
Heuristics for Designing and Evaluating Socio-Technical
Agent-Oriented Behaviour Models with Coloured Petri Nets

Msury Mahunnah∗, Alex Norta∗, Lixin Ma∗†, Kuldar Taveter∗

∗Department of Informatics, Tallinn University of Technology, Tallinn, Estonia,
†Department of Computer Science, University of Shanghai for Science and Technology, Shanghai, China

Email: msurym@gmail.com; alex.norta@gmail.com; malixin.usst@gmail.com; kuldar.taveter@ttu.ee

Abstract—Software agents are a means to support socio-
technical decentralised systems that increase the complexity of
daily life. Designing multi-agent systems involves modelling meth-
ods for which it is currently not possible to check for soundness
before a technical implementation. To improve the design process,
the agent models require a mapping to a formalisation that is
sufficiently expressive to represent equivalent model properties.
The formalized presentation must cater for evaluating the model
soundness, simulation and performance experimentations with
different test data. The paper gives a set of mapping heuristics
from agent models to a sufficiently expressive formalisation
representation that follows a real life running case stemming
from the healthcare domain.

Keywords—Socio-Technical, Agents, Coloured Petri Nets,
Heuristics, Behaviour, Design, Evaluation.

I. INTRODUCTION

Our society is becoming increasingly dependant on com-
plex information technology (IT) systems for carrying out daily
activities. The complexity of IT systems, mainly, stems from
the integration and orchestration of independently managed
software systems that are distributed in dynamic environ-
ments [1], such as healthcare, aviation, air traffic control,
telecommunications, and so on. In addition, the behaviour of
people who work across organizational, geographical, cultural
and temporal boundaries [2] influences the complexity of
such socio-technical IT systems [3] and thus, poses a great
engineering challenge. We define a socio-technical system
as an approach to complex organizational work design that
recognizes the interaction between people and technology in
workplaces.

In recent years, researchers have undertaken various studies
in modelling the behaviour and knowledge sharing, of socio-
technical systems, among interacting technical, societal and
organisational aspects. These studies have focus on domains
such as healthcare [4], military [5] and sociology [6], [7]
using an agent-oriented paradigm [8]. The latter is a top-
down holistic approach for modelling socio-technical systems
by engaging all stakeholders during the analysis and design
phases of a system’s development life cycle. However, a gap
exists in formalising and evaluating agent-oriented behaviour,
knowledge and interaction models before the actual implemen-
tation of these kinds of systems.

In this paper, we fill the identified gap by answering the
research question, how to systematically formalise and evaluate
agent-oriented behaviour models for socio-technical systems?

To establish complexity-reducing separation of concerns, we
deduce the following sub-questions: What is a suitable way
for conceptualizing the behaviour of socio-technical agent-
oriented systems based on a set of heuristics? What for-
malization is suitable for the first syntactically correctly de-
signed agent-oriented behaviour models? What means exist to
evaluate the soundness of agent-oriented behaviour models?
This set of sub-questions assumes that a syntactic designing
of agent-oriented behaviour models precedes the mapping to
formalizations that carry equivalent model properties.

The paper structure is as follows. Section II describes a run-
ning case from the healthcare domain that helps in clarifying
what artefacts we consider for this paper. Section III presents
an agent-oriented goal model and behaviour-interface model
for capturing socio-technical system behaviour. Section IV
gives mapping heuristics towards a formalization and evalua-
tion of agent-oriented behaviour models. Section V shows and
explains the resulting formalised model of the running case
and evaluates simulation results. Section VI presents related
work and finally, Section VII gives the conclusion and provides
future work.

II. RUNNING CASE FROM THE HEALTHCARE DOMAIN

Healthcare organizations aim to provide better quality of
care by improving the information logistics among caregivers
and patients, who work in a distributed way. In this paper,
we consider a case study [9] for reporting Critical Laboratory
Results (CLRs) to an appropriate caregiver from the North
Estonian Medical Centre (NEMC) laboratory.

The case study identifies two weaknesses in the procedure
for reporting CLRs at the NEMC laboratory. First, the proce-
dure for reporting CLRs involves many people. This leads to
two major problems: (1) high risk of human errors, (2) delay in
reporting CLRs. A second weakness arises from the handling
of CLRs similar to Normal Laboratory Results (NRLs). When
a doctor who orders the laboratory tests is unreachable by
phone, the laboratory guidelines suggest that staff make a
phone call instead to the departmental nurse who tries to find
another appropriate doctor. If the departmental nurse is also
unreachable, the CLRs are sent to the Hospital Information
System (HIS) comparable to NRLs. The delay poses the risk
that patients do not receive adequate treatment in a state of
emergency.

Results of the case study in [9] propose to improve the
current system for reporting CLRs as follows. NEMC must

2014 IEEE 38th Annual International Computers, Software and Applications Conference Workshops

978-1-4799-3578-9/14 $31.00 © 2014 IEEE

DOI 10.1109/COMPSACW.2014.74

438



consider mobile technologies, to accurately identify the loca-
tion of caregivers. The new intelligent information system is
a socio-technical system, i.e., a software intensive system that
has defined operational processes followed by human operators
and that operates within an organization [10]. The envisioned
socio-technical system specifies roles for human agents in
healthcare organizations, such as patients, nurses and doctors.
The human agents receive support by software agents that we
define [8] as an entity that performs a specific activity in an
environment of which it is aware, and that can respond to
changes.

The execution of rules determine the behaviour of a
software agent [11]. The rules execute upon detection of
changes in the environment, such as event occurrences. Events
may also stem from other collaborating agents. The dynamic
environment influences the possible reachable states of agents
after executing activities. For instance, when the doctor for
receiving CLRs is unavailable, the socio-technical agent pro-
actively identifies and suggests another appropriate caregiver
according to availability, medical knowledge and speciality.

In our previous work [9], we evaluate the analysis- and
design models for socio-technical systems by engaging do-
main experts, i.e., healthcare professionals. In this paper, we
suggest heuristics for evaluating syntactical correctness and
soundness of socio-technical agent-oriented behaviour models
by mapping to a formalization that carries equivalent model
properties.

III. BEHAVIOUR MODELLING

The analysis of socio-technical systems where humans
receive support from intelligent software agents, must follow
an appropriate methodology. Various Agent Oriented Software
Engineering (AOSE) methodologies exist with a technical
emphasis on designing systems consisting of software agents,
e.g., Tropos [12], MaSE [13], or Prometheus [14]. In [8],
the described Agent-Oriented Modelling (AOM) method is a
socio-technical approach that includes features similar to those
in mentioned AOSE methodologies while taking into account
the combination of human- and man-made agents in the system
design process. In this section, we present two AOM model
types, i.e., the goal model and behaviour interface model, that
capture important socio-technical behavioural features from the
running case.

The goal model serves as a container for three main compo-
nents: functional requirements commonly referred to as goals,
roles, and non-functional requirements. The latter has two
categories, quality goals for non-functions requirements related
to software and emotional goals for those related to humans.
Parallelograms represent goals, sticky men are roles, clouds
are quality goals and hearts are emotional goals as depicted in
Figure 1. Goal models serve as communication media between
technical and non-technical stakeholders to establish a better
understanding of the problem domain. The goal model starts
with an overall objective of the socio-technical system that is
known and clear to all stakeholders. Goals decompose into
sub-goals where each sub-goal represents some aspect for
achieving its parent goal [15]. Note that the lowest sub-goal
must be atomic.

Fig. 1. Goal model of the socio-technical running healthcare case.

In the goal model of Figure 1, we first present the upper-
most goal, viz., Manage CLRs with the attached role of Patient
who is the focus of the analysis. The emotional goal Safe, and
two quality goals Quick and Dependable are also attached to
the main goal. The latter means to avoid service failures that
are more frequent and more severe than acceptable [16]. The
main goal Manage CLRs splits into seven sub-goals: Admit
patient, Identify nurse, Manage alerts, Report CLRs, Collect
results, Identify doctor and Treat patient. In addition to the
role Patient who is the only role responsible for achieving the
sub-goal Collect results, the role Nurse is responsible for the
first four sub-goals and the role Doctor is responsible for the
last two sub-goals. Each of the identified sub-goals has further
refining third level sub-goals that are the lowest-level sub-goals
for this running case. These sub-goals represent the activities of
the socio-technical system. Parallel to the process of breaking
down the sub-goals, we also identify suitable quality goals
and emotional goals. For example, the sub-goal Admit patient
in Figure 1 has the emotional goal Relief, meaning execution
of the four activities of Request patient ID, Check existence,
Register patient and Assign room targets at ensuring the patient
feels a relief during the admission process.

Goal models focus on identifying functional and non-
functional requirements of the whole socio-technical system
rather than simple activities conducted by individual agents.
During the design phase, behaviour models for individual
agents facilitate the refinement of the goal model resulting
from the analysis of the running case. A behaviour model
in AOM has two parts: an agent behaviour model coupled
with a behaviour interface model [8]. The former describes
the rule-based behaviour of an agent, while the latter focuses
on identifying the activities associated triggers, preconditions,
and postconditions.

Table I presents the behavioural interfaces of four important
activities in fulfilling the goal Admit patient. Each activity
must have one trigger and at least one postcondition. Precon-
ditions may either exist or not, depending on the nature of

439



TABLE I. BEHAVIOURAL INTERFACES OF ACTIVITIES FOR THE
SUB-GOAL ”ADMIT PATIENT”

Activity Trigger Preconditions Postconditions

Request patient ID New case detected Received Patient ID

Check existence Patient ID received ID found Registered patient

Register patient Patient ID received ID not found
Updated patient DB

Registered Patient

Assign room Patient registered Room is available Assigned room

the corresponding activity, e.g., the activity Request patient
ID has only one trigger and one postcondition without any
precondition. The execution of an activity is either triggered
by the occurrence of an event, or by a pre-condition after
the occurrence of the event. For example, the activity Assign
room has three interfaces, Patient registered as a trigger,
Room is available as precondition and Assigned room as
postcondition. The given interface for the activity Assign room
assumes room availability before patient registration. If the
room is available after the registration of a patient then Patient
registered becomes the precondition and Room is available as
the trigger. In other words, the trigger and precondition may
exchange their roles at runtime.

The behaviour interface models, designed by the domain
experts, require a mapping to a formalization for an evaluation
that ensures the models are sound before a technical implemen-
tation. The following section provides a step-by-step procedure
for formalising agent-oriented behaviour models.

IV. MAPPING AGENT-ORIENTED BEHAVIOUR MODELS
TO A FORMALIZATION

In order to formulate sound agent-oriented behaviour mod-
els for the socio-technical system, it is important to map AOM
models to a formal and deterministic notation that allows for a
strong evaluation. Consequently, we consider for Colored Petri
Nets [17] (CPN) with mature tool support1 as a mapping target.
CPN is a graphical oriented language for design, specification,
simulation and verification of systems. CPN has an intuitive,
graphical representation that consists of a set of modules
(pages), each containing a network of places, transitions and
arcs. The modules interact with each other through a set of
well-defined interfaces in a similar way as known from many
modern programming languages. Places may hold multiple
tokens that carry colour, i.e., attributes with values. Transitions
fire when all input places hold the required sets of tokens and
produce condition-adhering tokens into output places.

We next explain the mapping between AOM and CPN
that Table II summarizes. Places and transitions are connected
by directed arcs denoting the flow during the execution of
activities and resources in AOM. Rectangles depict transitions
that represent simple activities performed by agents. Ovals
depict places that may either be attached with an outgoing
arc to the transition or incoming arc from the transition. The
former represents a trigger or precondition while the latter
represents the postcondition of given activity in AOM. Double-
boarded rectangles depict modules that represent goals in the
socio-technical system that can further be broken-down into
simpler sub-goals or activities. During the enactment of a CPN

1http://cpntools.org/

model, flow of control passes to the sub-goals or activities (in
the AOM equivalent) associated with a parent goal represented
as module. This way, a CPN model represents a hierarchical
structure of the goal model in AOM. When mapping agent-
oriented behaviour models to CPN, behaviour interface models
as shown in Table I represent each identified activity of the
socio-technical system found in the goal model of Figure 1,
i.e., identifying and deciding about the triggers, preconditions
and postconditions of each activity.

TABLE II. NOTATIONS FOR MAPPING AOM TO CPN

Notation Name

Connecting Arc

Sub-Goal or Activity

Trigger or Precondition

Postcondition

Goal

Table III describes a sample behaviour interface model for
two consecutive activities. Activity 1 has Trigger 1, Precondi-
tion 1 and 2, and Postcondition 1. When mapping Activity
1 to CPN, it turns into a transition connected by arcs to
four different places. Among them, three are incoming arcs
from the three places representing Trigger 1, Precondition
1 and Precondition 2. The other connection to Activity 1
is an outgoing arc to a place representing Postcondition 1.
Furthermore, Table III shows that Postcondition 1 triggers
Activity 2 since its execution follows just after completion
of Activity 1. Thus, making Postcondition 1 connected to
Activity 2 by an outgoing arc and referred as a trigger named
Trigger 2 by Activity 2. Following that, the outgoing arcs from
Activity 2 connect to two places,namely, Postcondition 2 and
Postcondition 3.

TABLE III. BEHAVIOUR INTERFACES FOR ACTIVITY 1 AND ACTIVITY
2

Activity Trigger Preconditions Postconditions

Activity 1 Trigger 1
Precondition 1

Precondition 2
Postcondition 1

Activity 2 Trigger 2
Postcondition 2

Postcondition 3

Figure 2 presents a CPN model of interconnected nodes
representing triggers, preconditions and postconditions of Ac-
tivity 1 and Activity 2 mapped from the behaviour interface
model given in Table III. Data-flows are not captured in the
sample CPN model of Figure 2. Heuristics for modelling data-
flows are out of scope for this paper and left as future work.

The following section gives a full implementation of the
running case’s CPN model for studying the behaviour of socio-
technical systems and evaluating soundness.

440



precondition 1

trigger 1

trigger 2

postcondition 3

postcondition 2

precondition 2activity 1

activity 2

Fig. 2. A CPN model for sample behaviour interface model.

V. FORMALIZED CPN MODEL AND EVALUATION

Following the procedure for mapping agent-oriented be-
haviour models to CPN, Section V-A presents a formalised
CPN model of the running case. In Section V-B,we simulate
the CPN model for studying socio-technical behaviours by
altering some factors such as availability of the doctors and
the average time it takes for attending patients with CLRs.

A. CPN Model for the Running Case

A CPN model in Figure 4 is equivalent to the earlier
presented agent-oriented goal model of the running case. The
atomic activities from the goal model we map to the behaviour
interface models. Due to page limitations, it is not possible to
show all models in this paper. Instead, we refer the reader to the
full version2 in the footnote for the complete CPN model of the
running case. Behaviour interface models consist of triggers,
preconditions and postconditions for each activity depicted by
the lowest level sub-goals in the goal model.

For representing the goal Admit patient, Figure 3 shows
the equivalent refinement as a CPN module. The refinement
consists of four transitions mapped from the activities in the
behaviour interface model given in Table I. Each transition
is connected to places by at least one incoming arc and one
outgoing arc. The former describes a trigger, or precondition
while the latter describes a postcondition identified by the help
of AOM models in Section III. The CPN modules comply to
the guidelines given in the previous section that each activity
must have a trigger and at least one postcondition.

For the running case, the module simulation triggers when
a new patient arrives at the hospital. The transition request
patient ID fires and results in a new place received ID. This
new place acts as a trigger to two possible transitions, namely,
check existence and register patient. In addition, the execution
of the former requires existence of a suitable token in patient
DB place as a precondition. The place patient DB also serves
as the postcondition together with the place registered patient
for the mentioned two transitions.

2https://www.dropbox.com/s/9efc9t9zn2oqttn/aom cpn model.cpn

new case

STRING

1`("p1")++
1`("p2")++
1`("p3")

received
id

STRING

patient db

STRING

pList

registered
patient

STRING

rooms

INT

1`11++
1`22++
1`33

assigned
room

Out

INTxSTRING

Out

request
patient id

check
existance

P_HIGH

register
patient

assign
room

pid

pid

pid

pid

r

pid

pid

pid

pid

pid

(r,pid)

Fig. 3. A formalised CPN model for the ”Admit patient” sub-goal.

We introduce the label P_HIGH to the transition check
existence indicating firing priority. If patient ID is not found
in the patient DB, the transition check existence never fires.
Therefore, the alternative transition register patient fires by
registering the patient into patient DB and having the output
place registered patient. With the existence of available rooms,
the assign room transition is triggered by the place registered
patient. The execution of this module ends with the place
assigned room that connects to remaining activities of the
healthcare system represented in CPN. These activities are
refinements of different modules corresponding to their parent
goals such as Collect Results, Identify Doctor and so on.
Figure 4 represents a higher-level CPN model of the running
case with all the modules and relationships among them.

unavailable
doctors

INTxINTxSTRINGxSTRING

available
doctors

INTxINTxSTRINGxSTRING

sent
CLRs

INTxINTxSTRING

assigned
room

INTxSTRING

confirmed
nurses

INT

sent
glucose data

INTxINTxSTRING

Identify Doctor

Identify Doctor

Identify Nurse

Identify Nurse

Admit Patient

Admit Patient

Collect Data

Collect Data

Report CLRs

Report CLRsReport CLRs

(did,dl,s,e)

(did,dl,s,e)

nid

(r,pid)

(r,pid)

(gv,r,pid)

(gv,r,pid)

(gv,nid,pid)

nid

Treat Patient

Treat Patient

Manage Alerts

Manage Alerts

normal
results

INTxINTxSTRING

(gv,nid,pid)

Treat Patient

generated
alerts

INTxINTxSTRING

(gv,nid,pid)

(gv,nid,pid)
(gv,nid,pid)

(did,dl,s,e)

attended
CLRs

INTxINTxINTxSTRING

(gv,nid,did,pid)

Manage Alerts

Identify Doctor

Collect Data

Admit Patient

Identify Nurse

Fig. 4. A formalised CPN Model from AOM.

441



B. Simulation and Results

The simulation of the complete CPN Model for the running
case aims at identifying the optimal number of available
doctors that attend CLRs. The simulation also assures a min-
imal number of generated alerts. According to the depiction
of CPN sub-model Figure 5, the system generates an alert
when there is no available doctor to attend CLRs. A firing
of transition assign doctor requires a fulfilled precondition
available doctor. Otherwise, the transition check delays fires,
followed by transition generate alert that Figure 5 does not
capture.

For one CPN simulation, three different patients generate a
total of 100 CLRs in an interval of 10 time units. We record the
number of available doctors, generated alerts, attended CLRs,
and average time taken by doctors when attending CLRs. The
amount of activities carried out determines the availability of
doctors, e.g., for attending patients. Table IV summarises the
results of the CPN simulation and assumes attending CLRs
consumes between 0 and 10 time units. The results in Table V
assume the time taken for attending CLRs consumes between
10 and 20 time units.

Fig. 5. A formalised CPN sub-model for generating alerts.

TABLE IV. RESULTS TABLE 1

Available Doctors Attended CLRs Generated Alerts

1 32 64

2 72 28

3 100 0

Table IV and Table V deduce approximate numbers for
respective doctors who attend CLRs and the number of gener-
ated alerts. In both tables, the trends of the results comply with
real-life observations [9] where the number of generated alerts
decreases with an increase in the number available doctors.
With a fixed time interval for generating CLRs, the results in
Table IV suggest a need for 3 available doctors to minimize
the number of generated alerts, while the results in Table V
show 6 available doctors to achieve the same results. The
doubled number of available doctors in Table V complies with
the doubled range in the time taken for attending CLRs. The
summarised results in these two tables not only show the real-
life coherent behaviour of the designed socio-technical system
but also the correctness and soundness of the designed CPN
model.

In the next section, we discuss related work for formal-
ising and evaluating socio-technical agent-oriented behaviour

TABLE V. RESULTS TABLE 2

Available Doctors Attended CLRs Generated Alerts

1 16 84

2 34 66

3 53 47

4 70 30

5 85 15

6 100 0

models.

VI. RELATED WORK

The trend towards using Petri Nets for modelling and
analysing is gaining prominence. For example, the conceptual
framework AgOS [18] allows for a high level representation of
a multi-agent system environment using classical Petri Nets.
The disadvantage of using classical Petri nets in AgOS is a
decrease of expressiveness for large systems. As CPN allow
for modelling hierarchies, the approach in our paper is more
scalable. In [19], agents for the management of computing
resources in clouds the authors formalise using Petri Nets.
These examples have a technical focus for using Petri Nets in
the design of multi-agent systems. Instead, the relatively new
AOM focus is socio-technical in nature and thus, recognizes
the interaction between people and technology in workplaces
that other research work does not consider.

Automating a technical realisation of multi-agent system
research in [20] presents. The authors show a domain en-
gineering process for developing multi-agent system product
lines including supporting agent variability and providing agent
feature traceability resulting in reduced time-to-market and
lower development costs. CPN Tools also offers an automatic
translation to Java code that a programmer can implement to
full completion.

For formalising agent models, other options exist too. A
tool called Rodin [21] supports system formalization with
Event-B that uses set theory and refinement through theorem
proving to represent systems at different abstraction levels.
The generated mathematical proof verifies the refinements.
The Rodin tool integrates system modelling and proving of
formalised systems.

The so-called PiVizTool [22] supports system design with
π-calculus. The original purpose is to model and analyse
Web-service choreographies and it is also a candidate for
formalising aspects of AOM. However, as [23] discusses, π-
calculus is differently to Petri Nets not a graphical notation
that system modelling and analysis more challenging for
laymen. Using mature CPN Tools is easier to accomplish and
it suffices to understand the use of the integrated tools for
simulation, performance testing and verification to generate
quickly soundness checks for AOM.

VII. CONCLUSION

In this paper, we define heuristics for formalising and
evaluating agent-oriented behaviour models of socio-technical
systems. The aim is to ensure before an actual implementation
that the models are sound and coherent. A running case from

442



the healthcare domain demonstrates the mapping from AOM
to CPN. The running case focuses on the management of
Critical Laboratory Results by utilising a minimum number
of resources, including humans such as doctors and nurses.

For capturing socio-technical requirements of the running
case, the AOM approach is suitable for engaging technical and
non-technical stakeholders from the healthcare domain. A goal
model and behaviour interface model summarise the results of
the AOM-based design. The former specifies in a hierarchically
refining way, the objectives of a socio-technical system while
the latter defines the triggers, preconditions and postconditions
for each identified activity.

We give a set of mapping heuristics from AOM to CPN
with the latter having the advantage of providing visual ele-
ments of places, transitions, modules, arcs that may carry con-
dition statements with the required expressiveness to capture
the properties of the equivalent AOM model. The advantage of
this mapping is that the CPN model allows for tool supported
simulation, performance testing and model-checking based
verification that is currently not possible in AOM. Conse-
quently, such a CPN-based evaluation gives indications about
the soundness of the AOM models and coherent behaviour of
the designed socio-technical system. The running case of the
paper shows that the results of the CPN-model simulations
yields results corresponding to empirical data collected from
the healthcare domain.

As future work, we plan to develop tool-support for map-
ping from AOM to CPN that requires a detailed definition of
the mapping rules beyond the heuristics given in this paper.
Furthermore, this tool must also comprise mechanisms for a
rapid system implementation, for example, by mapping auto-
matically to programming code that reduces full development
time to a minimum.

ACKNOWLEDGEMENT

This work is partially supported by the project
SF0140013s10 ”Model-based Creation and Management
of Evolutionary Information Systems” (2010-2014) by the
Estonian Ministry of Education and Research; The IT
Academy Programme for Information and Communication
Technology Research of Tallinn University of Technology
(13-09-00-1); The Dawn Program of Shanghai Education
Commission (11SG44) and The Research Fund for
the Doctoral Program of Higher Education of China
20123120130001).

REFERENCES

[1] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly,
M. Kwiatkowska, J. Mcdermid, and R. Paige, “Large-scale complex
it systems,” Communications of the ACM, vol. 55, no. 7, pp. 71–77,
2012.

[2] P. Carayon, “Human factors of complex sociotechnical systems,” Ap-
plied ergonomics, vol. 37, no. 4, pp. 525–535, 2006.

[3] E. Trist, “Some social and psycho,” Human relations, vol. 4, p. 3, 1951.
[4] M. Mahunnah and K. Taveter, “A scalable multi-agent architecture in

environments with limited connectivity: Case study on individualised
care for healthy pregnancy,” in 7th IEEE International Conference on
Digital Ecosystems and Technologies (DEST). IEEE, 2013, pp. 84–89.

[5] I. Shvartsman and K. Taveter, “From agent-oriented models to profile
driven military training scenarios,” in Intelligent Distributed Computing
VII. Springer, 2014, pp. 317–322.

[6] S. Pedell and L. Sterling, “Agent-based modelling for understanding
sustainability,” in Agents in Principle, Agents in Practice. Springer,
2011, pp. 398–409.

[7] S. Pedell, T. Miller, L. Sterling, F. Vetere, and S. Howard, “Sub-
stantiating agent-based quality goals for understanding socio-technical
systems,” in Advanced Agent Technology. Springer, 2012, pp. 80–95.

[8] L. Sterling and K. Taveter, The art of agent-oriented modeling. MIT
Press, 2009.

[9] M. Mahunnah, A. Koorts, and K. Taveter, “Towards distributed so-
ciotechnical system for reporting critical laboratory results.” in The
6th International Conference on Health Informatics (HEALTHINF),
Barcelona, Spain. SciTePress-Science and Technology Publications,
2013.

[10] E. Trist, “The evolution of socio-technical systems,” Occasional paper,
vol. 2, p. 1981, 1981.

[11] S. A. DeLoach, “Modeling organizational rules in the multi-agent sys-
tems engineering methodology,” in Advances in Artificial Intelligence.
Springer, 2002, pp. 1–15.

[12] P. Giorgini, J. Mylopoulos, and R. Sebastiani, “Goal-oriented require-
ments analysis and reasoning in the tropos methodology,” Engineering
Applications of Artificial Intelligence, vol. 18, no. 2, pp. 159–171, 2005.

[13] S. A. DeLoach, “Analysis and design using mase and agenttool,” DTIC
Document, Tech. Rep., 2001.

[14] L. Padgham and M. Winikoff, “Prometheus: A methodology for de-
veloping intelligent agents,” in Agent-oriented software engineering III.
Springer, 2003, pp. 174–185.

[15] J. Marshall, “Agent-based modelling of emotional goals in digital media
design projects,” International Journal of People-Oriented Program-
ming, 2014.

[16] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” Dependable
and Secure Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11–33,
2004.

[17] K. Jensen, L. Michael, K. L. Wells, K. Jensen, and L. M. Kristensen,
“Coloured petri nets and cpn tools for modelling and validation of
concurrent systems,” in International Journal on Software Tools for
Technology Transfer, 2007, p. 2007.

[18] R. K. Chatterjee, A. Sarkar, and S. Bhattacharya, “Modeling and
analysis of agent oriented system: Petri net based approach,” in 11
th International Conference on Software Engineering Research and
Practice (SERP 11, WORLDCOMP 2011), vol. 1, 2011, pp. 17–23.

[19] W. Iqbal and S. Yousaf, “Formal modeling of agent based cloud
computing services using petri nets,” VFAST Transactions on Software
Engineering, vol. 1, no. 2, pp. 1–6, 2013.

[20] I. Nunes, C. J. D. Lucena, D. Cowan, U. Kulesza, P. Alencar, and
C. Nunes, “Developing multi-agent system product lines: from re-
quirements to code,” International Journal of Agent-Oriented Software
Engineering, vol. 4, no. 4, pp. 353–389, 2011.

[21] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in
event-b,” International journal on software tools for technology transfer,
vol. 12, no. 6, pp. 447–466, 2010.

[22] P. Papapanagiotou and J. D. Fleuriot, “A theorem proving framework
for the formal verification of web services composition,” arXiv preprint
arXiv:1108.2348, 2011.

[23] W. van der Aalst, “Pi calculus versus petri nets: Let us eat ”humble
pie” rather than further inflate the ”pi hype”,” 2003.

443


