
UNCORRECTED P
ROOF

Engineering societal information systems

by agent-oriented modeling

Kuldar Taveter
a,b,∗,1

, Hongying Du
b
 and Michael N. Huhns

b

a
 Department of Informatics, Tallinn University of Technology, Raja 15, 12618, Tallinn, Estonia
b

 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, 29208, USA

Abstract. This article is concerned with the engineering of societal information systems where technical components of a

system – software agents – support the social network around which the system is centered. We propose agent-oriented mod-

eling as a suitable software engineering approach for developing open and adaptive societal information systems. The article

first outlines the steps of the software engineering process of agent-oriented modeling and shows how the resulting models

can be mapped to the simulation environment. It then describes two case studies where agent-oriented modeling has success-

fully been applied. The first case study addresses the development of an agent-based decision-making system for helping cus-

tomers in grocery shopping. The second case study treats the engineering of a societal information system for helping patients

in finding healthcare providers. The simulation results from both case studies are presented and discussed. We conclude the

article by comparing related work and drawing conclusions.

Keywords: Agent, multi-agent system, agent-oriented modeling, socio-technical system, societal information system

∗

 Corresponding author. E-mail: kuldar.taveter@ttu.ee.
1

 This work was performed while the first author was a Fulbright Scholar with the University of South Carolina.

1. Introduction

This article is concerned with the engineering of

societal information systems. A societal information

system is based on a social network, which is a

graphical structure whose nodes are roles played by

individuals or organizations and whose links are spe-

cific types of dependencies among the roles. An in-

formation system should both support and. An in-

formation system should both support and take ad-

vantage of the dependencies. Examples of informa-

tion systems intertwined with social networks are a

system for mediating intimacy [34], a system for in-

tergenerational play between geographically sepa-

rated grandparents and grandchildren [20,33], a sys-

tem for playing and sharing music based on human

activities and emotions [14], and a system for emer-

gency/disaster management [16]. Andrew P. McAfee

[15] describes a corporate intranet based on a social

network as “an online platform with a constantly

changing structure built by distributed, autonomous,

and largely self-interested peers.”

Differently from the mentioned systems, we aim to

design large-scale information systems that gather

information from hundreds, perhaps thousands, of

nodes, each associated with a person, and that affect

the behaviors of the people at the nodes. In today’s

world this already happens by means of on-line so-

cial networking services, such as Facebook and Lin-

kedIn. However, centralized social networking ser-

vices process the information at their disposal in their

own interests and share it between the participants

only selectively. To alleviate this problem and im-

prove the information shared within a large network,

we are investigating the use of software agents – dis-

tributed, reactive and proactive software entities

representing and working on behalf of each person in

the network. Such agents gather information from

individuals at the nodes of the network, process it,

and enhance human behaviors at the nodes. The re-

sulting system is a kind of multi-agent system (MAS),

which can be defined as a system consisting of active

and autonomous interacting agents [11,40]. The key

metaphor for multi-agent systems is interaction. Mul-

Journal of Ambient Intelligence and Smart Environments 0 (2012) 1–26
DOI 10.3233/AIS-2012-0149
IOS Press

1876-1364/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

1

UNCORRECTED P
ROOF

ti-agent systems emphasize the design-time autono-

my of the nodes and the importance of the environ-

ment in which the nodes act, which itself must often

be designed [10].

The areas where the resulting information systems

can help are (1) regulation (e.g., banking), (2) alloca-

tion of scarce resources (e.g., electric power, parking

spaces, and emergency care), (3) distributed situation

assessment (e.g., traffic jams), and (4) decentralized

decision-making (e.g., finding a healthcare provider),

which represent the four kinds of problems that so-

cieties confront. A societal information system can

accordingly be defined as an information system

where interactions among the participants are en-

hanced through their representatives – software

agents – to guide their individual actions/decisions

and, by aggregating local control decisions, achieve

efficient and effective emergent global behavior.

Agents are needed to represent the members of the

society, because the computing tasks are too technic-

al and/or too mundane and tedious to be done by in-

dividual members, while still considering the prefe-

rences of the members.

Engineering societal information systems is differ-

ent from engineering other kinds of information sys-

tems. One of the reasons is that while an information

system is normally seen as a system acting in the

interests of enterprises or other organizations, a so-

cietal information system acts in the interests of a

society as a whole, but at the same time honoring the

interests of individual members of the society. As

such, societal information systems are open systems

because commuters, patients, or shoppers, for exam-

ple, may join and leave the system at any time. So-

cietal information systems are also adaptive systems,

because they should react to their constantly chang-

ing environment, which can take the form of changes

in interest rates, or in a combination of energy pro-

ducers and consumers, or in traffic infrastructure. We

also term societal information systems as intelligent

systems, because they reflect the “wisdom of

crowds” when recommending, for example, a health-

care provider or a grocery store.

Because of these features, developing societal in-

formation systems requires a software engineering

approach different from that of engineering more

conventional centralized information systems of

client-server type (e.g. [1]). Because of the nature of

societal information systems, it is crucial to address

their design from three balanced and interrelated

perspectives: information, interaction, and behavior.

The information perspective matters because societal

information systems are rooted in selectively sharing

knowledge between software agents representing

individuals. The interaction perspective is important

because the very idea of societal information systems

is based on interactions between software agents

representing individuals in a social network. Through

interactions the agents exchange knowledge but also

achieve consensus by negotiations. Finally, the beha-

vior perspective caters for considering the interests of

individuals because this is what a software agent

representing an individual effectively does. To sum

up this paragraph, the completeness of the design

process is the most important criterion for designing

societal information systems.

A particular characteristic required of a suitable

software engineering approach is its ability to pro-

duce efficient, intelligent, and adaptive software in a

purposeful and understandable fashion. Purposeful-

ness means that in light of the complexity and chang-

ing nature of the environment, it will be difficult – if

not impossible – for all requirements to be stated. It

is better to work at a higher level and to explain pur-

poses in terms of goals, and, in certain circumstances,

to have the system determine the appropriate path of

action. By understandability, we mean that software

should be transparent at least in its design and overall

purpose.

In our view, agent-oriented modeling [28] meets

well the above requirements for purposefulness and

understandability and can therefore be successfully

applied for developing societal information systems

that are open, intelligent, and adaptive. An equally

important feature of agent-oriented modeling is that

rather than being yet another agent-oriented software

engineering (AOSE) methodology, it provides a con-

ceptual framework that enables to estimate the com-

pleteness of a design process. This conceptual

framework – the viewpoint framework – supports the

modeling of a given problem domain at three abstrac-

tion layers – analysis, design, and platform-specific

design – and from three balanced and interrelated

viewpoint aspects: interaction, information, and be-

havior. Because of this, agent-oriented modeling

(AOM) is compatible with any AOSE methodology

or their combination and can be applied in any prob-

lem domain. Examples of how AOM has been ap-

plied in different problem domains and with various

AOSE methodologies are presented in Part II of [28].

The viewpoint framework is further described in Sec-

tion 2.

Another appropriate feature of agent-oriented

modeling is that it views multi-agent systems as so-

cio-technical systems. A socio-technical system is a

system containing both a social aspect and a technic-

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling2

UNCORRECTED P
ROOF

al aspect, each of which can be treated as a subsys-

tem [27]. The notion of socio-technical systems is

very useful for understanding and defining societal

information systems. A societal information system

is a socio-technical system where technical compo-

nents of a system – software agents – support the

social network around which the system is centered.

This article addresses developing and applying so-

cietal information systems for decentralized decision-

making in the problem domains of shopping for gro-

ceries and choosing healthcare providers. Because it

is generally complicated to arrange experiments in a

society, we have developed computer simulations for

the two problem domains mentioned, using the Net-

Logo [38] platform of agent-based simulation. How-

ever, as most of the agent-oriented models developed

in this article are platform-independent, they can also

be used for developing real-life societal information

systems in addition to simulated ones.

The major contributions of this article are the fol-

lowing:

− Describing a software engineering approach for

designing societal information systems;

− Validating the approach by designing two

“proof-of-concept” societal information systems.

The rest of this article is structured as follows.

Section 2 gives an overview of agent-oriented model-

ing. Section 0 describes how the modeling constructs

of agent-oriented modeling can be mapped to the

programming constructs of NetLogo. Sections 4

and 5 respectively describe the application of agent-

oriented modeling to the case studies of social gro-

cery shopping and finding a healthcare provider. For

both case studies, these sections also describe how

agent-oriented models have been validated by Net-

Logo simulations. Section 0 compares related work

and Section 7 draws conclusions.

2. Agent-oriented modeling

Agent-oriented modeling described in [28] is a

holistic approach for analyzing and designing socio-

technical systems consisting of humans and technical

components, both of which are subsumed under the

concept of agent. The core of agent-oriented

modeling lies in the viewpoint framework that can be

populated with different kinds of models. Table 1

depicts the viewpoint framework populated with a

particular set of models from [28] that we have

chosen for the two case studies described in Sec-

tions 4 and 5. The rationale for choosing this

particular set of models is described further below in

this section. The viewpoint framework represented in

Table 1 maps each model to the vertical viewpoint

aspects of interaction, information, and behavior and

to the horizontal abstraction layers of analysis, design,

and platform-specific design. Each cell in the table

represents a specific viewpoint. Proceeding by

viewpoints, we next give an overview of the types of

models employed in this article.

From the viewpoint of behavior analysis, a goal

model is a container of three components: goals,

quality goals, and roles [28]. A goal is a representa-

tion of a functional requirement of the socio-

technical system. A quality goal, as its name implies,

is a non-functional or quality requirement of the sys-

tem. Goals and quality goals can be further decom-

posed into smaller related sub-goals and sub-quality

goals. The resulting hierarchical structure is used to

show that the subcomponent is an aspect of the top-

level component. Goal models also determine roles

that are capacities or positions that agents playing the

roles need to contribute to achieving the goals. Roles

are modeled in detail in the viewpoint of interaction

analysis [28].

From the viewpoint of interaction analysis, the

properties of roles are expressed by role models. A

role model describes the role in terms of the respon-

sibilities and constraints pertaining to the agent(s)

playing the role. An organization model is a model

that represents the relationships between the roles of

the socio-technical system, forming an organization

[28]. The most common (and perhaps most impor-

tant) relationships are control, benevolence, and peer,

as conceived by Zambonelli, et al. [41]. In the con-

trol relationship, one role delegates responsibilities

to another. In the peer relationship, either role can

Table 1

The model types of agent-oriented modeling

Abstraction
layer

Viewpoint aspect

 Interaction Information Behavior

Analysis Role models
and
organization
model

Domain model Goal
models

Design Agent
acquaintance
model and
interaction
models

Knowledge
model

Behavioral
scenarios

Platform-
specific
design

Platform-specific design models

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 3

UNCORRECTED P
ROOF

delegate responsibilities to another. Finally, in the

benevolence relationship, a role offers to fulfill re-

sponsibilities for another if it is in the offering role’s

interests.

From the viewpoint of information analysis, a do-

main model represents the knowledge to be handled

by the socio-technical system. A domain model con-

sists of domain entities and relationships between

them. A domain entity is a modular unit of know-

ledge handled by a socio-technical system [28].

From the viewpoint of interaction design, an agent

acquaintance model outlines interaction pathways

between agents of the socio-technical system [28].

Interaction models represent interaction patterns be-

tween agents of the given types. They are based on

responsibilities defined for the corresponding roles

[28].

From the viewpoint of information design, the

knowledge model represents private and shared

knowledge that the agents need for functioning in the

socio-technical system [28].

Finally, from the viewpoint of behavior design, we

model how agents make decisions and perform activ-

ities. This is expressed by a behavioral scenario that

describes how an agent of the given type contributes

to achieving the goals set for the system [28].

As emphasized in Section 1, agent-oriented

modeling is a generic approach rather than another

AOSE methodology. It means that rather than using

particular types of models, the completeness of the

design process matters. Design is complete when all

the viewpoints corresponding to the cells of Table 1

are covered by models. For example, in Chapter 7 of

[28] it is demonstrated how the viewpoint framework

can be populated by (combinations of) models

originating in the following AOSE methodologies:

Gaia [4], MaSE [6], Tropos [2], Prometheus [21],

ROADMAP [12], and RAP/AOR [30].

We next describe the rationale for choosing a par-

ticular set of models described by Table 1 for design-

ing societal information systems. First, as is shown

by Table 1, this set of models results in a complete

design, where all the viewpoints are covered in a

balanced way. Second, according to our experience,

these models are appropriate for the development of

open, adaptive, and intelligent systems of the kind

described in Section 1. Openness of systems is sup-

ported by goal models [28] that postpone deciding

the system boundary until platform-independent de-

sign takes place compared with, e.g., use cases of

UML [19], where the system boundary is decided at

the beginning of requirements engineering. The bene-

fit of postponing the system boundary is that it

enables any role in an open system to be played by a

human or software agent. For example, in the result-

ing simulations described in this article all the roles

are played by software agents, while in a real societal

information system, some roles are played by hu-

mans and other roles by software agents. Adaptivity

and intelligence of systems are supported by adopting

the concept of agent in designing societal information

systems and software agents for implementing them,

because agents are by definition reactive to changes

in the environment. Agents are also proactive, that is,

capable of initiating actions based on their know-

ledge, which can reflect the “wisdom of crowds.”

Subsequently we outline a software engineering

process that prescribes the order in which the models

of different viewpoints, such as behavior analysis

models and information design models, should be

created when developing societal information sys-

tems. The process consists of a set of questions that

facilitate system development. The questions have

been adapted and modified based on [29,39]. We

next explain the modifications we introduced to simi-

lar questions pertaining to the case study of an air-

craft turnaround simulator described in [29].

While the case study of an aircraft turnaround si-

mulator described in [29] results in an agent-based

simulation, just like the case studies presented in this

article, the models used in [29] differ because of a

different problem domain and different simulation

platform. In particular, while [29] applied motiva-

tional scenarios, we have chosen to use just goal

models. Also, [29] does not make use of a domain

model, agent acquaintance model, and interaction

models, and uses activity descriptions instead of be-

havioral scenarios. In addition, [29] utilizes agent

models of a different kind. Considering all this, the

set of questions applied in this article is different

from the set applied in [29].

Table 2 shows how the questions applied by us

cover the abstraction layers of analysis and design

and the viewpoint aspects of interaction, information,

and behavior. The abstraction layer of platform-

specific design is not addressed by the questions. The

Table 2

Coverage of the viewpoint framework by the software engineering
process for designing societal information systems

Abstraction
layer

Viewpoint aspect

 Interaction Information Behavior

Analysis Q4–Q9 Q10 Q1–Q3, Q7

Design Q11–Q12,
Q18

Q16, Q19 Q13–Q15, Q17

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling4

UNCORRECTED P
ROOF

reason is that we do not need any platform-dependent

models because of the high abstraction level of the

implementation constructs of the simulation envi-

ronment employed by us – NetLogo [38]. Instead, in

Sections 4.2 and 5.2 the abstraction layer of plat-

form-dependent design is covered by explanations of

developing NetLogo simulations.

The order of applying the questions represented in

Table 1 is described by Fig. 1. The figure represents

the stages of the software engineering process, show-

ing for each stage the questions that it entails and the

model(s) in which the answers to the questions are

recorded. For example, in our case studies, the an-

swers to the questions Q1, Q2, and Q3 are recorded

in the goal model created for the system. Answering

the questions represented in Table 2 and Fig. 1 pro-

duces the agent-oriented models. The questions to be

asked will be presented in Section 3.1 when explain-

ing the case study of societal grocery shopping.

3. Mapping agent-oriented models to NetLogo

In this section, we give an overview of some basic

programming constructs of NetLogo and show how

agent-oriented models described in Section 2 can be

mapped to them. NetLogo [38] is a programmable

modeling environment for simulating natural and

social phenomena. System designers using NetLogo

can give instructions to hundreds or thousands of

agents all operating independently. This makes it

possible to explore the connection between the mi-

cro-level behavior of individuals and the macro-level

patterns that emerge from the interaction of many

individuals. Because of this, NetLogo is a suitable

environment for simulating societal information sys-

tems.

The NetLogo world is made up of agents that can

follow instructions. Each agent can carry out its own

activity simultaneously with the activities performed

by other agents.

In NetLogo, there are four types of agents: turtles,

patches, links, and the observer. Turtles are agents

that can move around in the world. The world is two-

dimensional and is divided up into a grid of patches.

Each patch is a square piece of “ground” over which

turtles can move. Links are agents that connect two

turtles. The observer does not have a location – one

can imagine it as looking out over the world of turtles

and patches. We can also think of an observer as of a

human agent in a socio-technical system.

When NetLogo starts, there are no turtles yet. The

observer can make new turtles. Patches can also

make new turtles. Even though patches cannot move,

they are otherwise just as “alive” as turtles and the

observer. Patches can be used for representing the

elements of a (smart) infrastructure.

Patches and turtles have coordinates. The coordi-

nates of a patch are always integers, but a turtle’s

coordinates can have decimals. This means that a

turtle can be positioned at any point within its patch;

it does not have to be in the center of the patch.

Links do not have coordinates; instead they have

two endpoints, each of them a turtle. Links appear

between the two endpoints. Links can be used for

simulating communication pathways between agents.

In addition to individual agents, NetLogo allows

its observer to create sets of agents – called agentsets.

An agentset can contain turtles, patches, or links, but

just one type at once. The elements of an agentset are

in a different random order every time the agentset

gets used.

In NetLogo, commands and reporters tell agents

what to do. A command is an action for an agent to

carry out. A reporter computes a result and reports it.

Most commands begin with verbs (“create”, “die”,

“jump”, “inspect”, “clear”, etc.), while most reporters

are nouns or noun phrases.

Fig. 1. The software engineering process for designing societal
information systems.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 5

UNCORRECTED P
ROOF

NetLogo has two kinds of commands and reporters.

Commands and reporters built into NetLogo are

called primitives. The NetLogo Dictionary has a

complete list of built-in commands and reporters.

Commands and reporters that the programmer can

define are called procedures, which are named. Many

commands and reporters take inputs: values that the

command or reporter uses in carrying out its actions.

Agent variables are places to store values in an

agent. An agent variable can be a global variable, a

turtle variable, a patch variable, or a link variable. If

a variable is a global variable, there is only one value

for the variable and every agent can access it. Turtle,

patch, and link variables are different. Each turtle has

its own value for every turtle variable, and each patch

has its own value for every patch variable. The same

is true for links.

Some variables, such as the one representing the

color of a turtle, are built into NetLogo. The observer

can also define his/her own global and local variables.

A local variable is defined and used only in the con-

text of a particular procedure or part of a procedure.

NetLogo has many built-in variables and procedures

that support output to the screen and input-output

from files.

NetLogo supports lists. A list lets the observer

store multiple pieces of information in a single varia-

ble. Each value in the list can be a value of any type:

a number or a string, an agent or agentset, or even

another list.

NetLogo allows the observer to define different

“breeds” or types of turtles and links. Once the ob-

server has defined breeds, he/she can make the dif-

ferent breeds behave differently. There are two kinds

of link breeds: breeds of directed or undirected links.

The programming constructs of NetLogo are see-

mingly quite different from the modeling concepts of

agent-oriented modeling. However, at a closer look,

the NetLogo programming constructs can be unders-

tood as the ones defining agents and their environ-

ments. As pointed out in [28], an environment can be

either a real physical environment or a virtual envi-

ronment. An environment simulated by means of

NetLogo is an example of a virtual environment.

For example, in the context of smart mobile appli-

cations, turtles can model and simulate the owners of

smartphones who go to different grocery stores or

healthcare providers or who drive their automobiles

in traffic. The local or private knowledge of such

agents can be represented by means of turtle va-

riables and their shared knowledge or public know-

ledge accessed by them – by global variables. The

relationships between knowledge items are repre-

sented in NetLogo as calculations or derivations in-

volving the respective NetLogo variables. For exam-

ple, the relationship type “Is based on” between the

knowledge items Fuel Cost and Route is represented

as a calculation of finding the fuel cost based on the

route chosen. Acquaintances (communication path-

ways) between agents can be modeled and simulated

as links between turtles. The infrastructure, such as

roads, can be modeled and simulated as a set of

patches forming the environment for the agents. All

in all, such a view is consistent with the one treating

both agents and their environments as first-class citi-

zens [37].

When we turn from the level of instances to the

level of types, we also discover obvious mappings

between agent-oriented modeling and NetLogo. For

example, roles of agent-oriented modeling are

mapped to agent types, which are in turn mapped to

breeds of turtles. Similarly, private and shared know-

ledge items that correspond to domain entities are

respectively mapped to local and global variables of

NetLogo. The types of organizational relationships

between agents, such as control, benevolence, and

peer, correspond to breeds of links between turtles

whereas.

Goals and behavioral scenarios of agent-oriented

modeling correspond well to procedures of NetLogo

that typically define the behavior of a set of turtles

rather than just one turtle. The biggest disadvantage

of using NetLogo for simulating multi-agent systems

is that NetLogo does not directly support interactions

between agents, and interactions therefore have to be

implemented indirectly through the use of global

variables.

A detailed mapping between the concepts of

agent-oriented modeling and the programming con-

structs of NetLogo is presented in Table 3. In Sec-

tions 4.2 and 5.2 we employ this mapping in two case

studies.

4. Case study of grocery shopping

4.1. Analysis and design

As we have previously described in [7], aided by

information systems for analyzing customer buying

data, supermarket chains continually alter the prices

of products to maximize their profits. They do this by,

in essence, experimenting on their customers. For

example, the price of a product might be raised at one

store until customers stop buying it. This maximum

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling6

UNCORRECTED P
ROOF

price is then used at all of the stores in the chain. The

customers at the supermarkets, however, do not have

any comparable information systems that might aid

them in price comparisons and are often at the mercy

of the stores. Most stores do not post their prices on-

line, so that customers have to visit each store to find

the prices of groceries, which makes comparison

shopping prohibitive [7].

In this section we describe the design of an online

system where customers could post the prices paid

for groceries (this could be automated by scanning

barcode labels of the products and later on by query-

ing the RFID tags of the products) and where a pros-

pective shopper could enter a grocery list and obtain

a pointer to the store with the lowest total price. This

would enable comparison shopping for groceries and

would render the customer-to-store interactions fairer.

It would also encourage stores to offer their true pric-

es to avoid driving away potential customers. How-

ever, the effort required from the customers would be

substantial. To make the effort reasonable and mana-

geable, each customer could benefit from an agent

that represented his/her interests and interacted with

the agents of the other customers and, possibly, with

store agents [7]. The highest-level goal – purpose –

of such an information system is obvious and simple:

“Perform shopping”. We next explain the software

engineering process by applying the questions

represented in Table 2 to elaborate the highest-level

goal “Perform shopping”:

Q1 (Apply recursively to all goals starting with the

system’s purpose): What are the sub-goals of the

given goal that are needed to achieve it?

Example: For achieving the “Perform shopping”

goal, the sub-goals “Join the system”, “Create shop-

ping list”, “Find potential stores”, “Decide stores’

shopping baskets”, “Buy products”, and “Exchange

price and quality information” need to be achieved.

Q2 (For each goal of the goal tree): What are the

quality goals that have to be considered when achiev-

ing the given goal?

Example: For achieving the “Exchange price and

quality information” goal, the quality goals “Secure”,

“Minimal participation”, and “Anonymous” have to

be considered.

We next decide the roles by answering the follow-

ing question:

Q3 (Attach to the lowest-level sub-goal possible):

What are the roles that are required for achieving the

goals?

Example: For achieving the “Perform shopping”

goal, the roles Customer and Store are required.

The resulting goal model of the societal informa-

tion system of grocery shopping is represented in

Fig. 2. The notation for representing goals and roles

is shown in Table 4, which originates in [28]. The

Table 3

The mappings between agent-oriented modeling and NetLogo

Modeling concept of problem domain analysis Modeling concept of platform-independent
computational design

Programming construct of NetLogo

Role (role model) Agent (agent model) Turtle

Role (role model) Agent type (agent model) Turtle breed

Goal (goal model) Behavioral scenario Procedure

Domain entity (domain model) Private knowledge item (knowledge model) Local (to turtle) variable

Domain entity (domain model) Shared knowledge item (knowledge model) Global variable

Relationship between roles in a domain model
(organization model)

Acquaintance (agent acquaintance model) Link between turtles

Relationship between domain entities (domain
model)

Relationship between knowledge items
(knowledge model)

Calculation or derivation involving the
knowledge items

Relationship type (domain model) Relationship type (knowledge model) Link breed

Table 4

[28] Notation for modeling goals and roles

Symbol Meaning

Goal

Quality goal

Role

Relationship between goals

Relationship between goals and
quality goals

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 7

UNCORRECTED P
ROOF

goal model is obtained as a result of applying ques-

tions Q1–Q3 recursively.

The goal model represented in Fig. 1 reflects that

answering question Q2 has yielded a number of qual-

ity goals. First of all, the “Societally” quality goal

attached to the highest-level goal of the information

system expresses that customers are willing to share

some local information, such as information about

prices, to cooperate in improving the social welfare.

The “Easy” quality goal pertaining to the “Join the

system” functional goal states that starting using the

system should not require much effort from a cus-

tomer. The “According to the need” and “Simple”

quality goals express the requirements for creating a

shopping list with the help of the system. These qual-

ity goals should be considered when, for example,

designing a user interface for the real-life societal

information system. According to the “Close” quality

goal, potential stores should be close to the customer.

Deciding on what closeness exactly means is delibe-

rately deferred to the design stage of the real societal

information system when technical means available

for determining proximity within the given informa-

tion system are better understood. The “Minimal

overall price” and “Quality products” quality goals

represent criteria for deciding the stores and the

shopping baskets of the products purchased from

them. The overall price is concerned with both the

cost of products purchased and the cost for fuel used

for shopping. Finally, the “Secure”, “Minimal partic-

ipation”, and “Anonymous” are quality requirements

for exchanging information with other customers

about prices and quality of products sold by different

stores. The quality goal “Minimal participation”

means that product information should be exchanged

in as automated a fashion as possible. At the current

stage of technological development, a complying

design would translate to leaving for the customer

only the operation of scanning the barcode labels of

products.

Next, role models are obtained and refined by

means of asking questions Q4, Q5, Q6, Q7, and Q8

presented below:

Q4: What are the responsibilities of each role that

have to be fulfilled for achieving the respective

goal(s)?

Example: For achieving the “Perform shopping”

goal, the Customer role has the following responsi-

bilities: “Join the system”, “Create the shopping list”,

“Find potential stores”, “Decide the stores and their

respective shopping baskets”, “Decide the route”,

“Drive to the stores”, “Buy products”, “Post

price and quality-of-product information”, “Re-

ceive price and quality-of-product information”, and

“Store price and quality-of-product information”.

Note that the responsibilities of roles are orthogonal

to functional goals.

Q5: If one was to hire more staff to handle the

problem, what positions would need to be filled?

Fig. 2. The overall goal model for a societal information system of grocery shopping.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling8

UNCORRECTED P
ROOF

Example: The problem in the given case is shop-

ping. Some help would make shopping easier for a

customer. We therefore complement the goal model

with the Assistant role.

Q6 (For each new role): What responsibilities of

the existing roles does the new role take?

Example: The Assistant role takes the responsibili-

ty of finding potential stores, deciding and proposing

to the customer the stores and their respective shop-

ping baskets, deciding and proposing the route, and

posting and receiving price and quality-of-product

information.

Q7 (For each new role): Does the new role bring

along any new goals and sub-goals? What are the

new responsibilities of each role that have to be ful-

filled for achieving the respective goal(s)?

Example: The Assistant role brings along the goal

“Create typical shopping list” and “Add a product to

typical shopping list”. These goals are not shown in

Fig. 2. They are reflected by the corresponding re-

sponsibilities of the Assistant role and by the new

responsibility “Pick products from the typical shop-

ping list” of the Customer role.

Similarly, the metaphor of hiring new staff yields

the Coordinator role that takes the responsibilities of

storing and making available information about

products purchased, including prices that customers

have paid for groceries in different stores.

Q8 (For each role): To which social policies (rules,

regulations, or codes of behavior) is this role required

to adhere in order to fulfill its responsibilities suc-

cessfully?

Example: To benefit from the anonymous product

information posted by other customers, the customer

must authorize anonymous posting of his/her product

information.

Question Q3 yielded the roles Customer and Store

and the Assistant role has been added as a result of

asking question Q5.We represent the role models for

two of the resulting roles – Customer and Assistant –

in Tables 5 and 6, respectively. We do not represent

the Coordinator role because of its simple nature. The

organization model is then created based on question

Q9:

Q9 (For each role): Which other roles does this

role rely on? For each role that it relies on, what is

the relationship between these roles?

Example: The customer relies on the store to buy

grocery products. The customer also relies on other

customers for recommendations and on the assistant

for help. Consequently, the Store role is benevolent

towards the Customer role; the Customer is a peer of

the Customer role and controls the Assistant role.

Also, the Coordinator role is a peer to the Assistant

role. The resulting organization model is represented

in Fig. 3.

The following question Q10 yields the domain

model:

Table 5

The role model for Customer

Role Customer

Description The role of customer in grocery shopping

Responsibilities Join the system

Create the shopping list

Pick products from the typical shopping list

Confirm the stores and shopping baskets
suggested by the assistant

Confirm the route suggested by the assistant

Drive to the stores

Buy products

Register product information

Constraints To benefit from the product information
posted by other customers, the customer
must authorize posting of his/her product
information.

Table 6

The role model for Assistant

Role Assistant

Description The role of a customer’s assistant in grocery
shopping

Responsibilities Find potential stores

Decide and propose the stores and their
respective shopping baskets

Decide and propose the route

Create the typical shopping list

Post price and quality-of-product
information

Receive price and quality-of-product
information

Constraints Creating a shopping list should be simple
and reflect the need by the customer

Potential stores must be close to the
customer

The preferences by the customer must be
honored when deciding the stores and their
shopping baskets

The overall price should be as low as
possible

Quality of products chosen should be as
high as possible

Informing other customers should be secure
and anonymous

To post price and quality-of-product
information, the customer must have
scanned or inserted the product information

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 9

UNCORRECTED P
ROOF

Q10 (For each role): What domain entities will

this role require in order to fulfill its responsibilities

successfully? What are the relationships between the

domain entities, if any?

Example: To fulfill its responsibilities successfully,

the Assistant needs to access the domain entities

Shopping List, Shopping Basket, Fuel Cost, Store

Location, and Product Information, containing the

price and quality information about different prod-

ucts sold at various stores. A shopping list is a list of

products that should be bought, while a shopping

basket is a list of products that should be bought from

a specific store. The resulting partial domain model

of the societal information system of grocery shop-

ping is depicted in Fig. 4. The domain model also

identifies the relationships between the domain enti-

ties, such as “Is based on” in Fig. 4.

We next elaborate the domain model represented

in Fig. 4.The elaborated domain model of the societal

information system of grocery shopping is depicted

in Fig. 5. The domain model shows that the Customer

creates a Shopping List that is considered by the As-

sistant along with Fuel Cost and Product Information

when creating Shopping Baskets. We can also see

from Fig. 5 that Fuel Cost is based on Route, both of

which are calculated by the Assistant. The Route is,

in turn, based on Store Information, particularly Store

Location. Figure 5 shows that a Shopping Basket

consists of Products sold by a particular Store. We

can also see from Fig. 5 that a Customer registers

Product Information for each Product purchased by

him/her and that Product Information is posted by the

customer’s Assistant and stored by the Coordinator.

Finally, Fig. 5 represents that the Assistant creates a

Typical Shopping List, which is a kind of Shopping

List. Please note that some roles, such as Assistant

and Customer, occur in Fig. 5 several times. This is

important for just the clarity of Fig. 5.

Question Q10 completes the problem domain

analysis and platform-independent design is next,

beginning with question Q11:

Q11 (For each role): Is this role to be performed

by a human agent, a software agent, or an external

hardware/software system? Decide the agent type for

each software agent.

Example: In the societal information system of

grocery shopping, the Customer and Store roles are

performed by human agents and the Assistant and

Coordinator roles are performed by software agents.

As a result, we can conclude that the software system

boundary of the societal information system is ob-

viously between the roles Customer and Assistant

represented in Fig. 3. We can also say that on the

upper side of Fig. 3 is the human subsystem of the

socio-technical system to be designed and on the

lower side is the technical subsystem.

Fig. 3. The organization model of societal information system of
grocery shopping.

Fig. 4. Partial domain model of the societal information system of
grocery shopping.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling10

UNCORRECTED P
ROOF

Fig. 6. The agent acquaintance model for the societal information
system of grocery shopping.

The types of software agents playing the roles of

Assistant and Coordinator are ShopBot and Coordi-

nator Agent, respectively. The agent types are de-

picted in Fig. 6.

Q12 (For each decided agent type): With what

other agents does an agent of the given type interact?

Example: An agent of the ShopBot type interacts

with the Coordinator Agent that stores the informa-

tion received from many customers about the prices

and quality of products.

The answer is recorded in the agent acquaintance

model. The agent acquaintance model for the societal

information system of grocery shopping is

represented in Fig. 6. The model reflects that each

human participating in the system interacts with

Fig. 5. The elaborated domain model of the societal information system of grocery shopping.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 11

UNCORRECTED P
ROOF

his/her ShopBot agent and with the Coordinator

Agent. Please note that a rectangle in Fig. 6 is the

UML symbol for component with a different conno-

tation.

We next apply questions Q13, Q14, Q15, Q16, and

Q17 for creating behavioral scenarios for the agent

types just decided. The behavioral scenarios obtained

by answering questions Q13–Q17 are contained by

Tables 7 and 8 for agents playing the roles Customer

and Assistant, respectively. Each step of a behavioral

scenario consists of a trigger, condition, step number,

description of the activity, other roles involved and

the types of agents by which they are played, types of

domain entities accessed by the activity, and relevant

goals and quality goals from the goal model. Trigger

is the event to which the agent reacts by starting this

activity. Condition specifies in which order and how

many times a given activity should be performed.

The implicit condition is that an activity must be per-

formed sequentially and once:

Q13 (For each responsibility of each role): What

activities are required for an agent to fulfill this re-

sponsibility?

Example: An agent playing the Assistant role and

fulfilling the “Decide and propose the stores and their

respective shopping baskets” responsibility must per-

form the activity of deciding the shopping baskets,

where the commodities to be purchased from each

store chosen are decided. This activity is represented

as step 2 in Table 8.

Q14 (For each activity): What sub-activities and

atomic actions does this activity consist of and in

what order are they performed?

Example: The activity of deciding the shopping

baskets consists of sub-activities of deciding a shop-

ping basket for each potential store chosen by the

system. These sub-activities are performed in sequen-

tial order. For the purpose of simulation, the sub-

activity of deciding a shopping basket for a store is

considered as an atomic action.

Q15 (For each activity identified): What triggers

this activity?

Example: The activity of deciding the shopping

baskets is triggered by the completion of price and

quality evaluations for the stores.

Q16 (For each activity identified): What know-

ledge items does this activity need to access?

Example: The activity of deciding the shopping

baskets needs to access the following knowledge

items: Shopping List, Product, Product Information,

Store Information, and Shopping Basket.

Q17 (For each activity identified): What goals and

quality goals included by goal models are relevant

for successful performing of the given activity?

Example: For the activity of deciding the shopping

baskets, the relevant goal is “Decide stores’ shopping

Table 7

The behavioral scenario for a Human Agent playing the role of Customer

BEHAVIORAL SCENARIO 1

Role Customer

Agent type Human Agent

DESCRIPTION

Trigger Condition Step Activity Other roles/agent
types involved

Domain entities Relevant goals
(quality goals)

A request
by the
customer

Alternative 1 Create a shopping list Assistant/ShopBot Shopping List Create shopping list
(According to the
need, Simple)

2 Pick products from the
typical shopping list

A request
by the
ShopBot

For each
Store
chosen

3 Confirm the stores,
shopping baskets, and
route

Assistant/ShopBot Store
Information,
Shopping Basket,
Product,
Customer
Location, Route,
Fuel Cost

Find potential
stores (Close),
Decide stores’
shopping baskets
(Minimal overall
price, Quality
products), Decide
the route (Optimal)

A request
by the
customer

For each
Product to
be bought

4 Register product
information

Assistant/ShopBot Product, Product
Information

Exchange price and
quality information
(Secure, Minimal
participation,
Anonymous)

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling12

UNCORRECTED P
ROOF

baskets” and the relevant quality goals are “Minimal

overall price” and “Quality products.”

If there are any other roles/agent types involved,

the given activity is an interaction and should also be

represented as an interaction model. Obtaining inte-

raction models, such as the one exemplified by Fig. 7,

is the purpose of the next question to be asked, Q18:

Q18 (For each activity identified): Does the suc-

cessful completion of this activity require other

agents? If it does, what messages are involved?

Example: The successful completion of retrieving

the price and quality-of-product evaluations activity

modeled as step 1 in Table 8 requires interactions

with the Coordinator Agent. The prototypical mes-

Table 8

The behavioral scenario for a ShopBot agent playing the role of Assistant

BEHAVIORAL SCENARIO 2

Role Assistant

Agent type ShopBot

DESCRIPTION

Trigger Condition Step Activity Other roles/agent
types involved

Domain entities Relevant goals
(Quality goals)

The
shopping
list has been
created

For each
product on
the
Shopping
List

1 Retrieve the price and
quality-of-product
evaluations of the
product in different
nearby stores

Coordinator/
Coordinator Agent

Shopping List,
Product, Product
Information,
Store
Information,
Customer
Location

Find potential
stores (Close),

Exchange price
and quality
information
(Secure, Minimal
participation,
Anonymous)

The price
and quality-
of-product
evaluations
have been
retrieved

For each
potential
Store

2 Decide a shopping
basket

Customer/Human
Agent

Shopping List,
Product, Product
Information,
Store
Information,
Shopping Basket

Decide stores’
shopping baskets
(Minimal overall
price, Quality
products)

Shopping
baskets
have been
decided

For the
best
combinati
on of
Stores

3 Decide the route Customer/Human
Agent

Store
Information,

Customer
Location, Route,
Fuel Cost

Decide the route
(Optimal)

The route
has been
decided

 4 Propose the stores,
shopping baskets, and
route

Assistant/ShopBot Store
Information,
Shopping Basket,
Product,
Customer
Location, Route,
Fuel Cost

Find potential
stores (Close),
Decide stores’
shopping baskets
(Minimal overall
price, Quality
products), Decide
the route (Optimal)

Product
information
for the
given
product has
been
registered

 5 Post price and quality-
of-product information

Coordinator/
Co-ordinator Agent

Product, Product
Information

Exchange price
and quality
information
(Secure, Minimal
participation,
Anonymous)

Product
information
for the
given
product has
been
registered

 6 Complement the typical
shopping list

 Product, Product
Information

Create shopping
list (According to
the need, Simple)

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 13

UNCORRECTED P
ROOF

sages involved are represented in the interaction dia-

gram in Fig. 7.

Finally, we derive the knowledge model in the fol-

lowing way:

Q19 (For each activity identified): What know-

ledge items are shared by which agents and what

knowledge items are private for which agents?

Example: The knowledge items Product, Product

Information, and Store Information are shared be-

tween agents of the type ShopBot and the Coordina-

tor Agent, while the knowledge items Shopping List,

Shopping Basket, Customer Location, and Route are

private for each ShopBot.

The answer is recorded in the knowledge mode

represented as Table 9, which shows for each pair of

man-made agent (software agent or robot) types

which domain entities are shared between agents of

the corresponding types and which ones are private.

4.2. Developing a simulation for grocery shopping

In Section 4.1 we described how a real societal in-

formation system of grocery shopping should be de-

signed. As it is complicated to experiment with such

information system in a society, we have to rely on

simulations for evaluating our approach. We decided

to perform simulations on the NetLogo environment

that was introduced in Section 3. In order to imple-

ment the agent-oriented models on NetLogo, we map

also roles that are normally performed by human

agents, such as Customer in the example of grocery

shopping, to software agent types. In addition, we

assume the quantity of a specific item in a store is

either zero or infinity.

To make our simulations as realistic as possible,

we used data about relative importance of compo-

nents in the Consumer Price Indexes by the U.S. Bu-

reau of Labor Statistics’ Division of Information Ser-

vices [32].

We next describe from different viewpoints how

we mapped agent-oriented models of the societal

information system of grocery shopping to the pro-

gramming constructs of NetLogo.

From the viewpoint of platform-dependent infor-

mation design, we represented in the simulation the

domain entities introduced by agent-oriented model-

ing in Section 4.1 as the following NetLogo va-

riables:

− The Product domain entity – in terms of the

product’s identifier and price.

− The Shopping List domain entity – in terms of a

list of product identifiers of the products that a

customer wants to buy and their quantities.

− The Store Location and Customer Location do-

main entities – in terms of the simulated coordi-

nates of a customer and store.

− The Shopping Basket domain entity – in terms

of the store and list of products.

− The Product Information domain entity – in

terms of the store, product identifier, price, and

product quality.

The viewpoint of platform-dependent behavior de-

sign covers the behaviors of the ShopBot agents and

the Coordinator Agent, as well as software agents

performing the roles of Customer and Store. In ac-

cordance with the behavioral scenarios represented in

Tables 7 and 8, the starting point of the simulation of

societal shopping consists of a customer’s shopping

list of product identifiers and the quantities of the

respective products.

We now take the viewpoint of platform-dependent

interaction design. At step 1 of the behavioral scena-

rio represented in Table 8, a ShopBot agent retrieves

from the Coordinator Agent the prices and quality

evaluations for the products on the shopping list in all

of the nearby stores. By “nearby”, we mean the stores

that are within a certain range of a customer in terms

of the simulated coordinates. The number of stores

Table 9

The types of domain entities shared by agents of the corresponding types

 ShopBot Coordinator Agent

ShopBot Shopping List, Shopping Basket, Customer Location, Route Product, Product Information, Store Information

Coordinator Agent Product, Product Information, Store Information

Fig. 7. A message sequence between ShopBot and Coordinator
Agent.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling14

UNCORRECTED P
ROOF

within the range can be set at the start of the simula-

tion. We set it to 12 as an overestimate of real situa-

tions. The exchange of messages to be implemented

is modeled as an interaction diagram in Fig. 7. As we

mentioned in Section 3, NetLogo does not support

interactions between agents, and therefore interac-

tions represented in Fig. 7 were implemented indi-

rectly through using global variables.

We now return to the viewpoint of platform-

dependent behavior design. At step 2 of the beha-

vioral scenario represented in Table 8, the software

agent corresponding to the ShopBot decides shop-

ping baskets for different stores by finding for each

product on the shopping list the store with the lowest

and second lowest price for that product. If the prices

for a product sold by several stores are the same, the

agent chooses the product with the highest quality.

The agent considers all possible combinations of the

two prices and calculates the total cost as the sum of

product prices. At step 3 of the behavioral scenario,

the software agent corresponding to the ShopBot

agent calculates the shortest route between the best

combination of stores and the associated fuel cost,

which is added to the cost of the products.

For comparison, we also calculated the overall cost

if the customer chooses to go to stores using three

other strategies that people often adopt in real life:

− Choose one store randomly and buy all the items

at that store.

− Go to the nearest store.

− Randomly go to one of the five nearest stores.

Thereafter we calculated the ratio of the total

product and fuel cost according to the three methods

over that of the method of societal grocery shopping.

For each parameter, such as customer location and

store location, we fixed other parameters, varied the

parameter in question randomly, performed the expe-

riments 100 times and took the average as the final

results. The simulation results are represented in Ta-

ble 10. Each row in Table 10 represents the results

after varying a specific parameter. As shown, our

approach of societal grocery shopping is better than

the other 3 methods for all cases, which saves 21% or

more in cost. For the “vary shopping list” case, the

shopping list sometimes contains fewer items, which

leads to small overall savings.

We also did experiments using real prices col-

lected from 5 stores and checked the robustness by

allowing the stores to lie about prices. This article

does not describe the simulation results any further

because of space limitations and the interested reader

is referred to [7] for more details.

5. Case study of healthcare

5.1. Analysis and design

In the current case study, we have chosen to focus

on the healthcare system of the United States. The

healthcare quadruple in the United States consists of

(1) patients, (2) healthcare providers (hospitals,

health centers, medical laboratories, etc.) and provid-

er networks, (3) insurance companies, and (4) the

government. There are a variety of information sys-

tems available to support healthcare providers, pro-

vider networks, and insurance companies, but none to

support individual patients. Because patients are na-

turally distributed and are typically willing to assist

each other, societal agent-based information systems

instead of centralized information systems would be

appropriate for helping patients. In such systems,

each patient would be represented by a software

agent. The agent would assist its principal in under-

standing and interpreting insurance rules, finding the

most cost-effective insurer, finding a good healthcare

provider, providing advice on cost-effective drugs

and care, and monitoring the spread of cold and flu

symptoms and their treatments. Feedback and infor-

mation sharing by other patients would be extensive-

ly used in such systems.

In this subsection, we focus on a particular aspect

of assisting patients – finding appropriate healthcare

providers. We describe how a societal information

system of finding healthcare providers can be de-

signed and simulated. We do not repeat the questions

from Table 2, but instead refer to the examples of

applying these questions in Section 4.1.

Table 10

Simulation results using randomly generated price data

Simulation
parameters

Mean ratio of the shopping method to the
method of societal grocery shopping

 Choose store
randomly

Choose
nearest
store

Choose 1 store
randomly from
5 nearest

Vary customer
location

1.2328 1.2365 1.2178

Vary store
location

1.2351 1.2325 1.2269

Vary item price 1.2150 1.2180 1.2225

Vary number
of items

1.2637 1.3317 1.2911

Vary shopping
list

1.1732 1.1080 1.1573

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 15

UNCORRECTED P
ROOF

Exactly as in the problem domain of grocery

shopping, we start designing a societal information

system for healthcare by deciding its purpose: “Allo-

cate healthcare resources” (among the members of

the society). Its realization can be viewed as a socio-

technical system. We next elaborate the goal tree by

responding to questions Q1 and Q2. The resulting

goal model is represented in Fig. 8. The goal models

reflects that patients need to join the societal infor-

mation system and find a healthcare provider by it,

care has to be provided, and patients have to evaluate

care and recommend healthcare providers to other

patients. Each of these sub-goals represents a particu-

lar aspect of allocating healthcare resources, which is

to be achieved by the overall socio-technical system.

In addition to functional goals, we need a number

of quality goals in the goal model. Achieving the

highest-level goal “Allocate healthcare resources” is

characterized by the quality goal “Maximal societal

health”, which determines the quality criterion ac-

cording to which healthcare resources should be allo-

cated in a society. A possible metric for this criterion

is an average number of annual sick days per person

in a society. We also add “Quickly” pertaining to the

functional goal “Find healthcare provider”. The

meaning of this quality goal is obvious. In addition,

we express that a healthcare provider to be found

should be appropriate. In the analysis phase, we do

not need to specify the precise meaning of the “Ap-

propriate” quality goal, because it is elaborated in the

phase of designing the real-life societal information

system where we decide how exactly this attribute of

a physician can be represented and what algorithms

and software solutions are available for supporting it.

However, it is highly relevant to capture this quality

goal by analysis models that are used in round-table

discussions between customers and other non-

technical stakeholders and the developers of the so-

cietal information system.

As we plan to use social networking for finding a

healthcare provider, we elaborate the “Find health-

care provider” functional goal into two sub-goals:

“Ask friends” and “Choose”. We characterize achiev-

ing the second of these functional goals by the “Best

quality of service” quality goal, meaning that the

healthcare provider who offers the best overall quali-

ty of service should be chosen. Again, we do not

worry here how to measure the overall quality of

service and postpone this until the design phase,

where we decide technical means for supporting

quality appraisals and social networking.

Achieving the “Provide care” functional goal is

characterized by the “Discrete” quality goal with an

obvious meaning. The “Evaluate” functional goal is

modified by four quality goals. The quality goal “In

the context” represents that evaluation has to occur in

Fig. 8. The goal model of the societal healthcare information system.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling16

UNCORRECTED P
ROOF

the context of receiving the service, preferably before

leaving the facilities of the healthcare provider or at

least on the same day. This quality goal implies the

need to introduce some context awareness and activi-

ty recognition (see, e.g. [18]) into the system. The

“Easy” quality goal means that evaluating a health-

care provider should be easy for a patient. Potential

design decisions for achieving this quality goal in-

volve using a cell phone or a specialized device for

evaluation. The “Processable” quality goal means

that the evaluation should be presented in a form

amenable to computer processing. What exactly it

means is again left up to the design. For example,

depending on the system design, it could mean that

all evaluations should be expressed on a scale from 1

to 5. Or alternatively, if the system includes a data-

mining component, it could mean that evaluations

can be expressed in a controlled natural language.

Finally, the “Anonymous” quality goal expresses that

no evaluation by a patient should identify the patient.

The “Recommend” functional goal is modified by the

“Being good citizen” quality goal, meaning that re-

commending healthcare providers to other patients is

a voluntary activity benefiting a society as a whole.

Having defined the goals and quality goals for the

system, we now proceed to question Q3 that guides

us to decide the roles that are required for achieving

the goals. In this case study the roles are obvious:

Patient and Healthcare Provider. Based on question

Q4, we now represent each of these roles in terms of

its responsibilities. There is also a third role – Gov-

ernment – but its modeling is not relevant for the

societal information system to be designed.

Analogously to designing the societal information

system of grocery shopping, some help would make

finding a healthcare provider easier for a patient. We

therefore complement the goal model with the new

Assistant role in response to question Q5. The Assis-

tant role takes up the responsibilities of asking

friends for recommendations, choosing a healthcare

provider, recommending healthcare providers, and

partially evaluating the care. By this we have ob-

tained an answer to question Q6. Differently from the

societal information system of grocery shopping, the

Assistant role does not bring along any new goals or

sub-goals in reply to question Q7.

Finally, answering question Q8 results in a set of

constraints included by role models. The resulting

role models for Patient, Healthcare Provider, and

Assistant are shown in Tables 11–13.

Table 11

The role model for Patient

Role Patient

Description The role of patient in U.S. healthcare

Responsibilities Join the system

Confirm or reject the healthcare provider
recommended by the assistant

Receive care

Evaluate care

Constraints An evaluation by the patient should consider
the efficiency and quality of care

An evaluation by the patient should be given
in the context of receiving the care

An evaluation by the patient should be
available to his/her friends

Table 12

The role model for Healthcare Provider

Role Healthcare Provider

Description The role of healthcare provider in U.S.
healthcare

Responsibilities Provide medical service

Constraints Medical service should be provided in a
discrete manner

Medical service should be provided as fast as
possible

Table 13

The role model for Assistant

Role Assistant

Description The role of a patient’s assistant in U.S.
healthcare

Responsibilities Ask the patient’s friends for
recommendations

Choose a healthcare provider for the patient

Recommend healthcare providers to the
patient’s friends

Evaluate care

Constraints The most appropriate and best possible
healthcare provider should be chosen

Healthcare providers should be recommended
to the friends honestly based on evaluations
by the patient

An evaluation by the patient should not
reveal the identity of the patient

An evaluation by the patient should be
amenable to computer processing

An evaluation by the patient should be given
in the context of receiving the care

An evaluation should be easy to perform by
the patient.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 17

UNCORRECTED P
ROOF

We proceed with question Q9 that asks for the

types of relationships between the roles. The result-

ing organization model is represented in Fig. 9. All

three major relationship types – peer, benevolence,

and control – are represented in the organization

model. First, as we are addressing social networks,

there is the “IsPeerTo” relationship attached to the

Patient role. Second, since healthcare providers pro-

vide services to patients, there is the “IsBenevolent-

To” relationship between the roles Healthcare Pro-

vider and Patient. Third, in finding healthcare pro-

viders, a patient needs help that is provided by

his/her assistant. This is reflected by the “Controls”

relationship between the roles Patient and Assistant.

The organization model also shows that there can be

different types of healthcare providers, out of which

physicians and hospitals are modeled in the figure.

Our design of the societal information system of

healthcare will focus on patients finding physicians.

After modeling the goals, roles, and organization

of the societal healthcare information system, accord-

ing to question Q10 we next address the knowledge

to be represented within the system. We do this by

identifying the types of domain entities related to the

roles. The resulting domain model is represented in

Fig. 10. As each healthcare provider has predefined

capacity and efficiency, we attach the Capacity and

Efficiency domain entity types to the Healthcare Pro-

vider role. According to the role models represented

in Tables 11 and 13, a patient evaluates a healthcare

provider based on its efficiency and patients’ assis-

tants recommend healthcare providers. We accor-

dingly place the Evaluation and Recommendation

domain entity types between the roles Patient, Assis-

tant, and Healthcare Provider. This way we obtain a

domain model from the organization model.

Having created the goal model, as well as the

models of relevant roles, the organization model, and

Fig. 10. The domain model of the societal information system of
healthcare.

Fig. 9. The organization model of the societal healthcare informa-
tion system.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling18

UNCORRECTED P
ROOFthe domain model, we have completed the analysis

phase of agent-oriented modeling. We now proceed

with design and decide the agent types according to

question Q11. First, in a socio-technical system to be

designed, the role Assistant should obviously be

mapped to the Assistant Agent software agent type.

Since a patient is a real human that is treated by

another real human – a physician – we map both the

roles Patient and Healthcare Provider to the Human

Agent type. The software system boundary of the

societal information system is obviously between the

roles Patient and Assistant represented in Fig. 9. Re-

garding the Healthcare Provider role, the societal

information system to be designed does not include

any software agents for healthcare providers, because

a societal healthcare information system aims at help-

ing patients in the first place. However, agents assist-

ing healthcare providers to maximize societal health

as is modeled in Fig. 8 can be envisioned in the fu-

ture.

The agent acquaintance model resulting from

question Q12 is represented in Fig. 11, where the

acquaintance links model that each patient interacts

with his/her Assistant Agent and that different Assis-

tant Agents communicate with each other. Note that

in terms of interactions, the resulting solution is a

pure peer-to-peer solution differently from the case

study of grocery shopping where the resulting solu-

tion includes the Coordinator Agent.

To model the behaviors of agents of the decided

types, we transform responsibilities of the roles into

activities attached to the agent types. We do this by

applying questions Q13–Q17. As a result, we obtain

behavioral scenarios for agents playing the roles Pa-

tient, Assistant, and Physician. These behavioral sce-

narios are contained by the respective Tables 14–16.

The activity “Find a physician” performed by an

Assistant Agent modeled in Table 15 involves inte-

ractions between software agents of patients. If a

patient’s Assistant Agent cannot recommend any

physicians based on its principal’s experience, it will

turn to agents of other patients. We accordingly

represent in Fig. 12 the interaction protocol between

agents of the type Assistant Agent. We remind here

that the difference between interaction protocol and

other kinds of interaction models is that an interac-

tion protocol models some aspects of the agent beha-

viors along with their interactions [28]. The model

shows that the Assistant Agent of a patient’s friend

may respond with a recommendation or suggest the

Assistant Agent of the friend’s friend. This means

that the interaction protocol shown in Fig. 12 is re-

cursive until a pre-determined depth, which is

represented by the “Loop” behavioral construct

whose repeating condition is presented in the pro-

gramming style. A friend’s Assistant Agent may also

ignore a request, which is modeled by an Option box

in Fig. 12. The interaction protocol modeled in

Fig. 12 constitutes a reply to question Q18 in the

software engineering process.

As modeled in Table 15, the activity “Evaluate”

performed by the Assistant Agent is triggered by a

patient leaving the physician’s office. This reflects

the “In the Context” quality goal, which in Fig. 8 is

attached to the “Evaluate” functional goal. How the

leaving is to be perceived is left to more detailed de-

sign, which is beyond the scope of this article. A

possible solution may involve the timeframe of the

physician office visit in question and perceiving the

geographical coordinates of the patient [18].

The behavioral scenario modeled in Table 15 also

shows that “Find a physician” and “Evaluate” activi-

ties are performed sequentially. In societal informa-

tion system for healthcare this is always the case,

because the Assistant Agent does not perform any

activities between these activities while a patient is

attended by a physician.

Finally, distinguishing between private and public

domain entities based on question Q19 is

straightforward, because the domain entity Evalua-

tion is private to the patient and Assistant Agent

helping him/her, while the domain entity Recom-

mendation is shared between different patients and

instances of Assistant Agent. Similarly, the domain

entity Capacity is private to each Healthcare Provider,

while the domain entity Efficiency is shared between

the physician and patients who have visited him/her.

The domain entities Capacity and Efficiency form a

basis for how patients evaluate healthcare providers.

Fig. 11. The agent acquaintance model for the societal information
system of healthcare.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 19

UNCORRECTED P
ROOF

Fig. 12. The interaction protocol between patients’ Assistant Agents.

Table 14

The behavioral scenario for a Human Agent playing the role of Patient

BEHAVIORAL SCENARIO 1

Role Patient

Agent type Human Agent

DESCRIPTION

Trigger Condition Step Activity Other roles/agent
types involved

Domain entities Relevant goals
(quality goals)

A proposal
by the
Assistant
Agent

Alternative 1 Confirm the physician Assistant/Assistant
Agent

Recommendation Find healthcare
provider
(Appropriate,
Good quality care)

2 Reject the physician

Patient en-
ters the
physician’s
office

Sequential 3 Receive care Physician/Human
Agent

 Receive care
(Discrete)

Reminder
by the
Assistant
Agent

4 Evaluate Assistant/Assistant
Agent

Evaluation Evaluate (In the
context,
Processable,
Anonymous, Easy)

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling20

UNCORRECTED P
ROOF

5.2. Developing a simulation for healthcare

In Section 5.1 we described how a real societal in-

formation system of healthcare should be designed.

Just like the case study of grocery shopping, we si-

mulated the healthcare case study on the NetLogo

environment. In order to implement the agent-

oriented models on NetLogo, we map roles of a so-

cio-technical system that are normally performed by

human agents, such as Patient and Physician in the

example of healthcare, to software agent types. In

addition, we make the following assumptions for the

healthcare case study:

− We only address physician office visits, that is,

we only consider the Physician part of the or-

ganization model represented in Fig. 9.

− We do not distinguish between diseases.

− In accordance with the quality goal “Quickly”

introduced by the goal model shown in Fig. 8,

we assume that a patient is willing to get healthy

as soon as possible.

We next describe from three viewpoints how we

mapped agent-oriented models of the societal infor-

mation system of healthcare to the programming con-

structs of NetLogo.

From the viewpoint of platform-dependent in-

formation design, we represented in the simulations

the domain entities introduced by agent-oriented

modeling in Section 5.1 as the following NetLogo

variables:

− The Capacity domain entity – in terms of the

number of patients per day that a given physi-

cian can handle.

− The Efficiency domain entity – in terms of the

number of days that it takes for a given physi-

cian to cure a patient. This number of days is

generated for each physician according to the

Table 15

The behavioral scenario for an Assistant Agent playing the role of Assistant

BEHAVIORAL SCENARIO 2

Role Assistant

Agent type Assistant Agent

DESCRIPTION

Trigger Condition Step Activity Other roles/agent
types involved

Domain entities Relevant goals
(quality goals)

Request by
the patient

Sequential 1 Find a physician Patient/Human
Agent, Assistant/
Assistant Agent

Recommendation Find healthcare
provider
(Appropriate,
Good quality
care)

Patient
leaves the
physician’s
office

2 Evaluate Patient/Human
Agent

Efficiency,
Evaluation

Evaluate (In the
context,
Processable,
Anonymous,
Easy)

Table 16

The behavioral scenario for a Human Agent playing the role of Physician

BEHAVIORAL SCENARIO 3

Role Physician

Agent type Human Agent

DESCRIPTION

Trigger Condition Step Activity Other roles/agent
types involved

Domain entities Relevant goals
(quality goals)

Patient
enters the
physician’s
office

 1 Give care Patient/Human
Agent

Capacity,
Efficiency

Receive care
(Discrete)

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 21

UNCORRECTED P
ROOF

normal distribution whose mean and standard

deviation can be adjusted in the user interface.

− The Evaluation domain entity – in terms of the

following variables:

− The number of days the physician in question

failed to handle a given patient. How this val-

ue is determined is explained below.

− The number of days that the physician re-

quired to cure a patient. This is determined by

the Efficiency knowledge item pertaining to

the physician.

− A random component representing that differ-

ent patients evaluate the same physician diffe-

rently.

A patient’s evaluation for a specific physician is

calculated by adding these three factors. For example,

let us assume that a patient gets sick today and wants

to go to a chosen physician, but the physician is busy

and cannot see the patient until tomorrow. In this

case, the value of the first factor is 1 because the pa-

tient waits for 1 day to see the physician. The second

factor – number of days that the physician requires to

cure the patient – is a fixed number only related to

the physician. The third factor is a random number

that varies from –0.5 to 0.5.

The viewpoint of platform-dependent behavior de-

sign covers the behaviors of software agents

representing patients and physicians. In accordance

with the behavioral scenarios represented in

Tables 14–16, every day the patients each try to de-

cide which physician to visit. For each patient, at step

1 of the behavioral scenario represented in Table 15,

the Assistant Agent acting on behalf of its principal

may ask Assistant Agents of the principal’s friends

for recommendations and then makes a decision as to

which physician the principal should visit.

From the viewpoint of platform-dependent inte-

raction design, the exchange of messages to be im-

plemented is modeled as an interaction diagram in

Fig. 12. According to the interaction diagram, the

Assistant Agent acting on behalf of the patient’s

friend may deal with the request in one of the follow-

ing ways:

− Reply with a recommendation.

− Provide the requesting agent with the address of

the Assistant Agent of one of its principal’s

friends if there is no recommendation to give.

This process continues recursively until the first

recommendation is received or until all the

friends until the maximum forwarding depth

have been asked. The forwarding depth is de-

fined as follows: the originator’s friends are at

depth 1; the originator’s friends’ friends at depth

2, and so on.

If the recommended physician does not have ca-

pacity on the given day, the Assistant Agent will in-

itiate a new round of requests modeled in Fig. 12.

The process continues until a patient finds an availa-

ble physician. To make the simulations more realistic,

in the simulation we have chosen a 20% probability

that a friend would ignore the patient’s request.

Returning to the viewpoint of platform-dependent

behavior design, the software agent corresponding to

the Assistant Agent recommends physicians based on

evaluations. The agent can recommend only those

physicians that its principal has actually visited in the

simulation. The number of days the physician in

question could not handle the given patient, because

of the physician’s exceeded capacity, accumulates in

the patient’s evaluation until the patient actually vis-

its the given physician. On each new visit the agent

“forgets” its previous evaluation and updates its

knowledge base with the new evaluation. The reason

why the agent forgets its previous evaluation is that

during the time period between the previous evalua-

tion and the new evaluation, factors that influence the

evaluation may have occurred. For example, the phy-

sician may have become more skilled. Therefore it is

fairer to use the latest evaluation.

To make our simulations as realistic as possible,

we used the following statistical data by the Centers

for Disease Control and Prevention (CDC) from the

year 2008 [3]:

− The number of physician office visits per 100

people per year: 320.1.

− The number of physicians per 10,000 people: 26.

Based on the above data, we obtained the average

number of people who get sick every day by dividing

the number of visits per 10,000 people by 250, which

is the standard number of working days in a calendar

year in the U.S. As a result, 128 people in our simu-

lation get sick every day.

We simulated 182 days with 10,000 patients. The

value of the local variable of each physician’s soft-

ware agent corresponding to the Capacity domain

entity was set to 8 patients per day. The value of the

local variable of each physician’s software agent cor-

responding to the Efficiency domain entity was de-

termined randomly according to the normal distribu-

tion with the value of mean as 3 days and with the

value of deviation as 2.0.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling22

UNCORRECTED P
ROOF

Figure 13 shows the number of days different phy-

sicians in the simulation required to cure a patient.

Figure 14 shows the number of people visiting dif-

ferent physicians in the 182 days. According to

Figs 13 and 14, whenever the number of days re-

quired by a physician to cure a patient is small, the

given physician has more patients in total. Due to

space limitations, we did not include the information

of how the number of people visiting different physi-

cians changed in time. But according to this informa-

tion, we can conclude that as time passes, people

gradually gather information about physicians, eva-

luate them, and recommend to their friends the best

physicians they know. As a result, after patients have

formed their opinions about the physicians, high

quality physicians get full capacity of patients every

day and low quality physicians get nearly zero pa-

tients. This is quite similar to real life, because

people always prefer good physicians.

6. Related work

Information systems for controlling the distribu-

tion of electric power among individual consumers

have been investigated in a series of articles from

Jennings and colleagues [8,35]. The investigations

are the closest to the research presented here. The

information systems assist consumers in dealing with

the complexities of a global electric power distribu-

tion system while respecting their individual prefe-

rences. However, unlike the systems we have ana-

lyzed here, there is no interaction among the con-

sumers for decision-making or control: a consumer’s

decision affects the other consumers, but is made in

isolation. Such systems help individuals in reserving

and using societal resources, but they do not help the

individuals in acting collectively or collaboratively.

For example, the system described in [8] makes use

of agents that compete via an auction. As a result, the

set of individual consumers is not an equal partner

with the purveyor of the resources, such as a grocery

store, hospital, or electric power company. As a re-

sult, consumers are at a disadvantage.

We are not the first authors who explore the prin-

ciples of societal shopping. Price comparison servic-

es (also known as comparison shopping services)

allow people to query the prices of a product at on-

line stores. The services list the product’s prices in all

of the stores and sort the prices to provide customers

with support for their online shopping. An intelligent

software agent to implement comparison shopping is

called a shopbot [5]. Shopbots have also given the

name for the type of agents assisting customers in our

case study of societal grocery shopping.

In June 1995, the first well-known shopbot called

BargainFinder [13] was released as an intelligent

software agent for comparison shopping for music

CDs. It allowed a user to enter the name of an artist

and an album, searched eight online music stores,

and displayed all CD prices on a webpage. If the user

clicked on the name of one of the stores, it would

bring the user to the specific album on that store’s

website. Customers gained obvious benefit from

BargainFinder and it has been used widely. Nowa-

days, shopbots have greater functionality than before

by including information about shipping expenses,

taxes, vendors’ rates, and product reviews. Some

corporations even have their own shopbots [9,26].

Similarly to shopbots, the iPhone application Red-

Laser [24] accepts the barcode of a product from the

phone’s camera, searches many online stores, and

shows their prices on the phone. It, however, relies

only on the information it retrieves from online stores

and does not help its user in deciding stores and

shopping baskets.

Regarding the case study of finding healthcare

providers, Udupi & Singh [31] emphasize the impor-

tance of conceptual models in developing societal

information systems. They claim that the conceptual

model should support social knowledge as cleanly

Fig. 13. The number of days to be cured by different physicians.

Fig. 14. The number of people visiting different physicians in the
simulation.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 23

UNCORRECTED P
ROOF

separated from domain knowledge. They also claim

in [31] that healthcare is a natural fit for peer-to-peer

(P2P) service networks and describe a scenario where

a patient has as neighbors his primary care physician

and his close friends, and contacts them to request

services or referrals. The emphasis of their work is

on the adaptation of a social network, while we focus

on the effectiveness of finding a good quality medi-

cal service provider.

In [17] the Personal Health Server developed in

Finland is described. It is a system designed to assist

healthcare workers, patients, and their families with

medical information and services, and help them

make appropriate decisions. The Personal Health

Server will enable disparate e-health tools to work

together and share a computer glossary of terms, de-

finitions, and their relationships. The difference from

our approach is that it is a centralized client-server

system while our approach is a distributed P2P solu-

tion.

There are some websites, like RateMDs [23],

where people can rate and find physicians. The sys-

tem proposed by us differs from RateMDs and other

similar websites in the way people rate the physicians

and in the way patients interact. Such websites use

criteria like punctuality, medical knowledge, and

time spent on a patient, while we use the time it took

to be cured, which is a more objective criterion. Al-

though a patient may access more ratings online, he

usually does not know the people who have rated the

physicians. In our system, a patient relies on friends’

recommendations, which are more reliable.

7. Discussion and conclusions

Wang, Zeng, Carley, and Mao [36] emphasize that

communities are increasingly driving innovation

from the bottom up, and the ownership of experience,

economic value, and authority is starting to shift from

institutions to communities. According to Forrester

Research Report [25], individuals in today’s world

have more power than ever before because mobile,

social, video, and cloud technologies give individuals

tremendous access to information and resources.

However, because of the huge amount of information

available, the effort required from individuals to in-

fluence the state-of-affairs is also substantial. To

make the effort reasonable and manageable, we pro-

pose in this article to represent each individual – be it

a customer in grocery shopping or a patient in health-

care – by a software agent that acts in the interests of

its principal and interacts with the agents of other

individuals.

For designing information systems that are aimed

at supporting individuals acting within social net-

works, both social and technical aspects of such in-

formation systems should be considered. We have

chosen to use agent-oriented modeling for designing

societal information systems because this approach

explicitly addresses the engineering of socio-

technical systems where the activities of humans are

supported by software agents. What makes agent-

oriented modeling particularly appropriate for de-

signing societal information systems is that the engi-

neering process starts with specifying goals for a

socio-technical system as a whole and defining roles

required for achieving the goals. Technical and social

subsystems of the system are identified only later in

the design process when roles are mapped to the

types of agents enacting them. That is also a stage

when the decisions of architectural design can be

made by mapping roles to different possible configu-

rations of agents. Alternatively, the system architec-

ture can be designed already when deciding roles.

For example, in the case study of grocery shopping,

we introduced the role Coordinator already at the

beginning of analysis. Later on at the design stage

this role was straightforwardly mapped to the agent

type Coordinator Agent.

When designing an information system for a prob-

lem domain, agent-oriented modeling enables ad-

dressing the problem domain from three balanced

perspectives: information, interaction, and behavior.

In our case studies we covered all three perspectives

for the analysis, as well as for platform-independent

design and platform-specific design for NetLogo.

Another advantage of agent-oriented modeling is

that its behavioral scenarios do not presume any par-

ticular agent architecture, such as BDI [22]. This

means that in agent-oriented modeling, deciding the

agent architecture(s) is postponed to the stage of plat-

form-dependent design, which is preferable for two

reasons. First, since all agents of the system do not

need to be designed in the same way, one can find

the most appropriate architecture for each software

agent type of the system to be designed. Second, at

the stage of platform-dependent design, the platforms

and technologies available for implementing the sys-

tem are determined, which may constitute additional

constraints on deciding the agent architecture(s).

Moreover, some agents, such as the Coordinator

Agent in Section 4.1, may be implemented as a web

service running in a cloud rather than software agents.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling24

UNCORRECTED P
ROOF

In the future, we plan to implement the societal in-

formation systems of grocery shopping and health-

care on a platform for multi-agent systems with real

rather than simulated interactions between software

agents. The resulting systems will then be tested in

real-life case studies involving college students.

As this work did not address the aspect of how the

social network forms and evolves, we plan to include

this as an important part of our future work.

References

[1] A. Berson, Client/Server Architecture, 2nd edn, McGraw-
Hill, 1996.

[2] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and
J. Mylopoulos, Tropos: An agent-oriented software devel-
opment methodology, Autonomous Agents and Multiagent

Systems 8(3) (2004), 203–236, Springer-Verlag.
[3] Centers for Disease Control and Prevention, Ambulatory

Care and Physician Visits, http://www.cdc.gov/nchs/fastats/
docvisit.htm, retrieved: 19th June 2011.

[4] L. Cernuzzi, T. Juan, L. Sterling and F. Zambonelli, The
GAIA methodology: Basic concepts and extensions, in: Me-

thodologies and Software Engineering for Agent Systems:

The Agent-Oriented Software Engineering Handbook,
F. Bergenti, M.-P. Gleizes and F. Zambonelli, eds, Kluwer
Publishing, 2004, pp. 69–88.

[5] D. Clark, Shopbots become agents for business change,
IEEE Computer 33(2) (2000), 18–21, IEEE Computer So-
ciety.

[6] S.A. DeLoach and M. Kumar, Multiagent systems engineer-
ing: An overview and case study, in: Agent-Oriented Me-

thodologies, B. Henderson-Sellers and P. Giorgini, eds, Idea
Group, 2005, pp. 317–340.

[7] H. Du and M.N. Huhns, A Multiagent system approach to
grocery shopping, in: Advances on Practical Applications of

Agents and Multiagent Systems – 9th International Confe-

rence on Practical Applications of Agents and Multiagent

Systems (PAAMS 2011), Salamanca, Spain, 6–8 April 2011,
Y. Demazeau, M. Pechoucek, J.M. Corchado and J.B. Perez,
eds, Advances in Intelligent and Soft Computing, Vol. 88,
Springer-Verlag, 2011, pp. 195–200.

[8] E. Gerding, V. Robu, S. Stein, D. Parkes, A. Rogers and
N. Jennings, Online mechanism design for electric vehicle
charging, in: The 10th Int. Conf. on Autonomous Agents and

Multiagent Systems (AAMAS 2011), May 2–6, 2011, Taipei,
Taiwan, Proc., P. Yolum, K. Tumer, P. Stone and
L. Sonenberg, eds, International Foundation for Autonom-
ous Agents and Multiagent Systems, 2011, pp. 811–818.

[9] Google, Google Product Search, http://www.google.com/
products/, retrieved: 19th June 2011.

[10] M.N. Huhns, From DPS to MAS to …: Continuing the
trends, in: The 8th International Joint Conference on Auto-

nomous Agents and Multiagent Systems (AAMAS 2009),
May 10–15, 2009, Budapest, Hungary, Vol. 1, C. Sierra,
C. Castelfranchi, K.S. Decker and J.S. Sichman, eds, ACM,
2009, pp. 43–48.

[11] M.N. Huhns and L.M. Stephens, Multiagent systems and
societies of agents, in: Multiagent Systems: A Modern Ap-

proach to Distributed Artificial Intelligence, G. Weiss, ed.,
MIT Press, 1999.

[12] T. Juan, A.R. Pearce and L. Sterling, ROADMAP: Extend-
ing the Gaia methodology for complex open systems, in:
The First International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2002), July 15–19,
2002, Bologna, Italy, Proc., ACM, 2002, pp. 3–10.

[13] B. Krulwich, The BargainFinder agent: Comparison price
shopping on the Internet, in: Agents, Bots and Other Internet

Beasties, J. Williams, ed., SAMS.NET, 1996, pp. 257–263.
[14] Y. Luo, L. Sterling and K. Taveter, Modelling a smart mu-

sic player with a hybrid agent-oriented methodology, in:
Proc. of the 15th IEEE International Requirements Engi-

neering Conference, October 15–19, 2007, Delhi, India,
IEEE Computer Society, 2007, pp. 281–286.

[15] A. McAfee, Enterprise 2.0: The dawn of emergent collabo-
ration, MIT Sloan Management Review 47(3) (2006), 21–28,
MIT Press.

[16] M. Mecella, M. Angelaccio, A. Krek, T. Catarci, B. Butta-
razzi and S. Dustdar, WORKPAD: An adaptive peer-to-peer
software infrastructure for supporting collaborative work of
human operators in emergency/disaster scenarios, in: Inter-

national Symposium on Collaborative Technologies and

Systems (CTS 2006), IEEE Computer Society, 2006,
pp. 173–180.

[17] News-Medical.Net, Computer-Based Tools Can Help Im-
prove Relationship Between Patients, Healthcare Workers,
http://www.news-medical.net/news/20110317/Computer-
based-tools-can-help-improve-relationship-between-
patients-healthcare-workers.aspx, retrieved: 20th June 2011.

[18] T. Nguyen, S.W. Loke, T. Torabi and H. Lu, PlaceComm: A
framework for context-aware applications in place-based
virtual communities, Journal of Ambient Intelligence and

Smart Environments 1(3) (2011), 51–64, IOS Press.
[19] Object Management Group, Unified Modeling Language:

Superstructure, Version 2.1.1, February 2007, http://www.
omg.org/cgi-bin/doc?formal/07-02-05, retrieved: 28 June
2007.

[20] J. Paay, L. Sterling, F. Vetere, S. Howard and A. Boettcher,
Engineering the social: The role of shared artifacts, Int. J.

Human-Computer Studies 67(5) (2009), 437–454, Acade-
mic Press.

[21] L. Padgham and M. Winikoff, Developing Intelligent Agent

Systems: A Practical Guide, John Wiley and Sons, 2004.
[22] A.S. Rao and M.P. Georgeff, Modeling rational agents with-

in a BDI architecture, in: Proc. of Knowledge Representa-

tion 91 (KR-91), J. Allen, R. Fikes and E. Sandewall, eds,
Morgan Kaufmann, 1991, pp. 473–484.

[23] RateMDs, Find and Rate Doctors and Dentists, http://www.
ratemds.com/, retrieved: 15th January 2012.

[24] RedLaser, http://www.redlaser.com/, retrieved 19th June
2011.

[25] T. Schadler, S. Leaver, J. Bernoff and A. Yakkundi,
An Empowered Report: Reinvent Yourself yo Serve Em-
powered Customers And Employees, http://www.forrester.
com/rb/Research/welcome_to_empowered_era/q/id/57265/t/
2, retrieved 22nd April 2011, Forrester Research, 2011.

[26] Shopping.com, http://www.shopping.com/, retrieved: 19th
June 2011.

[27] I. Sommerville, Software Engineering, 8th edn, Addison-
Wesley, 2007.

[28] L. Sterling and K. Taveter, The Art of Agent-Oriented
Modeling, MIT Press, 2009.

[29] L. Sterling, T. Miller, K. Taveter, B. Lu and G. Beydoun,
Requirements Engineering Using the Agent Paradigm: A
Case Study of an Aircraft Turnaround Simulator, Working
Article, http://ww2.cs.mu.oz.au/~tmill/pubs/aore.pdf, re-
trieved: 25th January 2012.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling 25

UNCORRECTED P
ROOF

[30] K. Taveter and G. Wagner, Towards radical agent-oriented
software engineering processes based on AOR modeling, in:
Agent-Oriented Methodologies, B. Henderson-Sellers and
P. Giorgini, eds, Idea Group, 2005, pp. 277–316.

[31] Y.B. Udupi and M.P. Singh, Information Sharing among
Autonomous Agents in Referral Networks, in: Agents and

Peer-to-Peer Computing, 6th International Workshop

(AP2PC 2007), May 14–18, 2007, Honululu, Hawaii, USA,
Revised and Selected Articles, S.R. Joseph, Z. Despotovic,
G. Moro and S. Bergamaschi, eds, Lecture Notes in Com-
puter Science (LNCS), Vol. 5319, Springer-Verlag, 2007,
pp. 13–26.

[32] United States Department of Labor, Consumer Price Index,
http://www.bls.gov/cpi/#tables, retrieved: 19th June 2011.

[33] F. Vetere, H. Davis, M. Gibbs and S. Howard, The magic
box and collage: Responding to the challenge of distributed
intergenerational play, Int. J. Human-Computer Studies
67(2) (2009), 165–178, Academic Press.

[34] F. Vetere, M.R. Gibbs, J. Kjeldskov, S. Howard, F. Mueller,
S. Pedell, K. Mecoles and M. Bunyan, Mediating intimacy:
Designing technologies to support strong-tie relationships,
in: Proc. of the 2005 Conference on Human Factors in

Computing Systems (CHI 2005), April 2–7, 2005, Portland,
OR, G.C. van der Veer and C. Gale, eds, ACM, 2005,
pp. 471–480.

[35] P. Vytelingum, T.D. Voice, S.D. Ramchurn, A. Rogers and
N.R. Jennings, Agent-based micro-storage management for
the smart grid, in: The Ninth International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2010),

May 10–14, 2010, Toronto, Canada, Proc., ACM, 2010,
pp. 39–46.

[36] F.-Y. Wang, D. Zeng, K.M. Carley and W. Mao, Social
computing: From social informatics to social intelligence,
IEEE Intelligent Systems 22(2) (2007), 79–83, IEEE Com-
puter Society.

[37] D. Weyns, A. Omicini and J. Odell, Environment as a first
class abstraction in multiagent systems, Autonomous Agents

and Multiagent Systems 14(1) (2007), 5–30, Springer-
Verlag.

[38] U. Wilensky, NetLogo, http://ccl.northwestern.edu/netlogo/,
retrieved: 22nd April 2011, Center for Connected Learning
and Computer-Based Modeling, Northwestern University,
1999.

[39] D. Wilmann and L. Sterling, Guiding agent-oriented
requirements elicitation: HOMER, in: The 2005 NASA/DoD

Conference on Evolvable Hardware (EH 2005), 29 June–
1 July, 2005, Washington, DC, USA, IEEE Computer So-
ciety, 2005, pp. 419–424.

[40] M. Wooldridge, An Introduction to Multiagent Systems, 2nd
edn, John Wiley and Sons, 2009.

[41] F. Zambonelli, N.R. Jennings and M. Wooldridge, Organi-
zational abstractions for the analysis and design of multia-
gent systems, in: Agent-Oriented Software Engineering,

First International Workshop (AOSE 2000), Limerick, Irel-
and, June 10, 2000, Revised Articles, P. Ciancarini and
M. Wooldridge eds, Lecture Notes in Computer Science
(LNCS), Vol. 1957, Springer-Verlag, 2001, pp. 235–251.

K. Taveter et al. / Engineering societal information systems by agent-oriented modeling26

