
Modelling a Smart Music Player with a Hybrid Agent-Oriented Methodology
Yuxiu Luo Leon Sterling Kuldar Taveter

Department of Computer Science and Software Engineering
University of Melbourne, Vic. 3010

{yxluo, leon, kuldar}@csse.unimelb.edu.au

Abstract

This paper presents experience with using a hybrid
agent-oriented software engineering methodology for
designing an agent-based software system. We elicit
and analyse system requirements using ROADMAP,
with associated tool REBEL. We develop initial system
design using Prometheus with associated tool PDT.
Applying the combination of the methodologies
facilitates understanding of system requirements by
non-technical clients. A key feature of our work is its
handling of quality requirements, which are identified
as an essential asset for analysing design alternatives.
We contribute to the current state of art by
demonstrating the application of a hybrid methodology
with a case study of a smart music player. We created
concrete artefacts to represent models and found and
clarified conflicting concepts between the two
methodologies when we developed the case study.
Suggestions are proposed to facilitate goal elicitation
and verification.

1. Introduction
Agent-oriented software engineering (AOSE) is a

recent contribution to the field of software engineering.
It has several benefits compared to existing approaches
to developing large-scale complex systems [7, 17]. In
particular, agent-oriented software engineering has the
ability to represent high-level abstractions of active
entities as agents [15], and the ability to address crucial
requirements engineering concerns in building complex
systems, such as functionality, quality, and process.

Several agent-oriented software engineering
methodologies have been proposed including Gaia
[16], MESSAGE [2], ROADMAP [9], RAP/AOR [13],
Tropos [1], Prometheus [11], and MaSE [5]. This paper
shows how features of two methodologies,
ROADMAP and Prometheus, can be combined into a
hybrid methodology, and used for a substantive
example.

Initial system design is included here because
analysis of requirements will lead to a design proposal,

and analysis of the design will show the need for
further requirements [20].

We believe that there are advantages in using a
hybrid methodology. In our case study, effective
requirement elicitation and analysis was supported by
ROADMAP, and effective initial system design was
supported by Prometheus. We used a combination of
tools, Rebel and PDT, to facilitate the system
development process. Both tools [18, 19] are easy to
use based on our experiences

The paper is organized as follows. Section 2
introduces the techniques XPod [6] and Push!Music [8]
which we are reusing in our smart music, followed by
an overview of our desired system. In section 3, we
analyse the system using ROADMAP. In section 4, we
provide initial system design using Prometheus. We
present examples of the artefacts as we proceed to
make the experience concrete. Section 5 of the paper
discusses significant aspects of the case study, while
Section 6 concludes.

2. Smart Music Player
The objective is to design a multi-agent system

controlling a Smart Music Player (SMP) to improve
listeners’ experience by automating most interactions
between music player and listeners, and by providing
flexible system control. We focus on the main
functionalities related to playing music. Additional
possible functionalities, such as showing photos,
receiving radio, and showing video, are out of scope.

A PC is assumed available to back up songs from
the music player. The BodyMedia SensorWare sensor
package1 is assumed to gather physiological data. A
voice recorder is assumed to record audio files. The
listener informs the player about music preferences
during initial training. Listeners also train regarding
voice commands. The music player is in a smart home
environment where signals can be sent between phone,
SMP and PC2. The ring tone of the phone is recorded

1 It is used to predict emotions and activities of the listener. The
BodyMedia device uses a series of sensors to measure the rate of
body movement, acceleration, and body heat from the listener and
wirelessly transmits the data obtained to the server (SMP in our case).
2 This requirement comes partly from an ARC research project,
where music can be muted during a phone call.

15th IEEE International Requirements Engineering Conference

1090-705X/07 $25.00 © 2007 IEEE
DOI 10.1109/RE.2007.43

281

before use. Online music sites are setup before a player
downloads music from the net. Note that the project
proceeded before the announcement of the iPhone.

We base our design on XPod technique [6] and
Push!Music technique [8] to ensure feasibility. Our
system provides functions including music playing,
song selection, volume control, track control, state
checking, and Music library management. Details are
available from the authors.

3. Requirements analysis
We chose ROADMAP [9] for requirements analysis

because it represents requirements at different
abstraction levels using goals and roles. During early
analysis, requirements are captured accurately at a high
level by goal and role diagrams without specifying all
details. During later analysis, relevant functional and
quality requirements (QRs) are described in detail by
refining goal and role diagrams at a lower level. Roles
are captured by the role model. A role can be played by
a human or software agent. The human perspective
provided by using roles helps to identify system goals
and important features such as quality goals (QGs) to
meet stakeholders’ intentions especially when working
with non-technical people. A scenario complements
goals and new goals may be revealed when specifying
scenarios. Scenarios also help to verify goals.

3.1. Requirements elicitation
First, we suggest a few information sources from

where goals can be elicited.
Customers: Their business objectives ultimately

determine system goals. Extra information that may
reveal system goals based on organization-specific
issues (e.g. the availability of resources, standards or
any other constraints) are also provided by them.

Marketing people: They know what the market
really needs and therefore help to decide the most
desired requirements when stakeholders mix what they
want with what they need. Besides, they offer
information on the history, current situation, and future
trends of the market that tell from which problems have
systems of this type suffered. This information reveals
the system’s additional functional goals and QGs.
Information about the current market is especially
important for identifying QGs. Take security as an
example, because attackers attack systems that are
easier to break in, we need to build a system that is
harder to break into than a competitor’s system. To
achieve this, we need information about similar
products on the market. Furthermore, experienced
marketing people can suggest what the system should
look like.

Development team and/or domain expert: they have
good knowledge about the application and
development environment. They know hardware
requirements and may propose new requirements due
to development constraints (e.g. operating system(s),
the platform(s), the component type, and component
interface used)

End user: user’s thoughts greatly affect the QGs (e.g.
response time) and other constraints (e.g., cultural
factors that influence UI style). Some abstract or vague
system requirements may become telling and clearer if
they are described from the user’s point of view.

Available documents: legacy system documents, E-
policies, laws, and standards all reveal functional goals
and QGs.

The next step is to collect information from the
above information sources.

We recommend collecting requirements via a small
number of requirement workshops instead of by many
single interviews. Stakeholders of the system (i.e.,
customers, marketing people, development team,
and/or domain experts) are brought together in a group
meeting to save time and collect more complete and
more meaningful requirements because the
stakeholders have a better understanding of the
requirements from each other’s points of view.

For end users, we suggest face-to-face interviews to
help to clarify specific requirements because one can
elicit a lot of information quickly from a single person
and people will tell you things privately that they
would not tell publicly. If listeners are dispersed,
electronic interviews can be held instead of face-to-
face interviews. However, since limited information
can be conveyed electronically, face-to-face interviews
should be preferred over electronic ones.

For the available documents, the method proposed in
[14] can be used to identify goals from documents,
interview transcripts, etc. by searching for intentional
keywords.

Paper [3] presents a way to specify roles for a multi-
agent system. Role details are captured in the role
model, which is described in Section 3.2.

3.2. Goal models
In a goal model, goal and role diagrams are produced

to capture and analyse system requirements.
3.3.1 Building goal models. After the goals and roles
have been identified, we use goal and role diagrams to
represent requirements in a clear manner that is easy
for stakeholders to understand for the purpose of
validation. Roles and QGs are attached to functional
goals. QGs constrain how a goal should be achieved.
They reflect intangible requirements of a system, such
as privacy, security, and performance. Roles represent

282

those responsible for achieving goals. Figure 1 below
shows the notations of the Rebel tool, which we have
used for creating goal models.

Figure 1. Requirements analysis notation

Figure 2 is the goal and role diagram for a SMP
system, which delivers a clear and easily
understandable picture of the overall system. The
overall goal is to manage playing music. The music
player manager role is responsible for achieving this
goal. The QG easy to use indicates that it should be
easy to manage playing music. The goal manage
playing music can be achieved via several sub-goals:
handle listener request, determine setting, monitor
environment, play music, run message, and manage
music library. These sub-goals have roles and QGs
attached.

Figure 2. Goal and role diagram for SMP system

System goals are further explored during
requirements analysis. Figure 3 shows the sub-goals of
the goal to manage music library goal.

Some research (e.g. [1], [4], [10]) advocates more
information when analysing goals such as AND-OR
relationships between functional goals, or
positive/negative influences on QGs. However, we
believe that it is important to separate requirements
analysis from design.

As is shown in Figures 2 and 3, goals are presented
in a loose hierarchy. The high abstraction level and
simplicity of the goal hierarchy hide complexity from
clients. This is very helpful for communication
between system developers and non-technical clients
during requirements elicitation. Further, the multiple
abstraction levels provided by the hierarchy can be

used to refine the system during requirements analysis.
ROADMAP’s simple concepts lead to flexible usage of
the Rebel requirements engineering tool, which can
significantly shorten the learning curve for developers.

Figure 3. Goal model for manage music library

3.3.2 Quality goals. QGs can also have sub-goals. Sub-
goals can be a set of sub QGs and/or a set of functional
sub goals. Note that the achievement of QGs associated
with sub-goals does not necessarily ensure the
achievement of the QG associated with the top goal. In
Figure 2, for example, we cannot guarantee that the
system is easy to use if the listener’s requests are
handled flexibly; there is timely monitoring of the
environment, suitable values of settings are determined,
and music library management is reliable and efficient.
In fact, QGs may conflict. For instance, if the ways for
listeners to make requests are too flexible, the system
may not be easy to use, because of too many options
available, which results in confusion.

3. 3. Role models
A role has a coherent set of responsibilities

specifying what the actor who plays the role is
expected to do within the organization. Each role is
responsible for achieving, or helping to achieve or
maintain specific system goals. The role model
captures details of the roles that are identified in the
goal model. Description gives a brief statement about
the role. Responsibilities include the essential
requirements on the role to achieve its associated goals.
Constraints document the constraints associated with
fulfilling the responsibilities. They can also constrain
how a QG is to be achieved or the knowledge is to be
accessed. A role in our case study can be performed by
a human or a software agent.

Table 1 shows responsibilities and constraints of the
environment monitor role. An environment monitor
must detect ring tones, monitor ambient decibel levels,
and accept hang-up signals. It analyses the listener’s
activities and collects relevant data when the listener is
nearby. It has quality constraints on performance
requirements.

283

Table 1. Environment monitor role model

Role models not only provide information about

system roles but also describe listener expectations (see
Table 1). This is an advantage over other
methodologies. The lists of responsibilities and
constraints facilitate giving feedback. They represent
important details about envisaged system behaviour.
Role models are thus helpful for deriving test cases and
for initiating lively discussions with clients about
responsibilities and constraints of roles when eliciting
requirements.

3. 4. Scenarios
A few scenarios can be created to complement goal

and role models with the descriptions of system
behaviour. Scenarios describe system behaviour in
terms of system goals, system operations, and impact
on external data. Each scenario consists of several steps.
Each step is one of the five types: Goal (G), Action (A),
Percept (P), sub-Scenario(S), or Other (O). For each
step, data may be read and/or produced (R: read; W:
write). Actions represent how the system acts on the
external environment and percepts represent
events/stimuli in the outside world to which the system
reacts. Because a scenario captures only one particular
sequence of steps, it can be useful to indicate small
variations with a brief description. A major variation
should be presented as a separate scenario.

Table 2. Song selection scenario

Table 2 represents an example scenario of song

selection. It describes how the SMP automatically

selects and plays songs best suited to the listener’s
emotions and current activities. Table 2 shows two
variations for step 2. One of them occurs when the
listener is not near the SMP. In this case, the SMP
produces a song list by listener preferences. Another
scenario occurs when the listener selects songs by
himself or herself.

3. 5. Requirements validation and verification
Goal and role diagrams can represent system goals at

high abstraction level in a clear manner that is easy for
stakeholders to understand. This facilitates validation
with stakeholders, especially with non-technical
stakeholders.

Requirements need to be verified after being
validated by stakeholders. We believe that goals need
to be verified based on both scenarios and roles.

Each goal needs to be achieved by at least one
scenario; otherwise the goal may not be feasible or
necessary. A scenario must realize at least one goal,
otherwise there may exist goals that are missed out
from goal and role diagrams.

A role should be assigned to at least one goal. If no
goal is associated with a role, then the role is not
needed. Alternatively, it could be an external role that
interacts with the system. If no role is assigned to a
goal, then the goal may be unfeasible and should be
removed from the goal model. Alternatively, a role
may have been missed when identifying goals and roles.

After verifying the goals, roles and scenarios are
included in the verification, where we can apply the
methods mentioned in [14] to detect inconsistencies
between scenarios and goals. If a goal violation has
been found, the goal model needs to be modified; new
goals or roles may be needed to prevent the violation.

4. Initial design
Prometheus [11] was chosen for design because of

its effectiveness in assisting developers to design,
document, and build multi-agent systems. During
architectural design, the models produced by
requirements analysis are used to determine what
agents should exist and how they should interact.
Prometheus provides two mechanisms to analyse
potential groupings of roles to decide agents: data
coupling and agent-role coupling. Here we focus on
clarifying the conflicting role concepts between
ROADMAP and Prometheus instead of describing the
details about system design.

Figure 4 shows how roles in the SMP system have
been mapped into agents. Agent-role coupling was
easily understandable for non-technical clients because
of its analogy to humans and their roles and

284

responsibilities within an organization. It also enabled
checking role assignments against fulfilment of goals.

Figure 2. Agent-role coupling diagram

In our case study, some roles have been mapped to
several agents instead of being mapped to one agent as
is described in [11]. In Prometheus, the concept of role
is defined at a low level. Roles are functionalities; thus,
when using Prometheus in design, to group roles into
an agent means to group functionalities to form an
agent. However, in ROADMAP, the system is analysed
at a high level to hide the complexity by using goal
diagrams. The system is analysed in a top-down
manner. First, we define goals and then identify roles
that are needed for achieving the goals. After that, we
further define each role’s responsibilities using a role
model. To fulfil a responsibility, a role should include
several functionalities. A part of the responsibility of
different roles can be achieved using the same or
similar functionalities, whereas an agent should
encompass sets of similar functionalities. In this sense,
in our hybrid methodology, several agents work
together to achieve the responsibilities of one role and
one agent can play several roles; while several roles
can be mapped to one agent in Prometheus. Figure 4
shows the responsibility of role play list producer is
fulfilled by time agent and song selection agent. Time
agent services 3 roles: music player manager, play list
producer and library manager. The difference of agent
mapping between ROADMAP and Prometheus is due
to the different concept of role. Our hybrid
methodology analyses system goals and roles in a top-
down manner, which we believe is easier for non-
technical clients to understand.

5. Conclusions and future work
We have described a hybrid agent-oriented software

engineering methodology via a case study of a smart
music player.

Several information sources and corresponding
elicitation techniques have been suggested for eliciting
goals. ROADMAP provides an easy to represent
system expectation. The high abstract level of goal
models hides complexity from non-technical clients.
Goal models are refined into a more concrete level for
the purpose of sound requirement analysis. The
hierarchical structure of goal diagrams enables the

requirements to be captured flexibly. During the
elicitation phase, a high abstraction level hides
complexity from non-technical clients, so that they can
understand what requirements have been identified and
decide if the system to be developed meets their needs.
During the later analysis phase, goals can be refined in
more detail. The hierarchy also allows scaling of
requirements. One project in our lab had an
understandable requirements document of over ninety
pages which was based on goal diagrams [12].

Role models capture details about roles similarly to
how clients describe roles in their organization,
enabling quick feedback from the clients. Role models
also show user expectations, which are useful for
developing user manuals and making design decisions.

System behaviour is captured by scenarios. They are
useful for integration of all the models that are
produced at all design levels. Scenarios are similar to
the use case scenarios in UML. Concepts used in
scenarios, such as percept, goal, and action, are very
simple. According to our experience, developers do not
have difficulties to produce scenarios.

Finally, rules are proposed for goal verification. And
we show how roles in the SMP system have been
mapped into agents when applying Prometheus.

In summary, ROADMAP represents agent concepts
that are easy for both non-technical clients and
developers to understand because the concepts used –
role, goal, and quality goal – are close to how humans
understand the world. For client, not too many details
are represented during requirement elicitation process.
For developers, the tools are easy to use with little
effort needed to learn how to model the new aspects of
requirements even when they don’t have agent-oriented
background. We have significant experience through
teaching over the past three years to support this claim.

Based on our experience, ROADMAP provides an
organizational view of computing that remedies the
surging complexity in large-scale industry-strength
systems with strong intelligence requirements. It
facilitates communication between developers and
clients. Requirement elicitation and analysis process is
quite effective. Goal model, role model and scenarios
clearly captures information needed in system design to
drive agents, interactions among agents, data shared
and their interfaces to environment in terms of percepts,
actions and external data. Goal are associated with
particular roles and quality goals, constraining the
design alternatives and helping developers to make
trade-offs. We have omitted the remaining diagrams
due to space limitations. They illustrate the
comprehensiveness of the design and are available
from the authors.

The concrete nature of Prometheus, and its detailed
models and process, help developers to decide which

285

agents should exist within the system and what
functionalities they should have. We keep goal models
and scenarios simple to avoid “over-analysing” and
“over-designing” the system.

Overall, the combination worked well, except that
we needed to consider some differences in the role
concept when defining the agents. Agent concepts
facilitated the understanding of software design. QRs,
which are important for all kinds of applications, were
captured using QGs. In addition, since agent concepts
are helpful for analysing and designing all kinds of
software systems, and our methodology has been
shown to work well by this case study, we believe our
methodology should not be limited to the developing of
agent-based systems.

We have also discovered other interesting directions
for future work. One of them is that QRs should be
considered at the beginning of a Software Development
Lifecycle (SDLC). They should be tightly built into the
software system to be built. Therefore, we are in the
process of developing a general framework for
unifying QR concepts and presenting their inter-
relationships using agent concepts. Based on the
framework, a methodology can be proposed to
logically model, analyse, design, verify, and measure
QGs (i.e., QRs) in a particular context. It guides
developers to analyse QRs from early stage of SDLC,
make proper trade-offs (when conflicts exist among
QGs) and systematically add QRs into the system
through each phase of SDLC. The Tropos methodology
[1] is one of the most widely published approaches
trying to attack this problem. However, the diagrams
produced by Tropos easily become complex and there
is a limited tool support so far. Thus, integrating QGs
into a multi-agent system in a good manner is one of
the problems to be solved in the future. In addition, the
mapping of QGs from analysis to architectural design
should be explored.

6. References
[1] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto
Giunchiglia and John Mylopoulos, "A knowledge level
software engineering methodology for agent oriented
programming", In Proc. of the Fifth International Conference
on Autonomous Agents, 2001. pp. 648-655.
[2] Giovanni Caire, Francisco Leal, Paulo Chainho, Richard
Evans, Francisco Garijo, Jorge Gomez, Juan Pavon, Paul
Kearney, Jamie Stark, and Phillipe Massonet, “Agent
oriented analysis using MESSAGE/UML”, in Michael
Wooldridge, Paolo Ciancarini, and Gerhard Weiss, editors,
Second International Workshop in Agent-Oriented Software
Engineering , 2001, pp. 101-108.
[3] K. Chan and L. Sterling, “Specifying Roles within Agent-
Orientated Software Engineering.” In Proc. of the Tenth
Asia-Pacific Software Engineering Conference, Chiang Mai,
Thailand, December 2003, pp. 390-395.

[4] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado
Leite, “Nonfunctional Requirements: From Elicitation to
Conceptual Models”. IEEE Trans. Software Eng. 2004, 30(5):
328-350.
[5] Scott A. Deloach, Mark F. Wood and Clint H.
Sparkman, ”Multiagent Systems Engineering”, International
Journal of Software Engineering and Knowledge
Engineering, 2001, 11(3): 231-25.
[6] S. Dornbush, K. Fisher, K. McKay, A. Prikhodko and Z.
Segall, “XPOD – A Human Activity and Emotion Aware
Mobile Music Player”, Proc. of the International Conference
on Mobile Technology, Applications and Systems, 2005.
[7] Luiz Márcio Cysneiros Filho, Vera Werneck, Juliana
Amaral, Eric SK Yu, “Agent/goal Orientation versus Object
Orientation for Requirements Engineering: A Practical
Evaluation Using an Exemplar.” In Proc. of VIII Workshop in
Requirements Engineering, 2005, pp. 123-134.
[8] Mattias Jacobsson, Mattias Rost, Maria Hiansson and
Lars Erik Holmquist, “Push!Music: Intelligent Music Sharing
on Mobile Devices”, In Adjunct Proc. of UbiComp, 2005,
Tokyo, Japan. Demonstration.
[9] Juan, T., Pearce, A., and Sterling, L, “ROADMAP:
Extending the Gaia Methodology for Complex Open
Systems”, in Proc. 1st Intl. Joint Conference on Autonomous
Agents and Multi-Agent Systems, 2002, pp. 3-10.
[10] J. Mylopoulos, L. Chung, S. Liao, H. Wang, and E. Yu,
"Exploring Alternatives during Requirements Analysis".
IEEE Software, 2001. vol. 18, pp. 92-96.
[11] Padgham, L., Winikoff, M. Developing Intelligent Agent
Systems. John Wiley & Sons, 2004.
[12] Sterling, L., Taveter, K. and Daedalus Team, “Building
Agent-Based Appliances with Complementary
Methodologies.” in Proc. of the Joint Conference on
Knowledge-Based Software Engineering 2006, Estonia.
[13] Taveter, K. and Wagner, G. “Towards Radical Agent-
Oriented Software Engineering Processes Based on AOR
Modelling.” In: Henderson-Sellers, B., Giorgini, P. (eds.),
Agent-Oriented Methodologies. Idea Group Publishing, 2005.
pp. 227-316.
[14] A. van Lamsweerde, “Requirements Engineering in the
Year 00: A Research Perspective”. Invited Keynote Paper, In
Proc. of 22nd International Conference on Software
Engineering, ACM Press, 2000, pp. 5-19.
[15] Michael Wooldridge, “Intelligent Agents”, book chapter
in Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Edited by Gerhard Weiss. pp. 1-77.
[16] Michael Wooldridge, Nicholars R. Jennings, and David
Kinny, “The Gaia Methodology for Agent-Oriented Analysis
and Design”, Journal for Autonomous Agents and Multi-
Agent Systems, 2000, 3(3):285-312.
[17] Eric S. K. Yu, “Why Agent-Oriented Requirements
Engineering”, In Proc. of 3rd International Workshop on
Requirements Engineering: Foundations for Software
Quality, June 16-17, 1997.
[18] PDT http://www.cs.rmit.edu.au/agents/pdt/, last visited:
13/07/2007.
[19] REBEL http://www.cs.mu.oz.au/agentlab/, last visited:
13/07/2007.
[20] Nuseibeh. B. A,” Weaving Together Requirements and
Architectures.” IEEE Computer, 2001, 34 (3):115-117.

286

