

R6

Receive
reply

(c: Customer)

R2

R3

inform
(not(hasCar

(Customer(?String))))

inform
(hasCar

(Customer(?String)))

inform
(isBlacklisted

(Customer(?String)))

inform
(not(isBlacklisted

(Customer(?String))))

query-if
(hasCar

(Customer(?String)))

C

C

Headquarters
1 {ReceiverID =

headquarters.
agentID}

{ReceiverID =
headquarters.

agentID}

{ReceiverID =
headquarters.

agentID}

personID: String

209

Appendix E (continued). AOR activity diagrams for the case study of car rental

Pick-UpBranch

Branch-Proposer

Allocate a car
from another branch

(r: RentalOrder)

Proposal

transferCar
(?RentalCar)

transferCar
(?RentalCar)

:Timer

isCheapest

R7

from: String

Send calls
(r: RentalOrder)

Send cfp
(p: Branch-
Proposer)

R2

R1

cfp transferCar
(?RentalOrder)

Receive replies

R3

Proposal

R5

R4

refuse transferCar
(?RentalOrder)

R6

propose transferCar
(?RentalOrder)

C

isTimeout

U

Branch-Proposer

request inform
(auction-timeout
(?RentalOrder))

1..*

{ReceiverID =
branch-Proposer.

agentID}

{from = SenderID}

inform
(auction-timeout
(?RentalOrder))

210

Appendix E (continued). AOR activity diagrams for the case study of car rental

Pick-UpBranch

Branch-Proposer

Allocate a car
from another branch

(r: RentalOrder)

Proposal

Announce
the winner

R8

transferCar
(?RentalCar)

isAllocated

isEffective

RentalOrder

isReserved

isDroppedOff

Receive
the car

(r: RentalOrder)

R11

Allocate
the car

(r: RentalOrder,
c: RentalCar)

R12

C(1)

transferCar
(?RentalCar)

isPresent

RentalCar

isAvailable
isAvailable

WithMinMileage

requires
Service

isScheduled
ForService

isPickedUp

isInService

accept-proposal
transferCar

(?RentalOrder)

isCheapest

R7

from: String

Proposal

isTimeout
Reject

proposals

Reject
a proposal

(p: Proposal)

R10
reject-proposal

transferCar
(?RentalOrder)

R9

{ReceiverID =
Proposal.from}

{ReceiverID =
Proposal.from}

U(3)

C(2)

211

Appendix F. AOR activity diagrams for the case study of the ceramic factory

CeramicFactory

SalesDepartment
request

provideProductSet
(?String ?Integer)

provideProductSet
(?ProductionOrder

?Date)

provideProductSet
(?ProductionOrder)

inform
(isCompleted

(ProductionOrder(?String)))

Manage
production order

(code: String, quant: Integer,
senderID: String)

Have
production order

scheduled

C

Production
Department

propose
provideProductSet
(?ProductionOrder) inform

(isScheduled
(?ProductionOrder))

request achieve
(isScheduled

(?ProductionOrder))

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDelivered

C

U

Register
scheduling

R1

Request
scheduling

Customer

isRejected

isScheduled

R4
U

U

achieve
(isCompleted

(?ProductionOrder))

achieve
(isCompleted

(?ProductionOrder) ?Date)

request achieve
(isCompleted

(ProductionOrder(?String)))

Manage
proposal

R3

Manage
completion

{productCode = code
and quantity = quant)}

Create
production order

R2

Production
Department

1

{ReceiverID =
productionDepartment.

agentID}

Manage scheduling
and completion

(order: ProductionOrder)

{senderID =
SenderID}

212

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory

SalesDepartment
request

provideProductSet
(?String ?Integer)

Manage
production order

(code: String, quant: Integer,
senderID: String)

Have
production order

scheduledaccept-proposal
provideProductSet

(ProductionOrder(?String))

Production
Department

propose
provideProductSet
(?ProductionOrder) request achieve

(isScheduled
(?ProductionOrder))

Manage proposal

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDelivered

C

U

U

Authorize and
send proposal

R1

Customer

isRejected

isScheduled

R6

R7

reject-proposal
provideProductSet

(ProductionOrder(?String))

U

X U

U

R5

:Sales
Manager

provideProductSet
(?ProductionOrder

?Date)

provideProductSet
(?ProductionOrder)

C

achieve
(isCompleted

(?ProductionOrder))

achieve
(isCompleted

(?ProductionOrder) ?Date)

request achieve
(isCompleted

(ProductionOrder(?String)))

inform
(isCompleted

(ProductionOrder(?String)))

Manage
completion

authorizeProposal

{about = order and
dueTime = order.dueDate and
sourceID = self.agentID and

targetID = senderID}

Create
production order

Production
Department

1

{ReceiverID =
productionDepartment.

agentID}

Manage sceduling
and completion

(order: ProductionOrder)

{senderID =
SenderID}

{ReceiverID =
senderID}

request delete
(ProductionOrder

(?String))

213

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory

SalesDepartment
request

provideProductSet
(?String ?Integer)

Manage
production order

(code: String, quant: Integer,
senderID: String)

Have
production order

scheduled

propose
provideProductSet
(?ProductionOrder)

request achieve
(isScheduled

(?ProductionOrder))

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDelivered

C

U

U

R1

Customer

isRejected

isScheduled

U

U

provideProductSet
(?ProductionOrder

?Date)

provideProductSet
(?ProductionOrder)

C

achieve
(isCompleted

(?ProductionOrder))

achieve
(isCompleted

(?ProductionOrder) ?Date)

request achieve
(isCompleted

(ProductionOrder(?String)))

Manage proposal

Manage
completion

Register
completion

R9

Request
completion

R8

inform
(isCompleted

(?ProductionOrder))

inform
(isCompleted

(ProductionOrder(?String)))

Production
Department

Inform the
customer

R10

Create
production order

Production
Department

1

{ReceiverID =
productionDepartment.

agentID}

Manage sceduling
and completion

(order: ProductionOrder)

{senderID =
SenderID}

{ReceiverID =
senderID}

214

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory

SalesDepartment

Customer

payInvoice
(?Invoice ?Date)

payInvoice
(?Invoice)

CompletedProductionStore

request
payInvoice
(?Invoice)

Deliver
product set

Create invoice

Send invoice

R12

R15

provideProductSet
(?ProductionOrder

?Date)

provideProductSet
(?ProductionOrder)

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDeliveredU

Invoice

isPreliminary

isSent

isPaid

isRejected

isScheduled

C(1)

U

C

R13

:Sales
ManagerauthorizeInvoice

Create claim

R16

Manage
product delivery

(order: ProductionOrder,
senderID: String)

R11
request

provideProductSet
(ProductionOrder(?String))

U

Register payment
(invoice: Invoice)

R18

R17

{orderID = ?String}

{orderID =
order.orderID and

paidBy =
order.dueDate + 20}

{orderID =
?Invoice.orderID}

R14

{senderID =
SenderID}

{about = order.invoice and
dueTime = order.invoice.paidBy and

sourceID = senderID and
targetID = self.agentID}

C(2)

{ReceiverID =
senderID}

{TargetID =
senderID}

215

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory

ProductionDepartmentSales
Department

Process
production order

(order: ProductionOrder,
senderID: String)

ProductSet

Instantiate
production plan

ProductType

Production
Activity
Type

ProductionActivity

isUnscheduled

isScheduled

isInProcess

C

Schedule
production order

inform
(isScheduled

(?ProductionOrder))

R19

R21

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDelivered

isRejected

isScheduled

{productType =
order.productType}

Resource

C(1)

isCompleted

request achieve
(isScheduled

(?ProductionOrder))

R22

Instantiate
prod. activity

(type:
ProductionActivity

Type)

Send
scheduled
prod. order

Create
product set

R20

{s: ProductSet |
s.productionOrder =

order and
order.productSet = s

and
s.productType =

order.productType and
order.productType->

includes(s)}

{productCode = ?ProductionOrder.productCode}

{senderID =
SenderID}

C(2)

C(2)

U

C(1)

{productionOrder =
order}

C(3)

{a.typeName =
type.activityName}

216

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory

ProductionDepartmentSales
Department

Process
production order

(order: ProductionOrder,
senderID: String)

ProductSet

Instantiate
production plan

ProductType

C

Schedule
production order

inform
(isScheduled

(?ProductionOrder))

R19

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDelivered

isRejected

isScheduled

Resource

achieve
(isCompleted

(?ProductionActivity) ?Date)
achieve

(isCompleted
(?ProductionActivity))

Resource
Unit

C(1)

request achieve
(isScheduled

(?ProductionOrder))

Create
product set

Have production
activity scheduled

(activity:ProductionActivity

inform
(isScheduled

(?ProductionActivity))

R23

{productSet.
productionOrder = order

and isNextActivity(order)}

request achieve
(isScheduled

(?ProductionActivity))

R25

Register
scheduling

R24

Request
scheduling

Production
Activity
Type

ProductionActivity

isUnscheduled

isScheduled

isInProcess

isCompletedU

{earliestStartTime =
getEarliestStartTime(order)}

U

Send
scheduled
prod. order

{ReceiverID =
activity.

production
ActivityType.

resource.
resourceUnit.

agentID}

{senderID =
SenderID}

{productCode = ?ProductionOrder.productCode}

C(2)

Resource
Unit

1..*

217

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory
ProductionDepartmentSales

Department

Process
production order

(order: ProductionOrder,
senderID: String)

ProductSet ProductType

Production
Activity
Type

ProductionActivity

isUnscheduled

isScheduled

isInProcess

C

Schedule
production order

inform
(isScheduled

(?ProductionOrder))

R19

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDelivered

isRejected

isScheduled

Resource

achieve
(isCompleted

(?ProductionOrder))

achieve
(isCompleted

(?ProductionOrder) ?Date)

C(1)

isCompleted

request achieve
(isScheduled

(?ProductionOrder))

inform
(isCompleted

(?ProductionOrder))

Instantiate
production plan

Create
product set

Complete
production order

(order: ProductionOrder,
senderID: String)

R26

R27

R28

Delete
prod. order and

product set
(order:

ProductionOrder,
senderID: String)

request delete
(ProductionOrder

(?String))

Send
scheduled

production order

request achieve
(isCompleted

(ProductionOrder(?String)))

C

D

{orderID =
?String}

{orderID =
?String}

U

{senderID =
SenderID}

{senderID =
SenderID}

{senderID =
SenderID}

{productCode = ?ProductionOrder.productCode}

C(2)

218

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory
ProductionDepartment

Sales
Department

Production
Activity
Type

ProductionActivity

isUnscheduled

isScheduled

isInProcess

Have prod. activities
shifted (a: ProductionActivity)

request achieve
(isScheduled

(?ProductionActivity))

inform
(isScheduled

(?ProductionActivity))

Have prod. activity
shifted (a: ProductionActivity)

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDelivered

isRejected

isScheduled

Resource

inform
(isScheduled

(?ProductionActivity))
R30

hasTimeConflict
(ProductionOrder)

{startTime > a.startTime
and hasTimeConflict(order)}

Resource
Unit

isCompleted

R33

Follow production
activities

achieve
(isCompleted

(?ProductionOrder))

achieve
(isCompleted

(?ProductionOrder) ?Date)

R36

X

Complete
production order

(order: ProductionOrder,
senderID: String)

U

R29

C

R35

Register
scheduling

R34

Request
scheduling

inform
(isCompleted

(?ProductionOrder))

ProductSet ProductType

{earliestStartTime =
getEarliestStartTime(order)}

U

{orderID = order.orderID}

{ReceiverID =
a.production
ActivityType.

resource.
resourceUnit.

agentID}

{productSet.
productionActivity->exists

(activityID =
?ProductionActivity.

activityID)}

Resource
Unit

1..*

{achieve = order.isCompleted
and dueTime = order.dueDate
and sourceID = self.agentID

and targetID = senderID}

{ReceiverID =
senderID}

{TargetID =
senderID}

219

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory
ProductionDepartment

Sales
Department

Follow
production activities

Resource

inform
(isInProcess

(?ProductionActivity))

inform
(isCompleted

(?ProductionActivity))

R32

Resource
Unit

R31

R36

X

Complete
production order

(order: ProductionOrder,
senderID: String)

R29

C

Have prod. activities
shifted (a: ProductionActivity)

request achieve
(isScheduled

(?ProductionActivity))

inform
(isScheduled

(?ProductionActivity))

Have prod. activity
shifted (a: ProductionActivity)

R37

R39

Register
scheduling

R38

Request
scheduling

achieve
(isCompleted

(?ProductionOrder))

achieve
(isCompleted

(?ProductionOrder) ?Date)

inform
(isCompleted

(?ProductionOrder))

ProductSet ProductType

Production
Activity
Type

ProductionActivity

isUnscheduled

isScheduled

isInProcess

hasTimeConflict
(ProductionOrder)

isCompleted

U

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDelivered

isRejected

isScheduled

{startTime > a.startTime
and hasTimeConflict(order)}

{earliestStartTime =
getEarliestStartTime(order)}

U

{orderID = order.orderID}

U

U

{ReceiverID =
a.production
ActivityType.

resource.
resourceUnit.

agentID}

{productSet.
productionActivity->exists

(activityID =
?ProductionActivity.

activityID)}

{achieve = order.isCompleted
and dueTime = order.dueDate
and sourceID = self.agentID

and targetID = senderID}

Resource
Unit

1..*

{ReceiverID =
senderID}

{TargetID =
senderID}

220

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory
ProductionDepartment

Sales
Department

Delete
production order
and product set

(order: ProductionOrder,
senderID: String)

ProductSet ProductType

Production
Activity
Type

ProductionActivity

isUnscheduled

isScheduled

isInProcess

R28

ProductionOrder

isPreliminary

isProposed

isAccepted

isCompleted

isDelivered

isRejected

isScheduled

Resource

achieve
(isCompleted

(?ProductionActivity) ?Date)
achieve

(isCompleted
(?ProductionActivity))

Resource
Unit

isCompleted
D

{productSet.
productionOrder = order}

Have
prod. activities

deleted

R40

Delete prod.
activity (activity:

ProductionActivity)

R41
request delete

(ProductionActivity
(?String))

R42

Delete
product set

{orderID =
?String}

request delete
(ProductionOrder

(?String))

R43

Delete
production order

{productionOrder =
order}

{ReceiverID =
activity.

production
ActivityType.

resource.
resourceUnit.

agentID}

{senderID =
SenderID}

Resource
Unit

1..*D

D

221

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory
ResourceUnit

Schedule and perform
production activity

(activity: ProductionActivity,
senderID: String)

Allocate resources

inform
(isScheduled

(?ProductionActivity))

Production
Department

R46

request achieve
(isScheduled

(?ProductionActivity))
R44

ProductionActivity

isScheduled

isInProcess

isCompleted

C(1)

C

Production
Activity
Type

DiscreteStateResource

Capacity
Interval

:Capacity

achieve
(isCompleted

(?ProductionActivity) ?Date)
achieve

(isCompleted
(?ProductionActivity))

C(2)

Resource

resourceName: String

isSchedulable
(ProductionActivity)

isUnscheduled

Allocate resource
(resource:

DiscreteStateResource)

R45

{productionActivityType =
activity.productionActivityType}

{discreteStateResource = resource
and isSchedulable(activity)}

{startTime = activity.capacityInterval->
sortedBy(startTime)->first().startTime and endTime =

activity.capacityInterval->sortedBy(endTime)->last().endTime}R47

{activityName =
?ProductionActivity.typeName}

{senderID =
SenderID}

C(2)

{achieve = activity.isCompleted
and dueTime = activity.endTime

and sourceID = self.agentID
and targetID = senderID}

{ReceiverID =
senderID}

C(1)

222

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory

FormSet

ResourceUnitProduction
Department

Production
Activity
Type

inform
(isScheduled

(?ProductionActivity))

Resource

resourceName: String

Reschedule
production activity

(activity: ProductionActivity,
senderID: String)

Allocate resources

R53

Allocate resource
(resource:

DiscreteStateResource)

R52

R54

U(1)

Delete allocations

R51

Delete allocation
(resource:

DiscreteStateResource)

R50

R48

D

request achieve
(isScheduled

(?ProductionActivity))

{productionActivityType =
activity.productionActivityType}

{productionActivityType =
activity.productionActivityType}

DiscreteStateResource

Capacity
Interval

:Capacity

isSchedulable
(ProductionActivity)

{discreteStateResource = resource
and isSchedulable(activity)}

C

ProductionActivity

isScheduled

isInProcess

isCompleted

isUnscheduled

{startTime = activity.capacityInterval->
sortedBy(startTime)->first().startTime and endTime =

activity.capacityInterval->sortedBy(endTime)->last().endTime}

{activityID =
?ProductionActivity.activityID}

{discreteStateResource = resource and
productionActivity = activity}

R49
D

achieve
(isCompleted

(?ProductionActivity) ?Date)
achieve

(isCompleted
(?ProductionActivity))

Delete commitment

C(2)

{senderID =
SenderID}

{achieve = activity.isCompleted
and dueTime = activity.endTime

and sourceID = self.agentID
and targetID = senderID}

{ReceiverID =
senderID}

223

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory
Resource Unit

Delete
production activity
and commitment

(activity: ProductionActivity,
senderID: String)

R55

ProductionActivity

isInProcess

isCompleted

Production
Activity
Type

DiscreteStateResource

Capacity
Interval

:Capacity

request delete
(?ProductionActivity)

D

Resource

resourceName: String

isSchedulable
(ProductionActivity)

isUnscheduled

R56D

Production
Department

achieve
(isCompleted

(?ProductionActivity) ?Date)
achieve

(isCompleted
(?ProductionActivity))

isScheduled

{activityID =
?ProductionActivity.activityID}

Delete
commitment (activity:

ProductionActivity)

R57

Delete prod.
activity (activity:

ProductionActivity)

Delete allocations
(activity:

ProductionActivity)

{senderID =
SenderID}

224

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory

ResourceUnit

Production
Activity
Type

Resource

resourceName: String

R58

DiscreteStateResource

Capacity
Interval

:Capacity

Worker

Production
Department

inform
(isInProcess

(?ProductionActivity))

inform
(isCompleted

(?ProductionActivity))

Register
the end of the

production activity
(activity: ProductionActivity)

R61

Register
the start of the

production activity
(activity: ProductionActivity)

achieve
(isCompleted

(?ProductionActivity) ?Date)
achieve

(isCompleted
(?ProductionActivity))

{activity.startTime = ?Date}

{activity.endTime = ?Date}

R60

{activityID = ?ProductionActivity.activityID}

{activityID =
?ProductionActivity.activityID}

R59

ProductionActivity

isUnscheduled

isInProcess

isCompleted

isScheduled

Production
Department

1

U Resource
Unit

1..*

{TargetID =
productionDepartment.agentID}

{ReceiverID =
productionDepartment.agentID}

{ReceiverID =
productionDepartment.agentID}

start-of
(?ProductionActivity

?Date)

end-of
(?ProductionActivity

?Date)

U

225

Appendix F (continued). AOR activity diagrams for the case study of the ceramic factory

CeramicFactory

Resource
FormSet

ResourceUnit

Production
Activity
Type

Schedule
production activity

(activity:
Production Activity)

Worker
insert-new-capacity
(?String ?Integer1

?Integer2)

Resource

resourceName: String

R65

Resolve the
capacity conflict

(resource:
DiscreteStateResource)

{resourceName = ?String}

{numberOfResources = ?Integer1 and
batchSize = ?Integer2}

ProductionActivity

isUnscheduled

isInProcess

isCompleted

Delete commitment
 and resource allocation

(activity: ProductionActivity)

Delete
allocations
(activity:

ProductionActivity)

R63

Reschedule
production activities

R62

isScheduled

{productionActivityType.
discreteStateResource->

includes(resource)}

{productionActivityType.
discreteStateResource->

includes(resource)}

DiscreteStateResource

Capacity
Interval

:Capacity

has
CapacityConflict

U

Production
Department

R64D

achieve
(isCompleted

(?ProductionActivity) ?Date)
achieve

(isCompleted
(?ProductionActivity))

Delete
commitment

Delete commitments
 and resource allocations

C

Production
Department

1

Resource
Unit

1..*

C

C

226

Appendix G. AOR activity diagrams for the case study of advertising

Media Agency

request achieve
(isPerformed

(?CampaignOrder))

agree achieve
(isPerformed

(?CampaignOrder))

Manage
advertising campaign
(co: CampaignOrder,

senderID: String)

Advertiser

achieve
(isPerformed

(?CampaignOrder) ?Date)
achieve

(isPerformed
(?CampaignOrder))

R1

Agree and commit
to perform campaign

R3
C

Manage
ad space reservations

:Media
Agency
Secretary

Manage
artwork design

Send artwork
design request

R5

Receive
agreement

R6

Artwork
Designer

request achieve
(isArtworkDesigned
(?CampaignOrder))

achieve
(isArtworkDesigned

(?CampaignOrder) ?Date)
achieve

(isArtworkDesigned
(?CampaignOrder) ?Date)

agree achieve
(isArtworkDesigned
(?CampaignOrder))

authorize
Campaign

CampaignOrder

isPreliminary

isPerformed

AdInsertion

:Ad
Description

:Artwork
Description

C

isArtworkDesigned

R2

R4
{orderID = co.orderID and

adDescription.artworkDescription->exists()}

{ReceiverID =
co.adDescription.

artworkDescription.designerID}

{senderID =
SenderID}

U

{advertiserID =
SenderID}

{ReceiverID =
senderID}

{achieve = co.isPerformed
and dueDate = co.dueDate
and sourceID = self.agentID

and targetID = senderID}

227

Appendix G (continued). AOR activity diagrams for the case study of advertising

Media Agency

request achieve
(isPerformed

(?CampaignOrder))

:AdDescription

CampaignOrder

Manage
advertising campaign
(co: CampaignOrder,

senderID: String)

Advertiser

achieve
(isPerformed

(?CampaignOrder) ?Date)
achieve

(isPerformed
(?CampaignOrder))

Manage
ad order

(ai: AdInsertion)

R1

R7
{campaignOrder=co}

Publication

Manage
ad space reservations

AdOrder

isPreliminary

isConfirmed

isPrinted

isReserved

C

isPreliminary

isPerformed

Create ad space
reservation request

R8

AdInsertion

Send
ad space

reservation request

R9
request achieve

(isReserved
(?AdOrder))

{adInsertion = ai}

{campaignOrder = co}

{ReceiverID =
ai.publication.agentID}

isRejected

{senderID =
SenderID}

{advertiserID =
SenderID}

C(1) C(2)
C(3)

228

Appendix G (continued). AOR activity diagrams for the case study of advertising

Media Agency
request achieve

(isPerformed
(?CampaignOrder))

Manage
advertising campaign
(co: CampaignOrder,

senderID1: String)

Advertiser

achieve
(isPerformed

(?CampaignOrder) ?Date)
achieve

(isPerformed
(?CampaignOrder))

R1

Media
Agency
Secretary

reject
Proposal

Publication

:Timer

Manage
ad space reservations

AdOrder

isPreliminary

isConfirmed

isPrinted

isReserved

Manage ad order
(ai: AdInsertion)

Accept/reject
ad space proposal

(ao: AdOrder,
senderID2: String)

R12

R13

R11

X

X

R14
Reject

proposal

R15

Accept
proposal

R10
propose achieve

(isReserved
(?AdOrder))

refuse achieve
(isReserved
(?AdOrder))

request request
achieve(isPrinted

(AdOrder(?String)))

accept-proposal
achieve(isReserved

(?AdOrder))

reject-proposal
achieve(isReserved

(?AdOrder))

accept
Proposal

U

providePrintedAd
(?Issue ?Date)

providePrintedAd
(?Issue)

U

CampaignOrder

isPreliminary

:AdDescription

AdInsertion

isPerformed

C

R7 {campaignOrder=co}

isRejected

{senderID1 =
SenderID}

{senderID2 =
SenderID}

{advertiserID =
SenderID}

{ReceiverID =
senderID2}

{ReceiverID =
senderID2}

229

Appendix G (continued). AOR activity diagrams for the case study of advertising

Media Agency
AdOrder

isPreliminary

isConfirmed

isUpdated

isPrinted

Have the ad space
reservation updated

(ao: AdOrder)

R16

R17

inform
(isUpdated
(?AdOrder))

updateA
dO

rder
(?A

dO
rder)

U
:Media Agency
Secretary

isReserved

:Ad
Description

Register
update

R18

request achieve
(isUpdated
(?AdOrder))

{orderID =
?AdOrder.orderID}

Publication

Request
update

isRejected

:AdInsertion

{ReceiverID =
ao.adInsertion.

publication.agentID}

230

Appendix G (continued). AOR activity diagrams for the case study of advertising

Media Agency

:Timer request achieve
(isPrinted

(AdOrder(?String)))

Request printing
of the ad

(ao: AdOrder)

R19

R20

agree
providePrintedAd

(?AdOrder)

Register
confirmation

R21

request
providePrintedAd

(?AdOrder)

Publication

AdOrder

isPreliminary

isConfirmed

isUpdated

isPrinted

isReserved

U

{orderID = ?String}

Request
printing

isRejected

:Ad
Description

:AdInsertion
{ReceiverID =
ao.adInsertion.

publication.agentID}

231

Appendix G (continued). AOR activity diagrams for the case study of advertising

Media Agency

Complete
advertising campaign

(ao: AdOrder, sourceID: String)

achieve
(isPerformed

(?CampaignOrder) ?Date)
achieve

(isPerformed
(?CampaignOrder))

R24

Advertiser

Publication

MediaAgencyInvoice

C(1)

payForCampaign
(?MediaAgencyInvoice

?Date)

Send media
agencyinvoice

R27

request
payForCampaign

(?MediaAgencyInvoice)

C

Create
media agency invoice

approve
MediaAgencyInvoice

R25

Register
the payment

(invoice: MediaAgencyInvoice,
originID: String)

R29

U

U

payForCampaign
(?MediaAgencyInvoice)

:Ad
Description

CampaignOrder

AdOrder

isPreliminary

isConfirmed

isPrinted

isReserved

isPreliminary

isPerformed

Manage m. a. invoice
(co: CampaignOrder)

isSent

isPreliminary

isPaid

:Media Agency
Secretary

providePrintedAd
(?AdOrder ?Date)

Register
printing of the ad

R23

providePrintedAd
(?AdOrder)

R22

U

{adDescription.
adOrder = ao}

{dueDate = ?AdOrder.dueDate}

{campaignOrder = co}

{orderID = ?MediaAgencyInvoice.orderID}

AdInsertion

R26

{ReceiverID =
co.advertiser.

agentID}

R28

isRejected

{sourceID =
SourceID}

{originID =
SourceID}

C(2)

{about = co.mediaAgencyInvoice and
dueDate = co.mediaAgencyInvoice.paidBy

and sourceID = co.advertiserID and
 targetID = self.agentID}

{paidBy = co.dueDate + 20
and orderID = co.orderID}

{TargetID =
ao.adInsertion.

campaignOrder.
advertiserID}

232

Appendix G (continued). AOR activity diagrams for the case study of advertising

Media Agency

:Media
Agency
Secretary

acceptInvoice

rejectInvoice

payForAd
(?PublicationInvoice

?Date)

payForAd
(?PublicationInvoice)

C

refuse
payForAd

(?PublicationInvoice)

Publication

PublicationInvoice

C(1)

X

Deal with
publication invoice

(pi: PublicationInvoice,
senderID: String)

request
payForAd

(?PublicationInvoice)
R30

AdOrder

isPreliminary

isConfirmed

isPrinted

isReserved

CampaignOrder

isPreliminary

isPerformed

:AdDescription

R31

R32

{orderID =
?PublicationInvoice.orderID}

isRejected

{senderID =
SenderID}

C(2)

{about = pi and dueDate = pi.paidBy
and sourceID = self.agentID and

 targetID = senderID}
{ReceiverID =

senderID}

{ReceiverID =
senderID}

agree
payForAd

(?PublicationInvoice)

233

Appendix G (continued). AOR activity diagrams for the case study of advertising

Publication

request achieve
(isReserved
(?AdOrder))

propose achieve
(isReserved
(?AdOrder))

Media Agency

refuse achieve
(isReserved
(?AdOrder))

Manage
ad space

reservation
(ao: AdOrder,

senderID: String)

Wait for and
process reply
(ao: AdOrder)

R34

R33

Issue
availableArea: Real
date: Date

isPublished

R36

R35

X

reject-proposal
achieve(isReserved

(?AdOrder))

accept-proposal
achieve(isReserved

(?AdOrder))

hasAlternative
AdSpaceFor

(AdDescription)

hasAdSpaceFor
(AdDescription)

{ao.issue.
hasAdSpaceFor

(ao.adDescription) or
ao.issue.hasAlternative

AdSpaceFor
(ao.adDescription)}

MediaAgency

{senderID =
SenderID}

{date = ?AdOrder.adInsertion.date}

{agentID = SenderID}

C(2)

AdOrder

isPreliminary

isUpdated

isConfirmed

isPrinted

isReserved

:AdInsertion

isRejected

C(1)

U

U

:AdDescription

:AdSize
width: Real
length: Real

U

C(3)

{ReceiverID =
senderID}

234

Appendix G (continued). AOR activity diagrams for the case study of advertising

PublicationMedia Agency

R37

Update ad space
reservation

(ao: AdOrder,
senderID: String)

request achieve
(isUpdated
(?AdOrder))

R38
inform

(isUpdated
(?AdOrder))

AdOrder

isPreliminary

isConfirmed

isUpdated

isPrinted

isReserved

U

{orderID =
?AdOrder.orderID}

:AdInsertion

AdDescription

:AdSize
width: Real
length: Real

isRejected

MediaAgency

{senderID =
SenderID}

{ReceiverID =
senderID}

235

Appendix G (continued). AOR activity diagrams for the case study of advertising

Publication

R39Media Agency

Manage ad
publishing

(ao: AdOrder,
senderID: String)

request
providePrintedAd

(?AdOrder)

provideArtwork
(?Artwork

?String ?Date)

provideArtwork
(?Artwork ?String)

Artwork
Producer

AdOrder

isPreliminary

isConfirmed

isUpdated

isPrinted

isReservedConfirm
ad order

U

agree
providePrintedAd

(?AdOrder)

R40

Artwork

{orderID =
?AdOrder.orderID}

{adDescription.adOrder = ao}

:AdDescription

:AdSize
width: Real
length: Real

:Artwork
Description

:AdInsertion

Receive and
insert artwork

(awd: ArtworkDescription)

R42

{orderID =
?String}

R41
C

providePrintedAd
(?Issue ?Date)

providePrintedAd
(?Issue)

isRejected

MediaAgency

{senderID =
SenderID}

{about = ao.issue and
dueDate = ao.adInsertion.date and

sourceID = self.agentID and
 targetID = senderID}

{ReceiverID =
senderID}

236

Appendix G (continued). AOR activity diagrams for the case study of advertising

Publication

Media Agency

Create
publication invoice

Manage
ad invoicing

(ao: AdOrder)

approve/change
PublicationInvoice

R46

PublicationInvoice

isSent

isPaid

isPreliminary

C

U

C

R48

Send
publication invoice

(pi : PublicationInvoice)

request
payForAd

(?PublicationInvoice)

payForAd
(?PublicationInvoice

?Date)

payForAd
(?Publication Invoice)

refuse
payForAd

(?PublicationInvoice)

:Publication
Secretary

R49

R50

X

R43

Update ad size

R45

Provide
printed ad

R44

update
AdSizeprovidePrintedAd

(?AdOrder ?Date)

providePrintedAd
(?AdOrder)

AdOrder

isPreliminary

isConfirmed

isUpdated

isPrinted

isReserved

:AdInsertion

U

R47

agree
payForAd

(?PublicationInvoice) {orderID =
?AdOrder.orderID}

{adOrder = ao}

U

isRejected

MediaAgency

{TargetID =
ao.mediaAgency.

agentID}

{ReceiverID =
ao.mediaAgency.

agentID}

:AdDescription

:AdSize
width: Real
length: Real

U

C

{about = pi and
dueDate = pi.paidBy and

sourceID = ao.mediaAgency.agentID and
 targetID = self.agentID}

{paidBy = ad.dueDate + 20
and orderID = ad.orderID}

ad-is-printed
(?AdOrder)

237

Appendix G (continued). AOR activity diagrams for the case study of advertising

Artwork
Designer

Media
Agency

request achieve
(isArtworkDesigned
(?CampaignOrder))

R51

achieve
(isArtworkDesigned

(?CampaignOrder ?Date))
achieve

(isArtworkDesigned
(?CampaignOrder))

C

Manage
artwork design

(co: CampaignOrder
senderID: String)

Confirm and commit
to design artwork

(co: CampaignOrder)

Artist

agree achieve
(isArtworkDesigned
(?CampaignOrder))

R52

approve
ArtworkDesignRequest

CampaignOrder

isPreliminary

isPerformed

AdInsertion

:Ad
Description

:Artwork
Description

isArtworkDesigned

R53

MediaAgency

{agentID = SenderID}

{senderID =
SenderID}

C(1)
C(2)

{achieve = co.isArtworkDesigned and
dueDate = co.artworkDesignDD and

sourceID = self.agentID and
targetID = senderID}

238

Appendix G (continued). AOR activity diagrams for the case study of advertising

ArtworkDesigner

Media
Agency

R54

achieve
(isArtworkDesigned

(?CampaignOrder ?Date))
achieve

(isArtworkDesigned
(?CampaignOrder))

C/U(1)

inform
(isOK

(?ArtworkDesign))

inform
(not(isOK

(?ArtworkDesign)))

query-if
(isOK(?ArtworkDesign))

Advertiser

Register
artwork design

(ad: ArtworkDesign
co: CampaignOrder)

R56

R57

X

Have
artwork produced

ArtworkDesign

isOK

U

Store
artwork design

(ad: ArtworkDesign)

R55

Artist
artwork-is-designed

(?ArtworkDesign
?String)

CampaignOrder

isPreliminary

isPerformed

AdInsertion

:Ad
Description

:Artwork
Description

isArtworkDesigned

{orderID =
?String}

MediaAgency

{ReceiverID =
co.advertiserID}

{adDescription.
campaignOrder = co}

C/U(2)

{TargetID =
co.mediaAgency.

agentID}

239

Appendix G (continued). AOR activity diagrams for the case study of advertising

Artwork Designer

Create artwork
production order

Receive proof

R61

X
reject
Proof

accept
Proof

inform
(isOK

(?Artwork))

inform
(not(isOK

(?Artwork)))

request achieve
(isProduced (?Artwork

ProductionOrder))

Artwork

C/U(1)

Receive
agreement

R60
agree achieve

(isProduced (?Artwork
ProductionOrder))

Artwork
Producer

Register
artwork design

(ad: ArtworkDesign,
co: CampaignOrder)

Artist
artwork-is-designed

(?ArtworkDesign
?String)

Have
artwork produced

Request
production

R59

Manage
artwork
distrib.

CampaignOrder

isPreliminary

isPerformed

AdInsertion

:Ad
Description

:Artwork
Description

isArtworkDesigned

ArtworkProduction
Order

isPreliminary

isProduced

Artwork
Design

C(1)

R54

R58

R62

R63

U

{ReceiverID =
ad.artworkDescription.

producerID}

{ReceiverID =
ad.artworkDescription.

producerID}

{orderID =
?String}

C(2)

C/U(2)
query-if

(isOK(?Artwork))

240

Appendix G (continued). AOR activity diagrams for the case study of advertising

Artwork Designer

Artwork

Artwork
Producer

R54

Register
artwork design

(ad: ArtworkDesign,
co: CampaignOrder)

Artist
artwork-is-designed

(?ArtworkDesign
?String)

Manage
artwork distribution

CampaignOrder

isPreliminary

isPerformed

AdInsertion

Ad
Description

:Artwork
Description

isArtworkDesigned

Manage
publication

(pu: Publication)

R64

{adInsertion.
campaignOrder = co}

Create artwork
providing request

R65

Receive artwork
providing agreement

R66

:Publication

agree provideArtwork
(Publication(?String)

?Artwork ProductionOrder)

ArtworkProduction
Order

isPreliminary

isProduced

Artwork
Design

artworkDesign = ad

U

{ReceiverID =
ad.artworkDescription.

producerID}

{orderID =
?String}

request provideArtwork
(Publication(?String)

?Artwork ProductionOrder)

241

Appendix G (continued). AOR activity diagrams for the case study of advertising

Artwork
Designer

Artwork Producer
request achieve

(isProduced(?Artwork
ProductionOrder))

agree achieve
(isProduced(?Artwork

ProductionOrder))

R67

achieve
(isProduced(?Artwork

ProductionOrder))
achieve

(isProduced(?Artwork
ProductionOrder))

R69

C

Manage
artwork production

(po: ArtworkProductionOrder,
senderID: String)

Confirm and commit
to produce artwork

(po: ArtworkProductionOrder)

:Production
Manager

R68

approve
ArtworkProductionOrder

ArtworkProduction
Order

Artwork
Design

isPreliminary

isProduced

C(1)

Artwork
Designer

{senderID =
SenderID}

{agentID = SenderID}

C(2)

{achieve = po.isProduced and
dueDate = po.dueDate and
sourceID = self.agentID and

targetID = senderID}

242

Appendix G (continued). AOR activity diagrams for the case study of advertising

Artwork
Designer

Artwork Producer

inform
(isOK

(?Artwork))

R72

Artwork

R73

X isOK

U

inform
(not(isOK

(?Artwork)))

C/U(1)

Register
artwork production

(aw: Artwork,
po: ArtworkProductionOrder)

Store artwork
(po:

ArtworkProductionOrder)

R71

:Production
Managerartwork-is-produced

(?Artwork ?String)

achieve
(isProduced(?Artwork

ProductionOrder))
achieve

(isProduced(?Artwork
ProductionOrder))

ArtworkProduction
Order

Artwork
Design

isPreliminary

isProduced

Artwork
Designer

{orderID = ?String}R70

{ReceiverID =
po.artworkDesigner.

agentID}
C/U(2)

{TargetID =
po.artworkDesigner.

agentID}

query-if
(isOK(?Artwork))

243

Appendix G (continued). AOR activity diagrams for the case study of advertising

Artwork
Designer

Artwork Producer

Provide the publication
with the artwork

(publicationID: String,
po: ArtworkProductionOrder,

senderID: String)

request provideArtwork
(Publication(?String)

?ArtworkProductionOrder)

Publication
provideArtwork

(?Artwork)

provideArtwork
(?Artwork)

C

Agree and commit to
provide artwork

agree provideArtwork
(Publication(?String)

?ArtworkProductionOrder)

ArtworkProduction
Order

Artwork
Design

isPreliminary

isProduced

Provide artwork

Artwork

isOK

R74

R76
{artworkDesign.artworkProductionOrder = po}

R75
{artworkDesign.artworkProductionOrder = po}

Artwork
Designer

{senderID =
SenderID}

{TargetID =
publicationID}

{about = po.artworkDesign.artwork and
dueDate = po.dueDate and
sourceID = self.agentID and

 targetID = publicationID}

{ReceiverID =
senderID}

244

Appendix H. Publications

Preliminary results of the research reported in this thesis have appeared in the following publications:
[Tamm96] Tamm, B., Taveter, K. A List-based Virtual Machine for COBOL. Software – Practice and

Experience, Vol. 26 (12) (December 1996).
[Taveter97] Taveter, K. From Object-Oriented Programming Towards Agent-Oriented Programming. In:

Grahne, G. (ed.), Proceeedings of the Sixth Scandinavian Conference on Artificial Intelligence
(SCAI’97). Helsinki, Finland, August 18 – 20. IOS Press, 1997, p. 288.

[Taveter99a] Taveter, K. Java Agents that Realize Business Rules. Proceedings of the 4th International
Conference on the Practical Applications of Intelligent Agents and Multi-Agent Technology
(PAAM’99). London, GB, 19 - 21 April 1999. Practical Application Company, London, 1999, pp. 471
– 472.

[Taveter99b] Taveter, K. Business Rules’ Approach to the Modelling, Design and Implementation of
Agent-Oriented Information Systems. Proceedings of the 1st International Bi-Conference Workshop
on Agent-Oriented Information Systems (AOIS’99). Seattle, USA, 1 May 1999 and Heidelberg,
Germany, 14 – 15 June 1999. Seattle, Heidelberg, 1999, pp. 59 – 75.

[Taveter00a] Taveter, K., Tamm, B. A New Approach to the Modelling, Design and Implementation of
Business Information Systems. In: Barzdins, J., Caplinskas, A. (eds.), Databases and Information
Systems, 4th International Baltic Workshop, Baltic DB&IS, Selected Papers. Vilnius, Lithuania, 1 – 5
May 2000. Kluwer Academic Publishers, Dordrecht, 2000, pp. 176 – 192.

[Taveter00b] Taveter, K., Wagner, G. Combining AOR Diagrams and Ross Business Rules’ Diagrams for
Enterprise Modelling. In: Lesperance, Y., Wagner, G., Yu. E. (eds.), Agent-Oriented Information
Systems 2000. Proceedings of the 2nd International Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS-2000). Stockholm, Sweden, 5 - 6 June and Austin, Texas, 30 July 2000.
iCue Bublishing, Berlin, 2000, pp. 113 – 130.

[Taveter00c] Taveter, K. The use of deontic notions in agent-oriented business information systems. In:
Hyötyniemi, H. (ed.), Proceedings of the 9th Finnish Artificial Intelligence Conference (STeP 2000).
Espoo, Finland, 28 - 31 August 2000. Finnish Artificial Intelligence Society (FAIS), 2000, pp. 77 –
83.

[Taveter01a] Taveter, K. From Descriptive to Prescriptive Models of Agent-Oriented Information Systems. In:
Wagner, G., Karlapalem, K., Lesperance, Y., Yu. E. (eds.), Agent-Oriented Information Systems 2001.
Proceedings of the Third International Bi-Conference Workshop AOIS-2001. 28 May 2001, Montreal,
Canada and 4 June 2001, Interlaken, Switzerland. iCue Publishing, Berlin, 2001, pp. 33 – 44.

[Taveter01b] Taveter, K., Wagner, G. Agent-Oriented Business Rules: Deontic Assignments. Proceedings of
the International Workshop on Open Enterprise Solutions: Systems, Experiences, and Organizations
(OES-SEO 2001). 14 - 15 September 2001, Rome, Italy.

[Taveter01c] Taveter, K., Wagner, G. Agent-Oriented Enterprise Modelling Based on Business Rules. In:
Kunii, H. S., Jajodia, S., Sølvberg, A. (eds.), Conceptual Modelling – ER 2001, 20th International
Conference on Conceptual Modelling. Yokohama, Japan, November 27 - 30, 2001. Proceedings.
Lecture Notes in Computer Science 2224, Springer, 2001, pp. 527-540.

[Oja01] Oja, M., Tamm, B., Taveter, K. Agent-based software design. Proc. Estonian Acad. Sci. Eng., 2001, 7,
1, pp. 5-21.

[Taveter02a] Taveter, K., Wagner, G. A Multi-perspective Methodology for Modelling Inter-enterprise
Business Processes. In: Arisawa, H., Kambayashi, Y., Kumar, V., Mayr, H.C., Hunt, I. (eds),
Conceptual Modelling for New Information Systems Technologies, ER 2001 Workshops HUMACS,
DASWIS, ECOMO, and DAMA. Yokohama, Japan, November 27 - 30, 2001. Revised Papers. Lecture
Notes in Computer Science 2465, Springer, 2002, pp. 403 – 416.

[Taveter02b] Taveter, K, Hääl, R. Agent-Oriented Modelling and Simulation of a Ceramic Factory. In: Juuso,
E., Yliniemi, L. (eds.), Proceedings of the 43rd Conference of Simulation and Modelling (SIMS
2002). 26 – 27 September 2002, Oulu, Finland. Finnish Society of Automation and Scandinavian
Simulation Society, 2002, pp. 102 - 110.

[Taveter04] Taveter, K. From Business Process Modelling to Business Process Automation. In: Cordeiro, J.,
Filipe, J. (eds.), Computer Supported Activity Coordination – Proceedings of the 1st International
Workshop on Computer Supported Activity Coordination (CSAC 2004). In conjunction with ICEIS
2004, Porto, Portugal, April 2004. INSTICC PRESS, 2004, pp. 198 - 210.

