IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014

1007

Requirements Elicitation and Specification Using
the Agent Paradigm: The Case Study
of an Aircraft Turnaround Simulator

Tim Miller, Bin Lu, Leon Sterling, Ghassan Beydoun, and Kuldar Taveter

Abstract—In this paper, we describe research results arising from a technology transfer exercise on agent-oriented requirements
engineering with an industry partner. We introduce two improvements to the state-of-the-art in agent-oriented requirements
engineering, designed to mitigate two problems experienced by ourselves and our industry partner: (1) the lack of systematic methods
for agent-oriented requirements elicitation and modelling; and (2) the lack of prescribed deliverables in agent-oriented requirements
engineering. We discuss the application of our new approach to an aircraft turnaround simulator built in conjunction with our industry
partner, and show how agent-oriented models can be derived and used to construct a complete requirements package. We evaluate
this by having three independent people design and implement prototypes of the aircraft turnaround simulator, and comparing the three
prototypes. Our evaluation indicates that our approach is effective at delivering correct, complete, and consistent requirements that
satisfy the stakeholders, and can be used in a repeatable manner to produce designs and implementations. We discuss lessons learnt

from applying this approach.

Index Terms—Agent-oriented software engineering, agent-oriented modelling, technology transfer

1 INTRODUCTION

EVIDENCE suggests that incorrect and poorly-specified
requirements are a major cause of software project fail-
ure, with two major contributing factors being requirements
complexity and a lack of stakeholder input [9], [14]. Stake-
holders are often not capable of articulating their require-
ments fully at the beginning of a project. Early-stage
requirements tend to be imprecise, subjective, idealistic and
context-specific [17]. In our earlier work [26], [34], we used
an incremental approach to requirements modelling to
engage stakeholders, acknowledging that requirements elic-
itation is better supported with an agile process that iterates
the system design choices as it progresses. Instead of elimi-
nating uncertainty early, we embrace it and withhold
design commitment, at least until there is clarity and under-
standing between stakeholders of what it may mean to dis-
ambiguate [11]. Committing early to requirements can
forgo an opportunity to properly disambiguate them [13].
The agent paradigm offers some benefits to requirements
engineers, especially early in the requirements process.
However, to continue to improve agent-oriented software

o T. Miller and B. Lu are with the Department of Computing and Infor-
mation Systems, The University of Melbourne, Melbourne, Victoria,
Autralia. E-mail: {tmiller, Ibin}@unimelb.edu.au.

o L. Sterling is with the Faculty of ICT, Swinburne University of Technol-
ogy, Melbourne, Victoria, Autralia. E-mail: Isterling@swin.edu.au.

o G. Beydoun is with the Faculty of Informatics, University of Wollongong,
Wollongong, NSW 2522, Australia. E-mail: beydoun@uow.edu.au.

o K. Taveter is with the Institute of Informatics, Tallinn University of Tech-
nology, Tallinn, EU 19086, Estonia. E-mail: kuldar.taveter@ttu.ee.

Manuscript received 4 Feb. 2013; revised 29 May 2014; accepted 11 June 2014.
Date of publication 17 July 2014; date of current version 17 Oct. 2014.
Recommended for acceptance by M. Jackson.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2014.2339827

engineering methods, experience building real systems
with industry is needed.

Over the past several years, we have worked with sev-
eral industry and academic partners, including Adacel
Technologies,' Lockhard® [35], and Jeppesen® (this paper),
to improve requirements engineering using agents as the
central paradigm. Our industry partners face the problem
of eliciting and recording requirements of complex sys-
tems that contain many interacting parts, and many inter-
actions between different actors. One such product is a
large-scale system for the air traffic domain that allows
simulation of complex trade-offs between interacting
actors in a socio-technical system. These partners have
identified that the agent-oriented paradigm is a natural
metaphor for modelling the social considerations in their
systems, emphasising the “why” questions that can help
in requirements elicitation, and producing models that
are more accessible to their non-technical stakeholders
[3], [26], [29], [41].

While existing agent-oriented requirements engineering
approaches have matured over the past decade, our current
industry partner identifies two major drawbacks with exist-
ing work, including our own:

1)  Eliciting and recording relevant information in agent-
oriented models is a non-trivial problem. Existing
methodologies do not describe, in a systematic and
prescriptive manner, how to elicit and record early-
phase models. For example, Maiden et al. [21] state:
“One problem that the published i* framework does

1. http:/ /www.adacel.com/
2. http:/ /www .lochard.com/
3. http:/ /www.jeppesen.com/

0098-5589 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1008

not address directly is where to start ¢* modelling”.
Thus, the modelling remains far more art than engi-
neering. In our previous projects, we have observed
experienced software engineers modelling the system
in a way with which they are familiar, but using
agent-related terms; for example, modelling the sys-
tem using the object-oriented paradigm, but using
“agent” in place of “object”; therefore negating any
advantage of using the agent paradigm.

2)  Existing methodologies do not prescribe how to
define software requirements specifications (SRS)
that incorporate agent-oriented models, while sup-
porting traceability from requirements to design,
implementation, verification, and back again. While
traceability between models is a strength of existing
agent-oriented methodologies, our industry partner
could not see how to interpret agent-oriented models
as requirements specifications that could be imple-
mented and used for verification. Agent-oriented
methodologies usually focus on the agent-oriented
aspects, but overlook other aspects of software engi-
neering, such as useful deliverables. Typically, a set
of models is considered as a deliverable, providing
little support for defining artifacts such as software
requirements specifications, business vision docu-
ments, and system design descriptions, even though
these are vital to industrial practice. This lack of sup-
port is unsurprising because publishing papers on
deliverable formats may not be considered a valid
scientific contribution.

As part of a larger grant funded by the Australian
Research Council and Jeppesen, a subsidiary of Boeing that
develops software for the aviation and aerospace industries,
we are exploring how agent-oriented models can be used in
conjunction with a mature piece of software that needs to be
maintained and enhanced. In a previous article [26], we
identified several techniques for engaging stakeholders in
the requirements engineering process. We use lightweight,
hierarchical agent-oriented models to represent the roles,
goals, and motivations of the greater socio-technical system,
and to develop a shared understanding of these goals
between the project stakeholders. Further, we advocate sev-
eral strategies for delaying design decisions with the aim of
encouraging stakeholder involvement.

This paper offers the following two contributions that
build on both our and other researchers’ existing work in
agent-oriented requirements engineering.

1) Requirements elicitation, analysis, and modelling. In Sec-
tion 4, we present a systematic and repeatable
approach for eliciting, analysing, and modelling the
requirements of a system in an agent-oriented man-
ner. This approach prescribes a list of questions that
must be answered by the project stakeholders, and
further prescribes how to link the answers directly to
agent-oriented models. In particular, this approach
aims to place requirements engineers into the “agent
mindset”, to gain the full benefit of agent-oriented
modelling.

Our approach improves on existing agent-oriented
requirements elicitation approaches by providing a more

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014

prescriptive and systematic way for software engineers to
elicit information and construct models from these.

2)  Requirements specification. In Section 5, we prescribe
how to create a requirements specification built on
agent-oriented models, which emphasises those
aspects of the agent paradigm that are important for
understanding the system. The end result is not (nec-
essarily) a specification of a multi-agent system, but
a specification of a system that uses the agent para-
digm to describe motivation, structure, behaviour,
and interaction.

Our requirements specification template improves on
previous work in agent-oriented software engineering by
advocating the inclusion of agent types in requirements
specifications to describe behaviour.

To evaluate these contributions, we used our approach,
embedded in the ROADMAP/AOR agent-oriented devel-
opment methodology [34], to develop a complete require-
ments package for an aircraft turnaround simulator (ATS),
in conjunction with our industry partner. We then tasked
three people of varying experience and backgrounds, but
with no previous training in agent-oriented software engi-
neering, to each implement a prototype from the require-
ments package. An analysis and comparison of the three
prototypes demonstrates that the our approach delivers
requirements specifications that can be implemented in a
repeatable manner, and does not require specialist knowl-
edge. As our approach is centred around the concepts of
roles, goals, and agents, we believe that agent-oriented
methodologies built on similar modelling concepts could
also be used.

The project and simulator are described in Section 2.
An introduction to our previous work is discussed in Sec-
tion 3. Applying our approach to the case study, we pro-
duced a requirements package that the client considered
correct, complete, and consistent, and was developed into
a prototype system (Sections 4 and 5). Section 6 presents
the evaluation of our approach. Section 7 discusses the
most important lessons that we learnt from the evaluation.

2 CASE STuDY: AIRCRAFT TURNAROUND
SIMULATOR SYSTEM

In this section, we describe the running case study, built in
collaboration with our industry partner, used in this paper.

2.1 The Research Project
This case study is part of a larger joint project between the
University of Melbourne and Jeppesen, a company that
specialises in aeronautical services. One of Jeppesen’s flag-
ship products is the Total Airspace and Airport Modeller
(TAAM), which allows modelling and simulation of air-
ports and the surrounding airspace to help with decision
making regarding infrastructure and operations. This prod-
uct is a large-scale complex system that contains many
interacting parts, and many interactions between different
actors. The current event-based model and implementation
is proving difficult to understand, maintain and enhance
due to its size and complexity.

Jeppesen identified that using agent-oriented methods
may help to manage the complexity and scale of their



MILLER ET AL.: REQUIREMENTS ELICITATION AND SPECIFICATION USING THE AGENT PARADIGM: THE CASE STUDY OF AN...

systems. The agent metaphor provides a natural and suit-
able way to represent a socio-technical system consisting of
actors, their interactions, and their trade-offs. A major goal
of the project is knowledge transfer between the University
of Melbourne research team, and the software engineers at
Jeppesen, as to how requirements should be elicited, mod-
elled, and analysed.

As part of their own assessment of agent-oriented
methods, Jeppesen identified that existing work does not
provide a systematic and prescriptive method for elicit-
ing requirements. Their engineers found it difficult to
know where to start the process of developing agent-ori-
ented models for requirements. In addition, during this
project, it became clear that software engineers at Jeppe-
sen could not see how agent-oriented models could be
interpreted as requirements.

The core of the Jeppesen team on the project consists of
three members with qualifications in physics, biophysics,
and computer science respectively. All are familiar software
engineering, but none have any significant prior experience
in applying agent-oriented software engineering principles.

2.2 Aircraft Turnaround Simulator

As part of the knowledge transfer in the project, we have
undertaken a smaller project, in which we aim to develop a
simulator for aircraft turnaround using agent-oriented
methods. This particular system was chosen because it is
complex enough to demonstrate many aspects of the agent-
oriented paradigm, but also manageable for our research
group, who are not experts in aviation.

The system developed as part of the project is called the
Aircraft Turnaround Simulator system. The ATS system simu-
lates the process of multiple aircraft landing at a single air-
port, and how resources (including staff) could be allocated
to efficiently turn around the aircraft, including re-stocking
supplies, cleaning, repairing, and maintaining the aircraft.
The intended usage is for Monte Carlo simulation of the air-
craft turnaround process to evaluate different resource allo-
cation mechanisms in airports.

The purpose of the system is to allow a user to evalu-
ate different resource allocations mechanisms at airports.
As such, the user should be able to set up parameters that
specify the properties of the airport, the resources avail-
able, the schedules of staff, and the schedules of the arriv-
ing and departing aircraft. The system must produce
reports describing the start and end points of all activities
undertaken by staff, which can be used to assess the effi-
ciency of allocation mechanisms.

3 AGENT-ORIENTED MODELLING

To model requirements, we use the notation of Sterling and
Taveter [34]. Their work has focused on how to make high-
level agent-oriented models palatable to non-technical
stakeholders, and to carry these through to design and
implementation. This is achieved using models with a
straightforward and minimal syntax and semantics. In this
section, we briefly describe the models that are relevant for
this paper.

Like most related work on agent-oriented modelling, [3],
[7], [40], [42], [44], the central concepts used in early

1009

Goals are based on motives, and
describe an intended state of the
environment. Goals can consist of
sub-goals.

Goal

Quality goals are non-functional
(or quality) goals. These are some-
times referred to as soft goals.

Quality goal

Roles are the capacities or positions
that are required for achieving of
goals. Roles are played by agents,

Role which can be humans or artificial.

Fig. 1. Sterling and Taveter’s notation for goal modelling.

requirements are goals and roles, rather than agents. These
ideas have emerged because organisations and scenarios
within them are better described as collections of roles and
the goals they achieve, rather than specific individuals and
tasks they undertake [40].

Goal models are useful at early stages of requirements
analysis to arrive at a shared understanding [15], [17]; and
the agent metaphor is useful as it is able to represent human
behaviour. Agents can take on roles associated with goals.
These goals include quality attributes that are represented
in a high-level pictorial view used to inform and gather
input from stakeholders. For example, a role may contribute
to achieving the goal “Release pressure”, with the quality
goal “Safely”. We include such quality goals as part of the
design discussion and maintain them as high-level concepts
while eliciting the requirements for a system.

Role models describe the capacities or positions that
facilitate the achievement of goals. Roles have responsibili-
ties, which outline what an agent playing the role must
do to achieve the related goals, and constraints, which
determine the conditions that must be considered when
trying to achieve goals. Fig. 1 defines the notation
employed by Sterling and Taveter in their role and goal
models. Goals are represented as parallelograms, quality
goals are clouds, and roles are stick figures. These con-
structs can be connected using arcs, which indicate rela-
tionships between them.

Organisation models represent the relationships between
roles in a system. Zambonelli et al. [43] define several rela-
tionships between pairs of roles, and these definitions are
widely accepted in the literature. In our work, there are
three relationships that we have found useful: control, in
which one role delegates responsibilities to another; peer, in
which either role can delegate responsibilities to another;
and benevolence, in which a role offers to fulfil responsibili-
ties for another if it is in the offering role’s interests.

Domain models describe the relevant entities and relation-
ships in the domain that the system operates. These can be
represented in any suitable modelling language.

Agent and acquaintance models define the agents that will
play the roles in the system, and the interaction pathways
between the agents (similar to organisation models). Agents
can be human or non-human, such as software or robotic.



1010

Behavioural models and knowledge models specify the
behaviours of the agents, and the knowledge that is
required by the agents to perform their behaviours.

Interaction models represent communicative and physical
interactions between the agents involved; that is, the activi-
ties in which two or more agents participate.

While the case study in this paper uses Sterling and
Taveter's models, one can relate the approach to other
agent-oriented notations and methodologies by identifying
which models fit in the particular viewpoints. Sterling and
Taveter [34] present the viewpoints of four other methodol-
ogies: Gaia [44], MaSE [7], Tropos [3], and Prometheus [29].

4 ELICITATION, MODELLING, AND ANALYSIS

In our experience working with industry and academic part-
ners, we have found that a major barrier to using the agent
paradigm to engineer requirements is the mindset of the
requirements engineer. For example, those people familiar
with object-oriented modelling will naturally design an
“agent” system in which agents are directly mapped to
objects, and messages are directly mapped to method calls,
thus eliminating any advantage of using the agent paradigm.

In this section, we propose an approach for agent-oriented
requirements elicitation, analysis, and modelling as a series
of questions aimed to identify what needs to be elicited, and
to analyse the elicited information, producing agent-oriented
requirements models of the system. The questions naturally
lead the people answering them to think of the system in
terms of roles, goals, and interactions—helping the require-
ments engineers to get into the “agent mindset”.

It is important to note that these questions are not neces-
sarily to be used as interview questions, although inter-
views can form part of the input. The questions form a
checklist, but one in which items are posed as questions.
These questions can be answered using techniques such as
domain analysis, introspection, or group meetings. The
questions and corresponding rules offer a prescriptive
approach to producing models, and our experience is that
most of the questions can be answered without having to
ask them directly to a stakeholder.

The process followed is a straightforward elicitation pro-
cess of identifying the problem and proposing a solution,
involving the following steps:

Step 1. Identify the problem, root causes, and stakeholders.

Step 2. Develop a shared understanding of the existing sys-
tem used to solve the problem, modelled using
roles, goals, and interactions.

Step 3. Identify a solution that uses the metaphor of a new
staff position solving the problem.

Step 4. Specify the agent types that will play the roles in the
system, generally with the new staff position being
partially filled by the new software.

4.1 Engaging Stakeholders in Elicitation and
Modelling

In the ATS project, we elicited requirements using a combi-

nation of domain analysis, introspection, and round-table

discussions with the stakeholders. These round-table dis-

cussions allow the models, and as a result, our

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014

Testable

Agent-oriented

s I
s
s
s
s
s
s

s
s
e

Develop aircraft
turnaround simulator

.

University of
Melbourne

Jeppesen

Fig. 2. An excerpt of the project motivation model for the ATS system.

understanding, to evolve over time. They are also one key to
engaging the stakeholders, and to not committing to a
design too early. We use the term “round-table” instead of
“group meeting” to differentiate the standard process of
requirements engineers asking questions and taking notes,
to our process of the many different stakeholders deriving
models during the discussions.

While some modelling was performed outside of these
meetings, this was to produce models that could be used as
a starting point for subsequent discussions, which were
then modified in the round-table discussions.

4.2 Our Approach to Systematic Elicitation,
Analysis, and Modelling

Our approach uses hierarchical abstraction to help deal

with complexity in systems. We take a typical top-down

approach of focusing on high-level details early in

requirements engineering, and exploring the lower-level

details once the high-level understanding is sufficient.

4.2.1 Identifying the Problem, Root Causes, and

Stakeholders: A Business Vision

The first step is to identify the problem, the root causes of
the problem, and the stakeholders. These properties of the
project are recorded in what our industry partner terms a
business vision document. The aim of this artifact is to reach
a shared agreement of the problem, and also a high-level
agreement of a solution space.

This step is standard in many projects, however, one dif-
ference to other approaches is that we use goal models to
represent the motivations of the project, as well as the socio-
technical system in which the software system will reside.

Fig. 2 presents the project motivation model for the ATS
system. The goal of the two stakeholders is to develop an
aircraft turnaround simulator. Three quality goals were
noted. First, the product must be developed using the
agent-oriented paradigm. While this may seem as a unnec-
essary constraint on the system design, it was an important
project quality goal because the purpose of the project was
knowledge transfer in the area of agent-oriented software
engineering. Also, the product must be testable and usable.
These are two important quality goals for all projects
undertaken by our industry partner. In early conversations,
measurable definitions of testable and usable were not



MILLER ET AL.: REQUIREMENTS ELICITATION AND SPECIFICATION USING THE AGENT PARADIGM: THE CASE STUDY OF AN...

Perform aircraft
turnaround simulation

Analyse simulation
results

Setup simulation
parameters

Simulate aircraft
turnaround

Fig. 3. Excerpt of the high-level motivation model for the ATS system.

important, but were refined and agreed upon in subse-
quent discussions.

In addition to the project motivation, we also derive a
high-level model of the system motivation. This outlines
the goals of the entire system, not just of the software to be
built. An excerpt of this for the ATS system is shown in
Fig. 3. This model identifies the key motivations of the
researcher—the main user of the system, and how the sys-
tem fits into their workflow. The quality goal Efficient refers
to execution time, but as with other quality goals, the pri-
mary motivation at this stage is identifying the most impor-
tant goals. Measurable definitions of quality goals are not
always necessary at this stage, but should be defined before
designing the corresponding part of the software.

These artifacts, including the motivation models, are
signed off by the client (or major stakeholders). Our busi-
ness vision documents have the structure outlined in Fig. 4.

4.2.2 Understanding the Current System

The second step is to understand the current system being
employed to solve the problem; perhaps a manual system,
or other software.

Zave and Jackson [45] argue the importance of under-
standing an entire system, including the environment in
which a piece of software will operate. We agree that it
is important to first understand the motivations of the
existing socio-technical system, as any potential solution
is likely to have the same motivations. This understand-
ing includes all roles that are part of the system, and the
goals achieved, whether these are achieved manually or
otherwise.

Our approach uses high-level motivational scenarios of
the current system to identify the roles and goals of this sys-
tem by systematically stepping through the scenarios and
answering a series of questions. Motivational scenarios are
different to models such as use cases, in that they model
interactions between the user and the software system
as well as activities that do not cross the boundary of the soft-
ware system. Scenarios can be derived by the stakeholders,
or taken from existing artifacts. Unlike scenario-based
requirements techniques [36], our scenarios can be highly
unstructured. Our approach does not mandate any particu-
lar notation for scenarios, however, as a minimum, we
require a set of high-level activities that occur in the system,
and dependencies between these.

1011

Title information

Revision History

1 Introduction
2 Project Brief
2.1 Problem: description of the problem.
2.2 Root causes: root causes of the problem.
2.3 Project stakeholders: project stakeholders.
2.4 Project motivation model: project motivations.

3 Product Brief
3.1 System overview: overview of proposed solution.
3.2 High-level product motivation model: product mo-
tivations.
3.3 High-level role models: high-level system roles.
3.4 Assumptions: product brief assumptions.
3.5 Constraints: constraints on the solution.

4 High-level plan
4.1 Project timeline: high-level project timeline.
4.2 Project deliverables: list of artifacts to be delivered
to the client.
5 Endorsement
5.1 Sign-off: between the client and the developers.

N

Fig. 4. A template for the business vision artifact.

Fig. 5 shows a high-level motivational scenario for the ATS
system. Motivational scenarios were provided by the client,
and did not include or define any actors/agents.

The approach for eliciting information about the current
system is to systematically step through every activity in the
scenarios, one by one, and answer a series of questions about
the activity, recording relevant information in models.

Aircraft lands &
proceeds to gate

v

Aircraft
parked
Aircraft Passengers Baggage
maintained disembark unloaded
Aircraft Aircraft New baggage
refueled serviced loaded

New passengers
embark

Aircraft leaves
gate & takes off

Fig. 5. High-level scenario used to elicit understanding of the aircraft
turnaround domain.



1012

Simulate aircraft
turnaround

Airport ground

| — — | taff
/
Prepare Disembark Servi
arrival passengers aircraft
Maintain Embark Prepare
aircraft passengers departure

Fig. 6. The high-level motivation model of the aircraft turnaround
process.

We identify the following questions for eliciting a complete
set of models.

Q1  What is the purpose of this activity?
This question aims to elicit the goals and sub-goals of
the scenario. Information elicited with this question
is recorded in the goal model.

Q2 Can this activity be broken into a set/series of smaller
activity?
This question aims to identify additional goals. If the
answer is “yes”, add this activity to the “stack” of
activity to be analysed.

Q3 Which roles take part in this activity?
This question aims to elicit the roles in the system.
These roles are recorded on the goal model.

Example. The aircraft turnaround process has a series
of goals to achieve, which are achieved by roles. Fig. 6
shows the highest-level view of the aircraft turnaround
process, including the major goals of the process. In our
models, we typically annotate roles to either goals that
are leaf goals—that is, are not broken down further—or
to non-leaf goals in which the role is responsible for the
non-leaf goal and its subgoals.

Once we have a sufficient understanding of the domain
at a level, we investigate the lower levels in more detail, if
required. Fig. 7 shows the excerpt from the motivation
model for the Maintain aircraft goal from Fig. 6.

The maintenance of the aircraft ensures that the aircraft
is safe to fly. There are two types of maintenance: routine
and non-routine. Routine maintenance is performed by
engineers after every flight. Non-routine maintenance is
performed by engineers only if requested; for example, by
the pilot, to investigate a potential problem. Only the engi-
neers take part in the maintenance of the aircraft, so we
add an Engineer role to the goal model. In a round-table
discussion, we learnt that aircraft are not re-fueled by
engineers, but by Refuelers.

The goal at top of the hierarchy in Fig. 7, Maintain aircraft
is a leaf goal in the hierarchy of Fig. 6, and was expanded
later in the requirements elicitation process. The hierarchi-
cal nature of the Sterling and Taveter’s motivation models
support this divide-and-conquer approach by allowing the
inclusion of a goal in a high-level model, and then expand-
ing that goal in new goal model later. Note that the roles

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014

Maintain
aircraft
Fueler Engineer
Perform Perform
Refuel y y
— routine non-routine

maintenance maintenance

Fig. 7. The sub-goal of maintaining an aircraft during the turnaround
process.

responsible for the Maintain aircraft goal are annotated at the
lower-level.

Q4  For each role identified in Question 3:

Q4.1 If playing this role, which other roles would I rely on,

and what are my relationships with these roles?
This question aims to elicit the organisational
and interaction relationships of the system. Infor-
mation elicited with this question is recorded in
the organisation model. This question also helps
to identify other roles in the system. For addi-
tional roles, add them to the queue of roles to be
analysed.
What responsibilities would 1 have with respect to
achieving the goal of this interaction?
This question aims to elicit the responsibilities of
the role. Information elicited with this question
is recorded in the responsibilities attribute of the
role model.
What knowledge would I require to successfully com-
plete this interaction?
This question aims to elicit the knowledge
required for an agent playing the role to success-
fully complete the interaction. Information eli-
cited with this question is recorded in the
environment model.
What resources would I require to successfully com-
plete this interaction?
This question aims to elicit the relevant aspects of
the environment. Information elicited with this
question is recorded in the environment model.
To which social policies (rules, regulations, or codes
of behaviour) am I required to adhere to successfully
complete this interaction?
This question aims to elicit the constraints under
which the role must operate. Information elicited
with this question is recorded under the con-
straints attribute of the role model.

Q4.2

Q4.3

Q4.4

Q4.5

Q5 Are there additional social policies to which participants
in the scenario must adhere?

This question further aims to elicit the constraints

under which roles must operate. Information elicited

with this question is recorded under the constraints
attribute of the role model.

Example. The Engineer role relies on the Pilot role to

inform it that non-routine maintenance should be



MILLER ET AL.: REQUIREMENTS ELICITATION AND SPECIFICATION USING THE AGENT PARADIGM: THE CASE STUDY OF AN...

Role ID R9
Role Name Engineer
Description The Engineer performs maintenance

on the aircraft.

1. Perform routine maintenance on a
specified aircraft when informed of its
arrival.

2. Perform non-routine maintenance
on a specified aircraft when requested.

Responsibilities

1. Perform the routine and non-routine
maintenance before the scheduled de-
parture of the aircraft.

Constraints

Fig. 8. The role model for the Engineer role.

performed, and on the Manager role to be instructed to allo-
cate the staff schedule. The Engineer is a peer of the Pilot
role, and is controlled by the Manager role.

The Engineer role is responsible for undertaking routine
and non-routine aircraft maintenance, which must be com-
pleted before the aircraft can be re-fueled. Fig. 8 shows the
role model for this role.

To fulfil their responsibilities, an Engineer is required to
know the aircraft ID, the gate number at which the aircraft
is parked, and that the air-bridge has been positioned. The
resources required are the flight plan, staff schedule, and
aircraft information. The physical resources are the aircraft
itself and the maintenance equipment. This information is
recorded in the environment model.

4.2.3 Eliciting a Solution: Hiring New Staff

To elicit a solution for the problem, we build on the HOMER
elicitation technique proposed by Wilmann and Sterling [39],
which uses the metaphor of hiring staff in an organisation.
The stakeholders are prompted to consider how their prob-
lem could be solved by hiring new staff members, perhaps by
temporarily ignoring some quality goals; e.g., a quality goal
of Efficient, referring to the time taken to complete a task, may
not be achievable using a human. For non-technical stake-
holders, this metaphor is an intuitive way to conceptualise a
solution, and for technically-minded stakeholders, this meta-
phor forces them to think more about the “how?” and “who?”
aspects of the system, rather than just the “what” aspect.

The questions used to elicit the motivations of the new
system are:

Q1  If one was to hire more staff to handle the problem, what
positions would you need to fill?
This question aims to elicit the new roles that will be
added to the system. Information elicited with the
question is recorded as roles on the goal model.

Q2 For each new role identified in Question 1:

Q2.1  If playing this role, what is the purpose of my posi-
tion, and what aspects of the problem would I solve?
This question aims to define any new goals or
sub-goals in the system. Information elicited
with this question is recorded in the goal model.

Q2.2 Ask Questions 4.1-4.5 from Section 4.2.2.

1013

Q3 Are there any new social policies to which I must adhere?
This question aims to elicit any new constraints
under which roles must operate. Information elicited
with this question is recorded under the constraints
attribute.

Example. In the turnaround project, new staff could be
hired to perform human-based simulations of the turn-
around process, allowing evaluation of different resource
allocations. Clearly, we were aware that the simulation
would be software-based, so we elicited the roles of the sys-
tem with the knowledge they would be implemented as
software agents.

For the purpose of illustration of how this step would
work in a non-simulation, we consider an alternate—but
closely-related—system, in which we are modelling the
ATS in order to add a new re-fueling system to an airport.
In this alternative system, an agent fulfilling the Engineer
role is responsible for re-fueling the aircraft, and there is no
Fueler role.

The problem that the organisation encounters is that the
turnaround is being delayed by the Engineer being unable to
perform the routine maintenance and refuel the aircraft
quickly enough, delaying take off. To solve this problem,
the stakeholders identify that they could hire a person to
specifically refuel the aircraft in parallel with the engineer
performing routine maintenance.

One potential problem is that the staff-hiring metaphor
could shift the mindset of the stakeholders outside of the
software mindset all together, resulting in a sub-optimal
solution. However, in practice, stakeholders in a project
have preconceived ideas about technical solutions, so
would likely be aware that the solution can be software
based, hardware based, human based, or a combination. In
our experience, we have not encountered this problem.

4.2.4  Defining the Solution: Deciding the Agent Types

To define the solution, we must define two things: 1) the
software system boundary, which is the boundary between
the software and its users and environment; and 2) the
behaviour of the software that will solve the problem. We
define both of these by specifying the agent types that will
play the roles in the system.

Cheng and Atlee [4] advocate defining a system bound-
ary by assigning responsibilities to different parts of the sys-
tem, such as the software system being constructed, human
operators/users, and external systems. We do the same by
specifying which roles will be played by human agents, by
external systems (either hardware or software), and by soft-
ware agents.

For example, one possible boundary discussed with the
stakeholders in the ATS project was to have the Manager
role played by a human, instead of a software agent. By
changing this assignment of roles, the system changes from
a constructive simulator into a human-in-the-loop
simulator.

To elicit the behaviour of the system, ask the following
questions for each responsibility identified in each role
model:

Q1  If playing this role, what activities would be required for
me to fulfil my responsibility?



1014

This question aims to elicit the behaviour of the sys-
tem that will fulfil the given responsibility, and con-
tribute to achieving to the system goals.

Q2 For each activity identified in Question 1:

Q2.1

Is this activity performed by a human agent, an exter-
nal system, or a software agent?

This question aims to assign responsibility to the
parts of the system.

If performing this activity, what would I have to do?
This question aims to break an activity down
into sub-activities and atomic actions. Actions
are activities that are not considered in further
detail. Information elicited with this question
is recorded as information about the structure
of the corresponding activity in the activity
register.

What help would I require from other agents to suc-
cessfully complete this activity?

This question aims to elicit possible messages
that may be sent and received to complete this
activity. Information elicited with this question is
recorded in the interaction model.

What prompts me to undertake this activity?

This question aims to elicit the trigger for the
activity; that is, the event to which the agent
reacts. Information elicited in this section is
recorded as the trigger of the corresponding
activity in the activity register. If this trigger is
a message received from another agent play-
ing some role, it is also recorded in the inter-
action model.

Under what conditions can I undertake this activity?
This question aims to elicit the precondition for
the activity; that is, the states of the environment
that enable this activity. Information elicited
with this question is recorded as the precondi-
tion of the corresponding activity in the activity
register.

What happens after I complete this activity?

This question aims to elicit how the activity
changes the environment. Information elicited in
this section is recorded as the postcondition of
the activity.

What other agents do I need to inform that this activ-
ity has been completed?

This question aims to elicit information regard-
ing interactions, and the actions for this activity.
This information is recorded in two places: 1) as
a part of high-level description of the actions for
this activity (as in Question 2.2); and 2) in the
interaction models.

Example. In the ATS system, the routine maintenance will
be performed by a software agent, and is modelled as an
atomic action for simulation purposes. To perform routine
maintenance, the aircraft must have its wheel chocks posi-
tioned, and the activity is triggered when the Engineer is
informed by Airport Ground Staff that the aircraft is ready
for maintenance. After the routine maintenance activity is
complete, the aircraft is in a state in which the Engineer
deems that it is safe to fly, and it informs the Pilot of this.

Q2.2

Q2.3

Q2.4

Q2.5

Q2.6

Q2.7

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014

Activity name: Routine maintenance.

Trigger: Informed by Airport Ground Staff of
the aircraft ID of the aircraft that is
ready for maintenance.

Precondition: Wheel chocks of the aircraft ID are in

position.

1. Perform the routine maintenance on
the specified aircraft.

2. Inform Pilot that the routine main-
tenance is complete on the aircraft.
Aircraft with the specified ID is safe
to fly.

Sub-activities:

Postcondition:

Fig. 9. Activity description for Routine maintenance activity.

The final activity description for the routine maintenance is
shown in Fig. 9.

The final step is to decide how the agent types will be
defined to play the roles, and to perform the activities. We
do not define a solution for this in this paper, as there are a
number of useful methodologies that define this [29], [34],
[44]. In our experience, agent types can be defined as a one-
to-one mapping for simulation systems; that is, each role is
mapped to one agent type, with the activities relating to a
responsibility also mapped to the agent. In the ATS system,
we used a one-to-one mapping, which was intuitive and
clear from the role definitions, and is likely to be similar for
any simulation system. However, there will be cases in
which a one-to-one mapping is not possible. One clear case
is when the responsibilities defined by a single role are
mapped to multiple activities, but the activities are split
over different categories; e.g., some are identified as being
played by a human agent, and some by a software agent.

An an example of an agent type, consider the Engineer
agent, which fulfils the role of Engineer. The analysis of the
activities results in the definition found in Fig. 10.

The end result of the process is a set of agent types,
which fulfil the system roles, and a description of the behav-
iour of these agents, specifying what the agent does, and
how this affects the environment.

5 SPECIFICATION AND PACKAGING

The authors are unaware of any agent-oriented methodol-
ogies that provide support for creating deliverables such
as software requirements specifications, even though these
deliverables are a vital part of many software engineering
projects. In this section, we present the definition of a soft-
ware requirements specification—a deliverable describing the
software system to be built. An SRS defines a shared
understanding between the project stakeholders as to
what is to be built; thus, it is an agreement between these
stakeholders.

5.1 Describing Socio-Technical Systems Using
Agent-Oriented Models

Using the organisational metaphor to elicit the requirements
of a socio-technical system is beneficial, and we extend this

to the specification of the system as well.



MILLER ET AL.: REQUIREMENTS ELICITATION AND SPECIFICATION USING THE AGENT PARADIGM: THE CASE STUDY OF AN...

Name: Engineer
Description: Play the role of Engineer by perform-
ing routine and non-routine aircraft
maintenance.
Activities:
Activity name: Routine mainte-
nance
Activity name: Non-routine
maintenance
Environment 1. Aircraft
considerations: 2. Aircraft information

3. Flight schedule
4. Aircraft gate number
5. Staff schedule

Fig. 10. Agent type specification for the Engineer agent.

To specify the system, we adopt the systems theory view,
acknowledging that organisations and socio-technical sys-
tems are systems in their own right. The view of a system is
broken in structure, behaviour, interaction, and purpose.
The purpose of a system influences its structure and behav-
iour, which also influence each other, and the interactions.
To understand a system, one cannot view any of these
aspects in isolation; they must be considered as a whole.
Fig. 11 shows where Sterling and Taveter's models reside
with regarding to the systems view.

Many agent methodologies consider the definition of
agents as a design step (e.g., see [44, Fig. 6]), and hold the
view that including this in the specification unnecessarily
constrains design (see [34, Ch. 6]). Using the models
described in Section 3, this would imply that a specification
consists of role models, organisational models, environ-
ment models, goal models, and motivational scenarios. It is
our view that these models do not provide the “what”
required to produce an unambiguous software require-
ments specification.

We advocate the inclusion of (at least some of) the mod-
els in the platform-independent computational design [34].
Those models that we deem necessary to include are the
agent type specifications, which determine the behaviours of
the agents in terms of the activities that they perform (pre-
sented in Section 4.2.4), and agent models, which determine
the instances of each agent type, and which roles each
instance plays. Additionally, we believe that it would prove
valuable to include the interaction models, which determine
the protocols between agents, and the knowledge models
that are used for representing the agents” knowledge. Other
agent-oriented methodologies could be interpreted in a sim-
ilar manner.

5.2 Packaging the SRS

Producing a complete SRS requires us to package these
models together in a meaningful way. Fig. 12 presents a
possible template for an agent-oriented SRS, based on

1015
Purpose
- goal models
/ - motivational scenarios \
Structure Behaviour
- environment models - agent types
- acquaintance models - scenarios
\ Interaction /
- role models

- interaction models

Fig. 11. The structure of socio-technical systems, as viewed from the
agent paradigm.

existing templates such as Wiegers’ SRS template [38] and
the IEEE Standard for requirements specifications [16].
Using a template leads to requirements being presented in a
consistent manner across different projects, however, we
acknowledge the need to be flexible with specifications
depending on the system.

One can see from Fig. 12 that the SRS is not structured the
same as Fig. 11. Instead, the specification is presented based
on abstraction, with higher abstraction being presented ear-
lier. The scenarios in Section 7 of the template refer to those
scenarios at the platform-independent design layer, so are
presented later rather than earlier.

Sections 1 and 2 of the template are similar to that of
Wiegers’ [38], except that Section 2 includes the high-level
motivational model (e.g., Fig. 3), and Section 2.4 of Wiegers’
template (Operating Environment) has been considered as
its own section (Section 5), emphasising the importance of
the environment in socio-technical systems. Wiegers” System
Features section has been replaced by the agent types and
interaction models (Section 6), as this defines the behaviour
of the system. Sections 3 and 4 in our template have no
equivalent in Wiegers’ template, as Wieger does not con-
sider the purpose of the system and its roles. Wiegers’ Other
Nonfunctional Requirements section is not included, as non-
functional requirements are considered as quality goals in
the goal models.

5.2.1 A Note on External Interfaces

Section 8 of the template in Fig. 12 advocates specifications
of the external interfaces of the system. To identify the inter-
actions that are involved in each of these interfaces, we con-
sider the organisational model and the agent types.

Recall that in our approach, agents are classified as
human agents, software agents, or external hardware/soft-
ware systems. We identified that any new software agents
would be part of the software system that is to be imple-
mented. Therefore, by analysing the interactions between
these new agents and the other agents in the system, we can
determine where the external interfaces will be, and use this
to feed into the interface specification.

The categorisation of the agent types provides a clear
divide for each interface type:

e interactions between a software agent and a human
agent will take place at the user interface;

e interactions between a software agent and an exter-
nal hardware or software system will take place at
the hardware or software interface respectively; and



1016 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014
4 A
Title information
Revision history
Table of contents 5 Environment model
1 Introduction 5.1 Physical environment
5.2 Virtual Environment
1.1 Purpose 53 Envi 1 .
1.2 Intended audience - Onv1r(ﬁn'nenta perspective
1.3 Project scope . verall interaction
1.4 Definitions, acronyms, and abbreviations 6 Agents types and interaction models
1.5 References 6.1 Interaction models
2 Product Description 6.2 Agent type 1
2.1 High-level level motivation model 6.3 Agent type 2
2.2 User classes etc ...
2.3 Product features 6.4 Agent models
2.4 Design constraints 7 Scenarios
2.5 Assumptions 7.1 Scenario 1
3 Goal models and motivational scenarios 7.2 Scenario 2
3.1 Motivational scenarios etc ...
3.2 Goal models 8 External interfaces
4 Role and organisational models 8.1 User interfaces
4.1 Organisational model(s) 8.2 Hardware interfaces
4.2 Role 1 8.3 Software interfaces
4.3 Role 2 9 Endorsement
etc ... 9.1 Sign-off
S £ Y,

Fig. 12. A software requirements specification template based on the elicited models.

e interactions between a human agent and an external
hardware/software agents fall outside of the soft-
ware boundary, so are not considered.

6 EVALUATION

In this section, we discuss the activities undertaken to vali-
date our requirements specification, therefore evaluating its
strengths and limitations. To evaluate our approach, we
undertook three distinct activities:

1)  Technical reviews were performed by an individual
who was not part of the requirements team.

2) Cross validations of the the agent-oriented models
against an ontology derived were undertaken by an
individual who was not part of the requirements team.

3) Three prototypes of the system were implemented
by three different developers, each of differing expe-
rience, who were not part of the requirements team.

These three activities were used to identify problems in

our approach, highlighting some problems and allowing us
to refine several areas.

6.1 Reviews
Informal technical reviews were undertaken during round-
table meetings with our industry partners as part of the elic-
itation process. Once we had a set of stable models, these
were reviewed by a person external to the requirements
team, who had knowledge of the turnaround process from
the documents provided to us by our industry partner, but
had no access to the data derived using our approach.

The goal of the reviews was to locate defects in the
requirements specification. First, the external reviewer

performed a technical review based on their understanding
of the aircraft turnaround domain, identifying any potential
defects in the requirements specification. Second, the
requirements team analysed the list of potential defects,
identifying which were considered true and false positives
respectively. Finally, the requirements team categorised
each defect as either minor and major. A defect is considered
major if it may lead to a defect in the resulting software;
e.g., inconsistencies between a trigger for an agent’s activity
and corresponding scenarios, or responsibilities in a role
not fulfilled by an agent playing that role. All other defects
are considered minor; e.g., typos, small inconsistencies
between models.

The reviews were performed iteratively in three stages.
The first review was performed on an early version of the
requirements specification that consisted of only roles,
goals, environment, and some scenarios. The second and
third review were performed on more complete versions
that also included agent types and all scenarios. All reviews
were undertaken by the same person. The third review
uncovered no new defects, so data for this is omitted.

Table 1 shows the results from the first two reviews. No
major defects were located in the first review, however,
four were located in the second. There was a large increase
in the number of minor defects located in the second
review; from two to 21. While there were additional mod-
els reviewed in the second review, analysis of the data
showed that the reason the number is so high is that the
reviewer was able to cross-validate models against each
other. That is, many of the defects found in the second
review were inconsistencies between the agent types and
the role models, and between the agent types and the sce-
narios. For example, two of the major problems in the



MILLER ET AL.: REQUIREMENTS ELICITATION AND SPECIFICATION USING THE AGENT PARADIGM: THE CASE STUDY OF AN... 1017
TABLE 1 TABLE 2
Defects Located by Technical Review Ontology Properties
Iteration 1 Iteration 2 Domain Property Range
Model Major Minor Major Minor  Goal isa Goal
Goal 0 0 0 0 Goal part of Goal
Role 0 1 2 6 Role responsible for Goal
Env 0 1 1 4 Role participates in Activity
Agent - - 1 7 Role is peer Role
Scenario - - 0 4 Role controls Role
Role is benevolent Role
All 0 2 4 21 Role uses Environment
Agent plays Role
Agent performs Activity
. . . hich Activity fulfils Goal
agent types wpre Incorrect tr.1gger.s on act1on,’ which were ctivity requires Environment
found by noting that the triggering event did not occur Activity precedes Activity
before the action in the corresponding scenario. Activity follows Activity

6.2 Cross-Validation of Models

In previous work [18], three of the authors proposed a cross-
validation method for agent-oriented models using ontolo-
gies. The basic premise is that an ontology is derived inde-
pendently of the requirements specification, and then
compared against the agent-oriented models for consis-
tency. The ontology models the important concepts and
relationships between the concepts in the system. Any
inconsistency between the two indicates a problem with
either the ontology or the models. In this section, we over-
view this and discuss some of the results.

The ontology was developed based on documentation
from the client and some information from additional
sources. The team deriving the ontology worked indepen-
dently from the other members in the requirements engi-
neering phase to introduce diversity between the models
and the ontology. Throughout the development, the
ontology was revisited to ensure that it is updated with
any additional insights the client develops through inter-
acting with the development team. The ontology consists
of 350 concepts and relations. In addition, the ontology is
augmented with annotations describing concepts and
relations specifically relevant to agent-oriented models.
Table 2 illustrates these properties for the models at the
conceptual domain modelling level. These properties pro-
vide software engineers with a straightforward way to
evaluate the consistency between the ontology and the
other models.

The validation process consists of applying, for every
model developed, a list of rules. Applying an rule can
trigger one or two proposals to amend the model,
depending on the outcome. For example, for validating
our model, ten operators can trigger amendment pro-
posals, exemplified by the following: “add agent type X to
the model set”, where X is defined in the ontology but it
does not have a corresponding model. To ensure effec-
tiveness of the cross-validation activity, the creators of
the models were not directly involved in the validation.
Instead, as the requirements engineering was undertaken,
the modellers received recommendations from the team
members undertaking the cross validation. Iterations
were undertaken until models converged and no further
amendments were proposed by the validation activity.
Additional details can be found in earlier work [18].

The cross-validation activity followed the same process
as reviewing: identify potential defects; eliminate false posi-
tives; and categorise the remaining defects as minor or
major. As with the reviewing, cross-validation was under-
taken on three iterations by the same person, and no defects
were located in the third iteration. It is important to note
that the cross-validation was performed after the technical
review in each iteration, and only previously undetected
defects were recorded.

Table 3 shows the results from the two cross-validation
activities. As with the results from the reviews (Table 1),
more defects were located in the agent and scenario models
than other models. However, in the cross-validation pro-
cess, new defects were only found in new models. As with
the reviews, the three major defects found in the agent types
were all inconsistencies with the scenario model, meaning
that a developer could implement the incorrect behaviour
from one of these models.

6.3 Prototyping

As part of our evaluation, three different developers of
varying experience were asked to design, implement, and
test prototypes of the aircraft turnaround system. We used
their resulting prototypes and their experience to evaluate
whether a range of people can use, understand, and imple-
ment systems in a repeatable manner from our require-
ments specifications—something that is a fundamental
concern for our industry partner. One prototype (developed

TABLE 3
Defects Located by Cross-Validation

Iteration 1 Iteration 2

Model Major Minor Major Minor
Goal 0 0 0 0
Role 0 0 0 0
Env 1 1 0 1
Agent - - 3 3
Scenario - - 0 4
All 1 1 3 8




1018

during the requirements elicitation) was additionally used
as a requirements elicitation and validation tool.

As part of the project, we asked three software engineers
of varying backgrounds to design, implement, and test pro-
totypes. Their respective details are:

1) a third-year undergraduate software engineering
student at the University of Melbourne, Australia,
with no previous experience in agent-oriented soft-
ware engineering;

2) a coursework Master’s student in software engineer-
ing from the Tallinn University of Technology, Esto-
nia, who had worked as an air-traffic controller and
had no previous experience in agent-oriented soft-
ware engineering; and

3) a visiting scholar to the University of Melbourne,
Australia, who is a software engineer with a master’s
degree and over ten years experience specialising in
software for air-traffic control, but with no previous
experience with agent-oriented software engineering.

6.3.1 Elicitation and Validation

The first prototype was produced during the requirements
engineering process, and thus iterated along in tandem
with the requirements specification. This prototype was
used to validate the requirements against our industry
partner’s needs, as well as to elicit new requirements.

The feedback on the model from the student writing the
first prototype was important for us as he had not been a
part of the project beforehand, so therefore he gave an exter-
nal viewpoint. It is interesting to note that the student com-
mented on the ease of using the SRS. Although he was
provided with several references on understanding agent
systems and a textbook on Sterling and Taveter’s models
[34], the student commented that these were largely unnec-
essary because the agent-oriented models were straightfor-
ward to interpret.

Over two meetings, the scenarios from SRS were walked
through with our industry partner, who highlighted a
handful of incorrect assumptions that we had made, and
noted some pieces of information that were missing from
the SRS.

Due to the round-table nature of the discussions, a com-
plete list of problems found was not recorded—instead,
models were updated in the meeting based on the prototype
feedback. However, the two major problems discovered
included that the simulation should be able to be sped up
and slowed down (it had been set to run at only one speed),
and that manager role should be more tightly integrated
with some events notifying agents of activities being com-
pleted, so that it could be kept informed of which agents
and resources were free.

At the end of the second meeting, our industrial partner
was confident that the final SRS was correct and complete
with respect to their needs.

6.3.2 Comparison of Prototypes

Goals. The three major evaluation goals are to determine
whether:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014

TABLE 4
Metrics for the Three Prototypes
Language #Agents #Modules LOC
1 AgentSpeak 11 32 2872
2 JADE/Java 6 25 5051
3 JADE/Java 11 31 6677

1)  our elicitation method results in models that capture

all requirements correctly and completely;

2)  our SRS template is comprehensive enough to repre-

sent requirements; and

3) our approach results in usable requirements specifi-

cations, which developers can be used by develop-
ers without any specialised knowledge, to design
and implement software in a repeatable and
traceable manner.

While such properties are somewhat subjective, our hope
was that a controlled comparison between three prototypes
would reveal any shortcomings in our approach that could
be improved upon.

Method. To achieve the three goals, the comparison con-
sisted of the following steps:

1) analyse the associated artifacts (design documents,
etc.) that were produced by the developers to assess
consistency and traceability;

2) analyse the source code, and input and output
spaces of the three prototypes to assess consistency
and traceability; and

3) run several basic tests on the three prototypes to
assess correctness, Completeness, and Consistency.

Finding that the designs and implementations are cor-
rect, consistent, complete, and traceable provides evidence
that the SRS is a useful deliverable for describing the aircraft
turnaround simulator.

Objects. Table 4 contains information characterising the
three different prototypes, in which #Agents, #Modules,
and LOC refer to the number of agents, number of mod-
ules/classes, and lines of code respectively.

Results. In this section, we highlight some of the impor-
tant factors that we learnt from the comparison.

Designs. The designs produced by the three developers
were closely consistent with each other. Developers 1 and
3 produced similar designs, which both opting for a
straightforward one-to-one mapping between agents and
roles, and similarly for mapping to agent behaviours and
environmental entities. The design produced by developer
2 consisted of only six agents, with five of the roles from
the SRS (Fueler, Engineer, Airport Ground Staff, Airline Cater-
ing Staff, Airline Cleaning Staff) being combined into a single
agent type called Airport staff, and Passenger being removed
all together, as the only activities, embarking and disem-
barking, were simulated as simply a time period between
the bordering events.

This provides evidence that the designers considered the
ATS SRS as a usable artifact, even though developer 2’s
design indicates that they may have combined roles in the
SRS as well as in their design.



MILLER ET AL.: REQUIREMENTS ELICITATION AND SPECIFICATION USING THE AGENT PARADIGM: THE CASE STUDY OF AN...

It is important to note that two different languages
were used. Prototype 1 was implemented using Agent-
Speak [32] (we used the Jason tool to interpret the
source®), while prototypes 2 and 3 are written using
Jade/ ]AVA.5 This demonstrates that the SRS is indepen-
dent of any particular platform.

Traceability. Due to the straightforward mappings used
in prototypes 1 and 3, tracing both forwards and back-
wards between SRS and source code is achieved in a triv-
ial manner. The slightly different mapping used in
prototype 2 is still straightforward to trace, as the map-
ping between the roles and agents is clear, and the corre-
sponding agent activities in the SRS are grouped sensibly
in the prototype design.

Tests. Due to the ATS being used for Monte Carlo simula-
tion, the times taken to complete activities are randomised
to specified probability distributions. This makes it difficult
to accurately compare the behaviour of the three prototypes
using a test suite. Similarly, the emergent nature of the sys-
tem means that complicated scenarios are difficult to verify.
Instead, we ran six baseline tests that were straightforward
to compare, such as a single aircraft turnaround with the
optimal number of resources, which should therefore be
simpler to validate.

The test results indicate consistency across the three
prototypes when running these tests, and importantly,
the test outputs were consistent with our expectations of
the behaviour.

However, one problem that we noted during testing
was the inconsistency of input setup for the three differ-
ent prototypes. While the input domains were consistent,
the way in which input was constructed varied signifi-
cantly, to the point where learning how to run scenarios
required a non-trivial amount of effort. Our analysis led
us to the conclusion that this was the result of a weakness
in our approach.

In Section 5.2.1, we describe how the organisational
model can be used to specify external interfaces to the sys-
tem, including the user interface. However, what was lack-
ing in our approach was a mapping from these “interface”
agents, to the input space of the simulator. As such, the
developers made their own decisions as to how these
should be done, which resulted in sensible but inconsistent
prototypes.

Owerall. Addressing our evaluation goals from earlier in
this section, the evaluation noted the following results:

1)  our elicitation method, in conjunction with prototyp-
ing, was successful in producing a correct and com-
plete set of requirements;

2) our SRS template was incomplete, missing out the
important relationship between the input domain
and the behaviour specified by the agent types, but
otherwise represented the requirements comprehen-
sively; and

3) the prototypes provide evidence that our approach
produces usable requirements specifications that can
be implemented in a repeatable manner, and the

4. See http:/ /jason.sourceforge.net/
5. See http:/ /jade.tilab.com/

1019

ability to trace the all three designs and implementa-
tions back to the SRS demonstrates that the SRS sup-
ports tracing.

6.4 Summary

From our three methods to evaluate the ATS specification,
the following key results are noted:

1) the reviews and cross-validation revealed eight
major defects in the specification, mostly related
to inconsistencies between agent activities and
scenarios;

2) comparison of models showing different views
found a majority of the defects in the SRS;

3) the link between the system input domain and the
agent activities, which define the behaviour, was not
clear enough.

7 LESSONS LEARNT

In this section, we discuss the most important lessons that
we learnt as part of the project, about our method and about
agent-oriented requirements engineering in general.

7.1 Requirements Elicitation

Business wvision documents. Business vision documents are
typically not required for academic projects, and therefore
have not been addressed in the agent literature as far as the
authors are aware. The use of high-level models in such
documents is a novel application of agent-oriented models
that was significant for our industry partner. The business
vision models were helpful in identifying the high-level
motivations and the stakeholders. For example, within sec-
onds of being presented the first draft of the model in Fig. 3,
one of the industry partners noted that the air traffic control-
lers were stakeholders in the turnaround process, and this
induced discussion about how new traffic enters the airport.
In subsequent iterations, the air traffic controller role was
deemed unnecessary for the simulation and was dropped,
but changes related to this remained. It is not unreasonable
to claim that if the scope of the system was larger, we would
have been required to engage with air traffic controllers as
part of the elicitation process, and we believe our model
would have identified this earlier than otherwise. Events
such as this further strengthen our view that using stake-
holders as modellers is highly valuable.

Scenarios. The key highlight of the project for our indus-
try partner was the use of scenarios. High-level scenarios
are an important starting point in our approach, and are
useful in early phase elicitation and modelling. While sce-
narios have been applied in software engineering for many
years [36], their use as a tool for both elicitation and under-
standing was a major finding for our industry partner. In a
meeting after the ATS project had concluded, a team mem-
ber from our industry partner described a more recent proj-
ect in which they were contracted to build a simulation of
small aircraft flights around an airfield. In the past, the com-
pany would have sent a business analyst to elicit require-
ments that were then passed on to software engineers.
However, as a result of their insight from the ATS project,
they additionally sent the team of software engineers



1020

working on the project, and had them take part in real test
flights around the airfield. This allowed them to produce
scenarios for the simulator. Participating in some of these
real scenarios helped to make the scenarios concrete,
thereby improving the software engineers’ understanding
of the domain, and ultimately the system.

Elicitation questions. The elicitation for the ATS system
did not follow the questions in the order listed in Section
4.2, and we expect that this would be the case for other proj-
ects. The elicitation questions form a checklist, but the order
in which they are asked did not seem important. Conversa-
tions were triggered by stakeholders, and we found it
important to allow these conversations to occur and to
record the details for further analysis, rather than fixating
on the questions.

However, the questions did form the basis of some con-
versations, and our industry partners found this approach
effective for bringing themselves into the agent mindset;
something with which they had struggled previously.

Stakeholders as modellers. A key characteristic of our elici-
tation approach is the use of stakeholders as modellers. In
our elicitation meetings, each stakeholder was provided
with copies of the most recent models, and comments were
invited. During the meetings, these models were modified
by the group, thus taking advantage of the experts’ knowl-
edge of the domain. We found it necessary for the require-
ments team to perform further analysis in between
meetings to ensure consistency between different models,
etc., and to refine lower-level models.

We found that the lightweight nature of the models was
useful in the meetings, as many incorrect assumptions that
we had made were quickly identified by the domain
experts, and corrected. This is consistent with our previous
work with less-technical stakeholders.

Abstraction in understanding. The lower-level and less
graphical models, such as the agent type specifications,
were less useful in meetings, due to the inability to con-
sider many of these models at one time. The motiva-
tional models (role models and goal models), were more
useful, even at a high level. We found that lower-level
models were largely produced outside of the round-table
meetings. This is especially the case for the agent types.
We believe that defining agent types outside of these
meetings would be more straightforward than defining
motivation models, due to having a better understanding
of the system by this time.

The usefulness of high-level models is evident from an
example. Early in the process, one of the requirements engi-
neers devised a high-level domain model, which contained
the concepts he thought were relevant, and links between
these concepts. The links represented relationships, but did
not define what these relationships were, as the engineer
had not yet identified these. Initially, these were met with
confusion from the other members in the meeting. The
value of this model became clear only minutes later when
one of the domain experts identified several incorrect
assumptions about the relationships between concepts in
the model, despite not knowing what the relationships
meant. This indicates that, at least early in the requirements
process, it is beneficial to share any understanding of the
system, rather than waiting until models are complete.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014

Software system boundaries. We advocate delaying the defi-
nition of the system boundary until as late as is reasonable/
possible, and at least until stakeholders have a shared
understanding of the problem. Project or organisational
constraints may require a system boundary early in the proj-
ect, perhaps before the problem is fully understood. In these
cases, we believe that the boundary decision should be
delayed as long as possible without affecting the remainder
of the project; e.g., contract agreements.

The software system boundary was left undefined for
most of the requirements elicitation process. Our industry
partners did not feel that it impacted the project negatively,
however, in this particular case study, they did not see any
benefit in delaying the boundary definition either, because
they felt that the only obvious boundary was one in which
all roles were played by software agents, although they did
see that this could be useful for other systems.

To our group, the benefits of not defining a system
boundary at the start of elicitation are illustrated by the proj-
ect. We described earlier in this section the discussion that
was held regarding whether the role of the Manager was to
be played by a human or a software agent. Had the bound-
ary been defined at the start of the requirements elicitation,
this discussion may not have taken place. It is examples
such as these that strengthen our claim that delaying defini-
tion of software system boundary can be beneficial.

The interaction designers we have collaborated with in
other work [28], [31] have embraced the idea of delaying
the software system boundary. A colleague (interaction
designer) reported to us his experience with designing
technology to support school children with autism. In
working with a group of school teachers who were special-
ists in teaching autistic children, he found that by not con-
straining the system boundary, the teachers produced
more useful solutions. By simply asking the teacher groups
to design a technologically-based solution to support the
children, the groups attempted to fit everything into soft-
ware. The teacher groups who did not have this mandate
all included technology as part of their designs, but the
support was extended well outside of the software system
boundary. This example captures the very essence of engi-
neering socio-technical systems—that the people are as
important as technology.

This is consistent with Gause’s view [12], which states
that taking the time in early requirements engineering to
discuss possible solution boundaries with stakeholders
raises awareness about possible solutions, and can discover
deep context regions—those factors that are often oversights
until a product is released.

Model evolution. As expected, our experience indicates
that having models evolve over series of round-table discus-
sions leads to a clearer solution, as early concerns regarding
concepts such as resources were delayed without jumping
to a pre-conceived solution. Later in the development pro-
cess, successive versions of the models enabled traceability
of the design decisions that were made, and of the require-
ments in general. This gave the research team something to
fall back on when discussions started to get too complex for
some stakeholders or drifted from original high-level goals,
and also made the source of requirements more straightfor-
ward to trace. The example of the air traffic controller role



MILLER ET AL.: REQUIREMENTS ELICITATION AND SPECIFICATION USING THE AGENT PARADIGM: THE CASE STUDY OF AN...

illustrates this, in which the models were updated to reflect
this role, but even after its removal, parts of the model
related to it remained. This is consistent with the findings
described by MacLean et al. [19].

Model inconsistency. In our evaluation, reviews and
cross-validation uncovered several major inconsistencies
between agent types and other models (role and scenario
models). This was the result of requirements engineers
not explicitly considering the corresponding models in
sufficient detail when defining the agent types. One possi-
ble solution to this is to modify the elicitation questions in
Section 4.2.4 to draw agent type information from both
role and scenario models. However, the resulting ques-
tions would be checks rather than elicitation mechanisms.
A more suitable solution would be to incorporate these as
checks (either manual or semi-automated) into the verifi-
cation process, as the inter-model consistency could be
checked by a tool. For example, Abushark et al. [1] pres-
ent a method for inconsistency detection between agent-
oriented models, which could be adapted for scenarios,
roles, and agent types.

7.2 Requirements Specification and Packaging
Agent types. The major lesson that we learnt as part of this
project was with regards to the inclusion of agent types in
the SRS. In previous work, we had, like other researchers,
considered agent types as a design artifact. Early in the ATS
requirements process, our collaborators struggled to iden-
tify the behaviour of the system, or how they could imple-
ment and verify a system against a set of high-level models.
This led us to the conclusion that the use of agent types to
define behaviour is important; and therefore, the correct-
ness of any implementation is the correspondence to the
behaviour specified in the agent types. Once we added
agent types to the SRS, the system behaviour became much
clearer to our collaborators.

We believe that defining the behaviour is important with
regards to obtaining a sign-off from the client. The signing
off of requirements, and what constitutes this sign off, is
overlooked in academic research on agent-oriented software
engineering, but is important for contract definition in proj-
ects with third-party vendors.

Our collaborators at Jeppesen particularly like the flexi-
bility enabled by the agent paradigm and the use of agent
types. In their experience, clients on different projects are
often happy to sign-off at different levels of abstraction. For
example, some clients would be happy to sign-off the role
and goal models, while others would want to see the more
detailed agent types. In an event-based system, the distinc-
tion between different levels is less clear.

Repeatability. The evaluation of the three ATS projects
demonstrates that our approach delivers requirements
specifications that can be used to build systems in a
repeatable manner. While the resulting designs contained
differences between each other, all three designs and their
corresponding prototypes were consistent with the SRS.
Further to this, the developers had no previous experi-
ence in agent-oriented software engineering. This result
was of particular importance to our industry partners,
who aim to use agent-oriented models as tools for elicita-
tion and communication both with internal developers,

1021

and with external stakeholders who are unlikely to have
any background in agent-oriented modelling.

SRS Template. For the ATS project, the SRS of the system
closely follows the structure recommended in this section,
with some changes to suit the specific system. As part of the
ATS specification, interaction models were derived, how-
ever, they were omitted from the latter versions of the SRS
because we felt they did little to help define or understand
the system behaviour. The other stakeholders agreed that
the interaction models gave them little value in understand-
ing the proposed solution. This is largely because the inter-
action protocols used in the ATS system were either largely
sequential or were straightforward enough to extrapolate
the interactions from the agent types and scenarios. The
interaction diagrams were included in the software design.

In our view, the final SRS for the project is a well-pack-
aged artifact. We believe the SRS to be correct, complete,
and consistent, a view that is strengthened by our industry
partners, who have endorsed (signed-off) the SRS package.
This sign off is an agreement between ourselves and our
industry partners that the requirements are correct, com-
plete, and consistent, showing that our approach can be
used to arrive at a solution with which all stakeholders are
satisfied. We see this as an important result in itself.

8 RELATED WORK

Agent-oriented requirements engineering has been investi-
gated by other authors, and as a result, several methodolo-
gies have been proposed, such as Tropos [3], Prometheus
[29], Gaia [44], INGENIAS [30], and ROADMAP [34]. Blanes
et al. [2] performed a systematic overview of agent-oriented
requirements engineering, finding that most research in the
area focused on notations for modelling and analysis, with
little support for requirements elicitation, specification
(other than modelling), or validation.

8.1 Requirements Elicitation and Analysis

Both agent-oriented and goal-oriented requirements elicita-
tion and specification have been investigated in the past. A
key feature of much of the existing work is on motivations;
that is, the “whys” of a system, in addition to the “whats”.
Our approach continues in this direction, and we have
found this to be valuable in understanding systems.

Two major differences between our work and other
agent-oriented and goal-oriented requirements elicitation
methods are in the level of detail. First, similar to NFR [5],
[24] and other works e.g [13], we acknowledge that commit-
ting to a design decision too early may result in some stake-
holders” solutions being discarded, making their views
irrelevant. However, a key contribution of this work com-
pared with other work is that it further encourages stake-
holder involvement by facilitating the inclusion of all key
stakeholders in the modelling and analysis of the system, not
just the elicitation. Zowghi and Coulin [46] note that, espe-
cially in group meetings, stakeholders must feel confident
that their views will be heard, and that they are part of the
process. We encourage stakeholders to discuss and modify
models during group meetings help to engage them in the
requirements process. In other work, we have successfully
employed agent-oriented models in this context with



1022

psychologists, general practitioners, sleep experts, nurses,
ethnographers, and interaction designers [20], [25], [28],
[31], [33]. This is facilitated by the fact that our approach
relies on lightweight, hierarchical models. We believe that
our approach could be modified to fit with other agent-ori-
ented modelling notations that use concepts palatable to
non-technical stakeholders, such as roles, goals, and agents.

Second, we prescribe a more detailed approach for elicit-
ing information and recording it into models. Like us,
Maiden et al. [21] identify that it is difficult to know where
to start the modelling process. They recommend “kicking
off” modelling with a context diagram before performing
system modelling—a solution in the same spirit as our use
of scenarios. We prefer to use scenarios rather than context
diagrams because stakeholders often engage better with
concrete examples, rather than abstract models.

The KAOS methodology includes a requirements acqui-
sition technique [6] that is also based on questions. KAOS
identifies what is required for the final models (system
goals, agents, action, and domain attributes), but is less pre-
scriptive in how to arrive at these. The Tropos methodology
[3] uses a question-answer technique for eliciting require-
ments. The Tropos requirements elicitation technique
involves four questions: who are the main actors?; what are
their goals?; how can they achieve them?; and does an actor
depend on another to achieve its goals?. These questions are
broader versions of our questions for understanding the
current system, and do not define how to arrive at solutions.

The social organisation metaphor has been used to ana-
lyse and specify requirements. Donzelli and Bresciani [8]
use goal modelling to develop, during the analysis phase,
an organisational view of agent-oriented systems. Yu [41]
stresses the importance of identifying motivations within an
organisational context in early-phase requirements engi-
neering. Yu proposed the i* modelling language to capture
these motivations, commenting that social considerations
are not commonplace among most modelling techniques.
Yu’s notion that software processes can be modelled as
social processes is the essence of using agents to implement
roles in our work. Maiden et al. [21] describe the application
of i* to the air traffic management domain, and present ten
lessons learnt from this process.

Many of these concepts are inherited by the Tropos
agent-oriented development methodology [3], which is built
on ¢*. Blanes et al. identify Tropos [3] as providing the most
mature support for requirements elicitation. Like Tropos,
our approach asks “why” as well as “what” when eliciting
the requirements, because we agree that the motivation of
the system is important for understanding how the system
will fit within its organisation and environment. However,
this research has not been translated into a standardised
method to explicitly elicit requirements for agents using
organisations as the guiding metaphor. Our approach pro-
vides a systematic and repeatable approach for eliciting
requirements, which we believe could be used within the
Tropos methodology.

8.2 Requirements Specification
A major difference between our work and other agent-ori-
ented requirements engineering methods is the inclusion of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014

agent types in the requirements specification. Typically, this
is considered as design restriction, and therefore not good
requirements engineering practice. However, the purpose
of requirements engineering is to define the external behav-
iour of the system in its environment. Role specifications
assign responsibilities for achieved goals, but purposely
omit definitions of behaviour. Thus, multiple systems, each
with different behaviour from the others, could achieve the
specified goals.

We are not the first authors to identify that high-level
conceptual models in agent methodologies are not suffi-
cient to define behaviour. Ferber et al. [10] identify two
approaches for specifying behaviour of a multi-agent sys-
tem: assigning individual requirements to individual
agents; and assigning behaviour to role instances, which
are further refined into agents. The first specified behav-
iour from the perspective of an external observer, while
the second specifies behaviour from the viewpoint of the
individual instance, which is closer to our approach; how-
ever, we feel that the intermediate representation between
roles and agents is unnecessary, and that our approach of
assigning responsibilities to agents is a cleaner solution.

KAOS [6] defines the behaviour of systems using agent/
action definitions. These are similar to our agent types, in
that they define the agent and the actions that the agent can
perform. KAOS does not distinguish between roles and
agents, instead treating agents as the primary actors that
achieve goals. The constraints related to goals are assigned
to agents using responsibility links, making their notion of an
agent a merging of our notation of roles and agents. When
applying KAOS, van Lamsweerde et al. [37] comment that
the last stages of the goal elaboration process “were per-
formed in parallel with the agent/action identification and
goal operationalisation”. This provides further evidence
that committing to some agent or activity design is neces-
sary to define behaviour.

The Prometheus methodology [29], like KAOS, does not
consider roles as part of requirements engineering. Like us,
they identify that functionality must be considered to define
behaviour. A Prometheus specification contains the system
goals, but with no indication of the roles that achieve them.
Functionalities are natural language descriptions of behav-
iour. Prometheus has been applied to industry applications,
such as the meteorological alerting system developed with
the Australian Bureau of Meteorology [23].

Maiden et al. [22] present a set of patterns for generat-
ing candidate requirements statements from ¢* [41] mod-
els. Their goal is to bridge the gap from model-based
specification to the common industry practice of require-
ments as lists of textual statements. The result is a list of
requirements statements that can be traced to their corre-
sponding ¢* models. Applying this to an air-traffic control
system, Maiden et al. demonstrated that the approach can
reduce workload. In later work, Ncube et al. [27] auto-
mate this process, and an evaluation performed on the
air-traffic control system requirements by four stakehold-
ers showed that about two-thirds of these requirements
were valid.

Ultimately, our approach, motivated by our industry
partners, aims to move away from the practice of list
of textual statements to using models themselves as



MILLER ET AL.: REQUIREMENTS ELICITATION AND SPECIFICATION USING THE AGENT PARADIGM: THE CASE STUDY OF AN...

requirements. Our practice of using the agent types to
define behaviour is one step towards this. One area of
future work would be to derive a similar set of patterns to
that used by Maiden et al. to generate templates for actions
in agent types. This would help to alleviate the problem of
inconsistency between models discussed in Section 7.1.

We have not seen other work that outlines how a require-
ments package should be constructed using agent-oriented
models. Several other generic SRS package templates exist,
such as that from Wiegers [38] and the IEEE Standard for
requirements specifications [16]. These two templates both
inspired our template, however, we see the value in using a
template that emphasises the concepts that are central to the
agent-oriented paradigm.

9 CONCLUSIONS

In this paper, we described two improvements to previous
work on agent-oriented requirements engineering. These
improvements relate to problems experienced by our indus-
try partner: (1) a lack of systematic methods for agent-ori-
ented requirements elicitation and modelling; and (2) a lack
of prescribed deliverables for agent-oriented requirements.

Our elicitation approach prescribes a list of questions to
be answered by stakeholders in round-table meetings, and
how to directly map the answers to lightweight agent-ori-
ented models. Further, we prescribe a requirements specifi-
cation template that uses agent-oriented models as a central
focus. Importantly, the template advocates the inclusion of
agent types at the requirements level, rather than defining
these at design time, based on our observation that roles,
goals, and interactions alone are not sufficient for describing
system behaviour.

We have been fortunate enough to attract an industry
partner to work closely with to improve our requirements
engineering processes—something that is difficult to do for
researchers in this area. Applying our approach in conjunc-
tion with our industry partner demonstrated that the
approach is useful, and we believe led to a much better
requirements engineering method. A strong result of this
work is that our industry partner has adopted many parts of
our requirements engineering method into their own require-
ments engineering process models. This validates our claims
that using the agent paradigm is not merely an academic
exercise. Already our industry partner is applying their mod-
ified requirements engineering process model to the mainte-
nance of large-scale air-traffic simulators. This domain is
highly complex, so we expect to receive additional feedback.

In current work, we are applying our ideas in conjunc-
tion with other academic and industry partners, in a diverse
range of domains including personal emergency alarms,
depression care, and sleep disorders.

ACKNOWLEDGMENTS

The authors would like to thank Alex Lopez for his valuable
SRS reviews and cross validation; Daniel Thompson, Mak-
sim Kozorez, and Mingwei Zhang for prototyping the ATS
systems; and Keith Joshi, John Podlena, and Kayan Hau
from Jeppesen for their highly valuable participation and
discussions. This research is funded by the Australian
Research Council Linkage Grant LP0882140.

1023

REFERENCES

[1]1 Y. Abushark, T. Miller, ]. Thangarajah, and J. Harland, “Checking
consistency of agent designs against interaction protocols for
early-phase defect location,” in Proc. 13th Int. Conf. Auton. Agents
Multi-Agent Syst., 2014, pp. 933-940.

[2] D. Blanes, E. Insfran, and S. Abrahao, “Requirements engineering
in the development of multi-agent systems: A systematic review,”
in Proc. Intell. Data Eng. Autom. Learn., 2009, pp. 510-517.

[3] P.Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopou-
los, “Tropos: An agent-oriented software development method-
ology,” Auton. Agents Multi-Agent Syst., vol. 8, no. 3, pp. 203-236,
2004.

[4] B. Cheng and J. M. Atlee, “Research directions in requirements
engineering,” in Proc. Int. Conf. Softw. Eng., Workshop Future Softw.
Eng., 2007, pp. 285-303.

[5] L. Chung and J. Leite, “On non-functional requirements in soft-
ware engineering,” in Conceptual Modeling: Foundations and Appli-
cations, ser. LNCS, vol. 5600. New York, NY, USA: Springer, 2009,
pp- 363-379.

[6] A. Dardenne, A. Lamsweerde, and S. Fickas, “Goal-directed
requirements acquisition,” Sci. Comput. Programm., vol. 20,
no. 1/2, pp. 3-50, 1993.

[71 S. DeLoach, M. Wood, and C. Sparkman, “Multiagent systems
engineering,” Int. |. Softw. Eng. Knowl. Eng., vol. 11, no. 3,
pp- 231-258, 2001.

[8] P. Donzelli and P. Bresciani, “Improving requirements engineer-
ing by quality modelling—A quality-based requirements engi-
neering framework,” . Res. Practice Inf. Technol., vol. 36, no. 4, pp.
277-294, 2004.

[9] K. ElEmam and A. Koru, “A replicated survey of IT software proj-
ect failures,” IEEE Softw., vol. 25, no. 5, pp. 84-90, Sep./Oct. 2008.

[10] J. Ferber, O. Gutknecht, C. Jonker, ]J. Miller, and J. Treur,
“Organization models and behavioural requirements specification
for multi-agent systems,” in Proc. 10th Eur. Workshop Model. Auton.
Agents Multi-Agent World, 2001, pp. 1-19.

[11] D. Gause, “User driven design—The luxury that has become a
necessity, a workshop in full life-cycle requirements man-
agement,”in Proc. 4th IEEE Int. Conf. Requirements Eng. Tutorial T7,
2000.

[12] D.C. Gause, “Why context matters-and what can we do about it?”
IEEE Softw., vol. 22, no. 5, pp. 13-15, Sep. 2005.

[13] V. Gervasi and D. Zowghi, “On the role of ambiguity in RE,”
in Requirements Engineering: Foundation for Software Quality, ser.
LNCS, vol. 6182. New York, NY, USA: Springer, 2010,
pp. 248-254.

[14] Standish Group, “Chaos report,” (1994). [Online]. Avilable at:
http:/ /www.standishgroup.com

[15] R. Guizzardi and A. Perini, “Analyzing requirements of knowl-
edge management systems with the support of agent organ-
izations,” J. Brazilian Comput. Soc., vol. 11, no. 1, pp. 51-62, 2005.

[16] IEEE, Recommended Practice for Software Requirements Specifications,
IEEE Std 830-1993, 1998.

[17] L Jureta and S. Faulkner, “Clarifying goal models,” in Proc. ER
(Tutorials, Posters, Panels & Industrial Contributions), 2007, vol. 83,
pp. 139-144.

[18] A. Lopez, G. Beydoun, L. Sterling, and T. Miller, “An ontology-
mediated validation process of software models,” in Proc. 19th Int.
Conf. Inf. Syst. Develop., 2011, pp. 455-467.

[19] A.MacLean, V. Bellotti, and R. M. Young, “What rationale is there
in design?” in Proc. IFIP TC13 3rd Int. Conf. Human-Comput. Inter-
action, 1990, pp. 207-212.

[20] M. Mahunnah, A. Koorts, and K. Taveter, “Towards distributed
sociotechnical system for reporting critical laboratory results,” in
Proc. Int. Conf. Health Inf., 2013, pp. 269-276.

[21] N. Maiden, S. Jones, C. Ncube, and J. Lockerbie, “Using i* in
requirements projects: Some experiences and lessons,” in Social
Modelling for Requirements Engineering, E. Yu, P. Giorgini,
N. Maiden, and ]J. Mylopoulos, Eds. Cambridge, MA, USA: MIT
Press, 2011, ch. 3, pp. 155-185.

[22] N. Maiden, S. Manning, S. Jones, and J. Greenwood, “Generating
requirements from systems models using patterns: A case study,”
Requirements Eng., vol. 10, no. 4, pp. 276-288, 2005.

[23] I. Mathieson, S. Dance, L. Padgham, M. Gorman, and
M. Winikoff, “An open meteorological alerting system: Issues
and solutions,” in Proc. 27th Australasian Conf. Comput. Sci.,
2004, vol. 26, pp. 351-358.



1024

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.10, OCTOBER 2014

R. Mehta, H. Wang, and L. Chung, “Dealing with NFRs for smart-
phone applications: A goal-oriented approach,” Softw. Eng. Res.,
Manag. Appl., vol. 430, pp. 113-125, 2012.

T. Miller, S. Pedell, A. Mendoza, L. Sterling, A. Kiernan, and
A. Lopez-Lorca, “Emotionally-driven models for people-oriented
software: The case study of emergency systems,” (2014). [Online].
Avilable at:  http://www.csse.unimelb.edu.au/~tmill/pubs/
emotional-goals.pdf

T. Miller, S. Pedell, L. Sterling, and B. Lu, “Engaging stakeholders
with agent-oriented requirements modelling,” in Proc. 11th Int.
Conf. Agent-Oriented Softw. Eng., 2011, pp. 62-78.

C. Ncube, J. Lockerbie, and N. Maiden, “Automatically generating
requirements from i* models: Experiences with a complex airport
operations system,” in Proc. 13th Int. Working Conf. Requirements
Eng.: Foundation Softw. Quality, 2007, pp. 33-47.

J. Paay, L. Sterling, F. Vetere, S. Howard, and A. Boettcher,
“Engineering the social: The role of shared artifacts,” Int. ].
Human-Comput. Studies, vol. 67, no. 5, pp. 437-454, 2009.

L. Padgham, and M. Winikoff, Developing Intelligent Agent Systems:
A practical guide. New York, NY, USA: Wiley, Aug. 2004.

J. Pavén and J. Gomez-Sanz, “Agent oriented software engineer-
ing with INGENIAS,” in Proc. 3rd Eastern Central Eur. Conf. Multi-
Agent Syst. Appl., 2003, pp. 394-403.

S. Pedell, T. Miller, F. Vetere, L. Sterling, S. Howard, and J. Paay,
“Having fun at home: Interleaving fieldwork and goal models,”
in Proc. 21st Annu. Conf. Australian Comput.-Human Interaction Spe-
cial Interest Group, 2009, pp. 309-312.

A. Rao, “AgentSpeak(L): Bdi agents speak out in a logical comput-
able language,” in Proc. 7th Eur. Workshop Model. Auton. Agents
Multi-Agent World: Agents Breaking Away, 1996, pp. 42-55.

I. Shvartsman, K. Taveter, M. Parmak, and M. Meriste, “Agent-
oriented modelling for simulation of complex environments,” in
Proc. Int. Multiconf. Comput. Sci. Inf. Technol., 2010, pp. 209-216.

L. Sterling and K. Taveter, The Art of Agent-Oriented Modeling.
Cambridge, MA, USA: MIT Press, 2009.

L. Sterling and K. Taveter, “Event-based optimization of air-to-air
business processes,” in Proc. Intell. Event Process.-AAAI Spring
Symp., 2009, pp. 80-85.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A. Sutcliffe, “Scenario-based requirements engineering,” in Proc.
11th IEEE Int. Requirements Eng. Conf., 2003, pp. 320-329.

A. Van Lamsweerde, R. Darimont, and P. Massonet, “Goal-
directed elaboration of requirements for a meeting scheduler:
Problems and lessons learnt,” in Proc. 2nd IEEE Int. Symp. Require-
ments Eng., 1995, pp. 194-203.

K. Wiegers, Software Requirements, 2nd ed. Bellevue, WA, USA:
Microsoft Press, 2003.

D. Wilmann and L. Sterling, “Guiding agent-oriented require-
ments elicitation: HOMER,” in Proc. 5th Int. Conf. Quality Softw.,
2005, pp. 419-424.

E. Yu, “Agent-oriented modelling: Software versus the world,”
in Proc 2nd Int. Workshop Agent-oriented Softw. Eng. II, 2002,
pp. 206-225.

E. Yu, “Social modeling and ¢*,” in Conceptual Modeling: Foun-
dations and Applications. New York, NY, USA: Springer, 2009,
pp- 99-121.

E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social Modelling
for Requirements Engineering. Cambridge, MA, USA: MIT Press,
2011.

F. Zambonelli, N. Jennings, and M. Wooldridge, “Organisational
abstractions for the analysis and design of multi-agent systems,”
in Proc. 5th Int. Workshop Agent-Oriented Softw. Eng., 2001,
pp- 231-251.

F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing
multiagent systems: The Gaia methodology,” ACM Trans. Softw.
Eng. Methodol., vol. 12, no. 3, pp. 317-370, 2003.

P. Zave and M. Jackson, “Four dark corners of requirements engi-
neering,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 1, p. 30,
1997.

D. Zowghi and C. Coulin, “Requirements elicitation: A survey of
techniques, approaches, and tools,” in Engineering and Managing
Software Requirements, A. Aurum and C. Wohlin, Eds.. New York,
NY, USA: Springer, 2005, ch. 2, pp. 19-46.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


