
An Expressway from Agent-Oriented Models to

Prototypes

Kuldar Taveter and Leon Sterling

Department of Computer Science and Software Engineering
the University of Melbourne

Vic 3010, Australia
{kuldar,leon}@csse.unimelb.edu.au
http://www.csse.unimelb.edu.au

Abstract. Agent-oriented software engineering can be viewed as ap-
plying software engineering principles to agent-oriented development or
applying agent-oriented principles to software engineering. In this paper,
we are more concerned with the second view. We describe how prototype
systems can be efficiently created from agent-oriented domain and de-
sign models. We propose a conceptual space that accommodates model
transformations described by the Model-Driven Architecture. We explain
agent-oriented domain models and platform-independent design models
and show how the first can be mapped to the latter. We demonstrate
how design models can be turned into the implementation of an agent-
based prototype on a specific platform. The approach has potential for
accelerating the process of rapid prototyping.

1 Introduction

Agent-oriented software engineering can be viewed as applying software engi-
neering techniques and principles to the development of agent-oriented systems,
but also as applying agent-oriented principles to developing software. In the
latter spirit, we believe that agent-oriented modelling techniques are not just
useful for designing systems consisting of software agents, i.e. multi-agent sys-
tems. Agent-oriented modelling can, and should, be more generally utilized for
designing distributed open socio-technical systems. It can accommodate Web
services and component-based systems. What makes agent-oriented modelling
suitable is distinguishing between active entities — agents — and passive ones
— objects.

Model-Driven Architecture (MDA) [1] by Object Management Group (OMG)
is an approach to using models in software development that separates the do-
main model of a socio-technical system from its design and implementation
models. The MDA proposes three types of models: Computation-Independent
Models (CIM), Platform-Independent Models (PIM), and Platform Specific
Models (PSM). In MDA, a platform denotes a set of subsystems and technolo-
gies that provide a coherent set of functionalities through interfaces and specified

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 147–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.csse.unimelb.edu.au

148 K. Taveter and L. Sterling

usage patterns. Some examples of platforms are CORBA, Java 2 Enterprise Edi-
tion, Microsoft.NET and JADE.

In addition to defining model types at different abstraction layers, the MDA
also introduces the term “Model transformation” which is the process of convert-
ing one model to another model of the same system. It defines mapping between
models as a “specification of a mechanism for transforming the elements of a
model conforming to a particular metamodel into elements of another model
that conforms to another (possibly the same) metamodel” [1]. To that end, dif-
ferent techniques like model marking as described by MDA, and using templates
and mapping languages have been proposed. The MDA focuses on transfor-
mation between PIM and PSM, because executable PSM models can be easily
generated from PIM models. This is not the case for mapping from CIM to PIM,
which are conceptually more separated. To support mapping from CIM to PIM,
we propose an appropriate set of CIM and PIM concepts that can be mapped
from one another.

As represented in Figure 1, the modelling abstractions we advocate in CIM
include goals and roles, which appear in most agent-oriented methodologies with
a similar — though often not identical — meaning. In addition, social policies
are constraints on interaction and behaviour of agents playing the roles. Domain
entities define the basic concepts of the problem domain at hand.

For PIM, we have chosen activities that are triggered by rules as key notions.
Both activities and rules are rooted in activity theory [16]. We prefer them to
capabilities and plans because activities and rules represent more naturally the
nature of activities by human and man-made agents and are free from the bias
towards any specific agent architecture like BDI [6]. According to Figure 1, goals
and roles can be mapped to activity types and agent types, respectively. Social
policies can be mapped to rules and domain entities to knowledge items. Activity
types, in turn, consist of action types.

The mappings explained do not imply the losing of knowledge of higher abstrac-
tion levels at lower abstraction levels. For example, the knowledge of roles can still
be retained and utilized at the PIM level and goals after they have been assigned
to activities for achieving them can still be explicitly represented in PIM.

The platform-independent notions action types, rules, and agent types, along
with perception types and knowledge items can be mapped into the correspond-
ing concrete action types, behavioural construct types, and concrete agent types
as well as event types and concrete object types of some specific platform like
JADE [13].

The mappings outlined in Figure 1 can be used for rapid obtaining of proto-
types. In some cases, also final implementations can be obtained, but usually de-
sign decisions are restricted by commercially available and preferred technology.

In addition to the horizontal dimension of modelling, which is represented by
Figure 1, there is also a vertical dimension. In [9], the first author has performed
a thorough study of various software engineering methodologies and modelling
approaches and has concluded that agent-oriented models should address a prob-
lem domain from six perspectives: informational, organisational, interactional,

An Expressway from Agent-Oriented Models to Prototypes 149

Fig. 1. The Conceptual Space of transformations between different layers of MDA

Table 1. The Viewpoint Modelling Framework

Viewpoint models Viewpoint aspect

Abstraction layer Organisation/ Information Motivation/
Interaction Behaviour

Computation Role Models Domain Model Goal Models
independent (ROADMAP) (ROADMAP) (ROADMAP)

domain analysis
(CIM)

Platform Interaction Models Information Behaviour Models
independent (RAP/AOR) Model (RAP/AOR)

computational (RAP/AOR)
design
(PIM)

Platform specific Class and Sequence Class Diagrams Class and Sequence
design and Diagrams (UML) (UML) Diagrams (UML)

implementation
(PSM)

150 K. Taveter and L. Sterling

functional, motivational, and behavioural. In [11], we have identified informa-
tional, interactional, and behavioural perspectives as the most crucial ones for
agent-oriented design. On the other hand, it can be concluded from [3], [4], and
[17] that organisational, informational, and motivational perspectives are the
most relevant ones for agent-oriented domain analysis. In Table 1, we have ac-
cordingly grouped the perspectives explained above as three viewpoint aspects.
This table can be populated in many ways. For example, at the CIM level, mo-
tivation models are featured in MaSE [18] as Goal Hierarchy Diagrams, domain
models have been proposed as Environment Models in GAIA [19], and organ-
isation models appear as Organisation Diagrams in MESSAGE [20]. Similarly,
at the PIM level, behaviour models are represented as Multi-Agent Behaviour
Descriptions in PASSI [21], information models appear in MAS-CommonKADS
[22] as Expertise Models, and interaction models are featured in Prometheus [14]
as Interaction Diagrams and Interaction Protocols.

The structure of Table 1 is thus not associated with any specific software
engineering methodology but provides a universal framework for classifying the
kinds of models appearing in various methodologies and approaches. However,
we have populated Table 1 in a specific way to cater for the needs of rapid
prototyping addressed by this article. In other words, we have selected the types
of models appearing in Table 1 because it has been shown earlier [23] that this
combination of models facilitates rapid prototyping. The model types chosen by
us originate in the ROADMAP [3,4] and RAP/AOR [11] methodologies and in
the Unified Modelling Language (UML) [12]. Please note that UML models as
such are not platform-specific but can be used for modelling platform-specific
issues.

In the next section we present types of models at the three abstraction layers
— computation independent modelling, platform independent computational de-
sign, and platform specific design and implementation — by using an example of
creating a system for ordering take-away food, which has been borrowed from [2].

2 Computation Independent Modelling

According to MDA [1], the models created at the computation independent
modelling stage should be capable of bridging the gap between experts about
the domain and its requirements on one hand, and experts about the design
and construction of the socio-technical system on the other. The models should
address motivation for the system to be designed, organisation of the system,
and the environment in which the system is to be situated. Our experience with
industry reported in [23,27], as well as with students in our graduate Agents
class at the University of Melbourne, has proven that motivation for the system
can be effectively communicated by Goal Models, organisation of the system —
by Role Models — and the environment — by Domain Models.

Our goal and role models have been described in [3] and [4], and we review
here for completeness. The Goal Model provides a high-level overview of system
requirements. Its main objective is to enable both domain experts and developers

An Expressway from Agent-Oriented Models to Prototypes 151

to pinpoint the goals of the system and the roles the system needs to fulfil in order
to meet those goals. Design and implementation details are not described at all,
as they are not addressed during requirements analysis. The Goal Model contains
three components: goals, quality goals, and roles. A goal represents a functional
requirement of the system. A quality goal, as its name implies, represents a
non-functional or quality requirement of the system. A role is some capacity or
position that the system requires in order to achieve its goals. As Figure 2 shows,
goals and quality goals can be decomposed into smaller related sub-goals and sub-
quality goals, allowing hierarchical structure between a goal and its sub-goals.
The resulting hierarchy is by no means an “is-a” or generalisation relationship as
is common in object-oriented methodologies. Rather, the hierarchical structure
is just to show that the sub-component is an aspect of the top-level component.

Figure 2 represents the Goal Model of a socio-technical system to be de-
signed for ordering take-away food. In the diagram, the root goal is to ‘pro-
vide meal’. This goal is associated with the roles Customer, Ordering Centre,
and Restaurant. The role Customer represents the stakeholders whose needs the
socio-technical system is to satisfy. The system itself consists of actors playing
the roles Ordering Centre and Restaurant. The goal to ‘provide meal’ can be
decomposed into the following four sub-goals: to ‘take order’, ‘provide waiting
estimate’, ‘confirm order’, and ‘deliver meal’. The goal to ‘provide meal’ is char-
acterized by the quality goal ‘customer happy’. There are also the quality goals
‘fast reply’ and ‘fast delivery’ pertaining to the sub-goals to ‘provide waiting
estimate’, ‘confirm order’, and ‘deliver meal’. Quality goals represent social poli-
cies, which can be anything from access rights, to social norms, to obligations
[17]. Please note that the order in which the sub-goals are presented in Figure 2
does not per se imply any chronological order in which they are to be achieved.

The Role Model describes the properties of a role. The Role Model consists of
the role name, textual description, and the specifications of its responsibilities

Fig. 2. The Goal Model for the take-away food ordering system

152 K. Taveter and L. Sterling

and constraints. Clearly, this is analogous to the delegation of work through the
creation of positions in a human organisation. Every employee in the organisa-
tion holds a particular position in order to realise business functions. Different
positions entail different degrees of autonomy, decision-making, and responsi-
bilities. Taking this analogy, the Role Model is the “position description” for a
particular role. Table 2 shows the Role Model created for the role Restaurant
shown in the Goal Model in Figure 2.

Table 2. The Role Model for the Restaurant

Role Name Restaurant

Description Provides the time estimate for delivery and delivers the meal

Receive the order
Estimate the time required for cooking

Responsibilities Inform the ordering centre about the time required
Accept the confirmation by the ordering centre

Deliver the meal to the customer

Constraints The deliverer must use an electronic signature device to register
the delivery

The Domain Model represents agents’ knowledge about their physical and
conceptual environments. It can be viewed as an ontology providing a common
framework of knowledge for agents playing the roles of the problem domain. For
example, a take-away food ordering system requires the domain entities Cook,
Dish, and Order. The first describes the kinds of agents in the system’s physical
environment, the second — a particular kind of food and the third — a particular
order. The Domain Model can be initially expressed as a list of domain entities
showing for each of them with which role(s) it is associated. For example, the
domain entities Dish and Order are associated with all three roles — Customer,
Ordering Centre, and Restaurant — while the domain entity Cook is associated
with just the role Restaurant. Relationships between domain entities, such as
generalisation and aggregation, can be represented by using a UML-like notation.

3 Platform Independent Design

According to MDA [1], platform independent modelling focuses on the operation
of a system while hiding the details necessary for a particular platform. The
resulting models are suitable for use with a number of different platforms of
a similar type. The models should address interactions between agents of the
system to be designed, information that those agents require for operating, and
behaviours of the agents.

Since our models can be used for designing Web services as well as agent-based
systems, we are interested in goal-oriented rather than goal-governed agents [5].
Goal-governed agents refer to the strong notion of agency, that is, they are agents
with some forms of cognitive capabilities, making possible explicit representation

An Expressway from Agent-Oriented Models to Prototypes 153

of their goals that drive the selection of agent actions. An example class of
goal-governed agents are BDI-agents [6]. Goal-oriented agents refer to the weak
notion of agency, that is, they are agents whose behaviour is directly designed
and programmed to achieve some goal, which may not be explicitly represented.
Goal-oriented agents generalize over a wide range of software components rather
than just over software agents. An example goal-oriented agent architecture is
AGENT-0 by Yoav Shoham [7]. Agents of both kinds can be derived from the
Goal Models, Role Models, and Domain Models.

We view goal-oriented agents as being engaged in various activities. Based
on activity theory [16], we consider activities as fundamental units of human
and man-made agent behaviour. Activity is started by a rule when the activity’s
triggering conditions are true. Activity is triggered by some event perceived by an
agent and/or by some value associated with an object in the agent’s knowledge
base.

We have chosen as the goal-oriented agent architecture of PIM Knowledge-
Perception-Memory-Commitment (KPMC) agents, proposed in [8] and extended
by [9]. KPMC-agents can be graphically modelled by using diagrams included by
the Radical Agent-Oriented Process / Agent-Object-Relationship (RAP/AOR)
methodology of software engineering and rapid prototyping, which was intro-
duced in [11]. Before introducing PIM models of the case study of ordering
take-away food, we briefly explain the notation that will be used.

An external (that is, modelled from the perspective of an external observer)
Agent-Object-Relationship (AOR) diagram specified by Figure 3 enables the rep-
resentation in a single diagram of the types of human and man-made (for ex-
ample, software) agents of a socio-technical system, together with their beliefs
about instances of “private” and external (“shared” with other agents) object
types. There may be attributes and/or predicates defined for an object type
and relationships (associations) among agent and/or object types. A predicate,
which is visualized as depicted in Figure 3, may take parameters.

Figure 3 reflects that our graphical notation distinguishes between an action
event (an event perceived by one agent that is created through the action of
another agent, such as a physical reception/delivery of a meal) type and a non-
action event type (for example, types of temporal events or events created by
natural forces). We further distinguish between a communicative action event
(or message) type and a non-communicative (physical) action event type like
providing the customer with a meal.

The first thing to be done at the design stage is mapping the abstract con-
structs from the analysis stage — roles — to concrete constructs — agent types.
Each agent type may be assigned one or more roles and the other way round.
In our simple example, assigning the roles to agent types is straightforward. All
three roles — Customer, Centre, and Restaurant — are mapped to the respective
man-made agent types CustomerAgent, CentreAgent, and RestaurantAgent.
There may be several instances of CustomerAgent and RestaurantAgent, and
there is exactly one CentreAgent.

154 K. Taveter and L. Sterling

In [11], three complementary modelling perspectives are identified for agent-
oriented design. The resulting models can be represented as just one diagram of
the kind shown in Fig. 3. We will now treat platform independent design from
each of the three perspectives — interaction design, information design, and be-
haviour design. As stated above, interaction design models capture interactions
between the agents of the system, information design models represent informa-
tion that those agents require for operating, and behaviour design models specify
behaviours of the agents.

In our view, the mapping between CIM and PIM cannot be fully formalized
because of the intangible nature of CIM models. What is important is that
the mapping is traceable in the sense that it can be seen how CIM modelling
constructs relate to the PIM models. The mapping should be supported by tools
no matter what degree of automation can be achieved. In the next three sections,
we also explain the rationale of deriving a design model of each kind.

Fig. 3. The belief structure and behaviour modelling elements of external AOR
diagrams

3.1 Interaction Design

After determining agent types, we can capture interactions between agents of
those types with the Interaction Model represented as an interaction-frame dia-
gram. Interactions can be derived from responsibilities included by Role Models.
The interaction frame diagram depicted in Figure 4 consists of two interac-
tion frames that have been derived from the Role Model shown in Table 2: one
between the agents of a customer and the ordering centre, and the other one be-
tween the agents of the ordering centre and a restaurant. Messages in interaction
frames have four modalities: “request”, “inform”, “confirm”, and “reject”. With
a message of the “request” modality, an agent requests another agent to perform
a certain action, which can be a communicative action — sending a message — or

An Expressway from Agent-Oriented Models to Prototypes 155

a physical action. A message of the “inform” modality serves to inform an-
other agent on something. The last two modalities explain themselves. Messages
of different modalities can be combined. For example, with a message of the
type request inform time-estimate(Dish(?DishName)), an agent requests
another agent to inform it about the expected time required to prepare and de-
liver the meal described by a serialized object of the type Dish. An argument
preceded by a question mark appearing in message content, such as ?DishName,
denotes a string. The interaction represented at the bottom of Figure 4 models
a physical action of the type provideDish(Order(?OrderID)) that occurs be-
tween agents of the types RestaurantAgent and CustomerAgent. This action is
naturally only registered rather than performed by the corresponding software
agents. This can be accomplished by an electronic device incorporating both an
actuator and a sensor where the action is pushing a button by the deliverer and
the event is signing by the customer.

Fig. 4. The Interaction Model for the take-away food ordering system

3.2 Information Design

In information modelling, we further extend and formalize the ontology providing
a common framework of knowledge for the agents of the problem domain. Recall
that the initial version of this ontology — the Domain Model — was created at
the stage of domain analysis. Each agent can see only a part of the ontology;
that is, each agent views the ontology from a specific perspective. We represent
the resulting Information Model as the AOR agent diagram shown in Figure 5.

156 K. Taveter and L. Sterling

Fig. 5. The Information Model for the take-away food ordering system

In the figure, an agent of the type CustomerAgent, representing a customer,
has knowledge about one agent of the type CentreAgent, which represents the
ordering centre, and about several agents of the type RestaurantAgent repre-
senting restaurants. The CentreAgent, in turn, is aware of agents of both other
types. Each restaurant agent is aware of the CentreAgent and of agents of its
customers served by the restaurant.

Additionally, the Information Model depicted in Figure 5 represents that
agents of all three types may have a shared knowledge about one or more in-
stances of the object types Dish and Order. The model also shows that a restau-
rant agent has private knowledge about inter-related instances of the object types
Dish and Order. Atomic information elements are described as attributes rather
than objects. As is reflected by Figure 5, an agent of the type RestaurantAgent
has the attributes name and address that characterize the restaurant repre-
sented by it. Objects of the types Dish and Order are also described by their
respective attributes.

3.3 Behaviour Design

Under behaviour design, goals of CIM are mapped to activity types of PIM. An
activity of a given type accomplishes a goal from the Goal Model. For example,

An Expressway from Agent-Oriented Models to Prototypes 157

Fig. 6. The Behaviour Model for an agent representing a restaurant

an activity of the type “Estimating the time” represented in Figure 6 achieves a
goal to ‘provide waiting estimate’ modelled in Figure 2. Rules determine when,
by whom, and under which conditions an activity is invoked. For example, rule
R1 specifies that an activity of the type “Estimating the time” is started by the
RestaurantAgent upon receiving from the CentreAgent a request to provide
the waiting estimate. Rules also carry out social policies. For example, rules R1,
R2, R3, and R4 shown in Figure 6 realize the social policy “Fast reply”.

Figure 6 represents the Behaviour Model of a RestaurantAgent type in the
scenario of ordering take-away food. The behaviour involves the activity types
“Estimating the time” and “Confirming the order”. An activity of the type

158 K. Taveter and L. Sterling

“Estimating the time” is started by rule R1, which is triggered by a commu-
nicative action event (message) of the type request inform time-estimate
(Dish(?DishName)). As has been pointed out in Section 3.1, with this message,
the CentreAgent requests the RestaurantAgent to inform it about the esti-
mated waiting time required to prepare and deliver the meal that is identified
by a serialized object of the type Dish. Rule R2 prescribes an instance of the
object type Dish to be created from the serialized object. As there can be three
different types of dishes in our example, an instance of Dish created by rule R2
always belongs to one of the subtypes Steak, Pasta, or Salad. It can be seen
in Figure 6 that each of them is modelled with the respective value of the at-
tribute estimate. Additionally, there is an Object Constraint Language (OCL)
[12] clause specifying that if all the cooks are busy at the time of creating an
instance of Dish, represented by the predicate isBusy of the RestaurantAgent’s
private object type Cook, the value of the attribute estimate should be increased
by 15. Rule R2 further specifies that a modified instance of the object type Dish
should be serialized and sent to the CentreAgent.

An activity of the type “Confirming the order” is started by rule R3. This
rule processes a serialized instance of the object type Order, which is included
by a message of the type request provideDish(Order(?OrderID)). The mes-
sage means that the CentreAgent requests the RestaurantAgent to perform
a physical action of the type provideDish(Order(?OrderID)) according to
the enclosed order. Rule R4 prescribes an instance of the internal object type
Order to be created from the serialized object. At the creation of an Order
instance, the value of its identifying attribute orderID will be automatically
generated. The OCL clause dish = Dish[order.dishName] specifies the cre-
ation of the association link between the order and the corresponding instance
of Dish. Rule R4 further expresses through its connection to the message type
confirm(Order(?OrderID)) that a modified instance of the object type Order
should be serialized and sent to the CentreAgent. In a later stage of the busi-
ness process of ordering take-away food, an association between the order and
the object representing the cook to which the order is allocated will be
created.

4 Platform Specific Design and Rapid Prototyping

Finally, the modelling constructs of PIM are mapped to the corresponding con-
structs of PSM. It has been shown in [9] that external AOR diagrams can be
straightforwardly mapped into the programming constructs of the Java Agent
Development Environment (JADE, http://jade.cselt.it/) agent platform. The
JADE agent platform [13] is a software framework to build agent-based systems
in the Java programming language in compliance with the standard proposals for
multi-agent systems by the Foundation for Intelligent Physical Agents (FIPA,
http://www.fipa.org/). The mapping principles are more particularly addressed
in [9].

An Expressway from Agent-Oriented Models to Prototypes 159

Table 3. Mapping of notions of KPMC agents to the object classes and methods of
JADE

Notion of KPMC agent Object class in JADE Object method of JADE

Object type java.lang.Object -

Agent type jade.core.Agent -

Elementary activity type jade.core.behaviours. -
OneShotBehaviour

Sequential activity type jade.core.behaviours. -
SequentialBehaviour

Parallel activity type jade.core.behaviours. -
ParallelBehaviour

Execution cycle of jade.core.behaviours. -
a KPMC agent CyclicBehaviour

Waiting for a message jade.core.behaviours. -
to be received ReceiverBehaviour

Starting the first-level jade.core.Agent public void addBehaviour
activity (Behaviour b)

Starting a sub-activity jade.core.behaviours. public void
SequentialBehaviour addSubBehaviour

(Behaviour b)

Starting a parallel sub- jade.core.behaviours. public void
activity ParallelBehaviour addSubBehaviour

(Behaviour b)

Start-of-activity event type jade.core.behaviours. public abstract void
OneShotBehaviour action()

Start-of-activity event type jade.core.behaviours. public abstract void
SequentialBehaviour, onStart()
jade.core.behaviours.

ParallelBehaviour

End-of-activity event type jade.core.behaviours. public int onEnd()
Behaviour

Agent message jade.lang.acl.ACLMessage -

Table 3 shows how various modelling notions of KPMC agents can be mapped
to the corresponding object classes and methods of the JADE platform. In
particular, activity types and the execution cycle of a KPMC agent map to JADE
behaviours. Rules are not included in Table 2 because they are mapped to vari-
ous constructs represented in Java. The programs resulting from the mappings
are complemented by simple graphical user interfaces and thereafter executed,
as is exemplified by a snapshot shown in Figure 7.

Table 3 does not include the mapping of OCL clauses. We used OCL clauses
for representing pre- and post-conditions, which specify the state of the world
before and after triggering a rule without considering how the desired state of
the world will be achieved. This feature of being “side-effect free” is one of the
basic features of OCL. The particular way of changing the world state is specified

160 K. Taveter and L. Sterling

Fig. 7. A snapshot of the prototype created from the CIM and PIM models

only at the PSM level in terms of the constructs of a particular platform, which
in our case study was JADE.

The first author has shown in earlier work [11,27] how to represent external
AOR diagrams by a graphical tool, enabling mappings into equivalent XML-
based representations that are then interpreted and executed by software agents.
Since the authors of this paper no longer have access to that tool, we have
mapped manually the models for the case study of the take-away food ordering
system. However, this was not hard because of the intuitiveness and straightfor-
wardness of the mappings under discussion.

5 Related Work and Conclusions

We have described a technique that maps models of a problem domain into the
platform-independent design models of a socio-technical system created for that
domain, and from the design models to the a system implementation on a specific
platform. The mappings are straightforward, which has been achieved by making
use of agent-oriented analysis and design models, as well as of an agent-based
implementation platform. Representing the design models in a single diagram
increases the transparency of the mappings.

This paper was triggered by the approach to prototyping described in [2].
While the message sequence charts used in [2] are claimed to represent require-
ments, we believe they are essentially design models. Our technique, on the

An Expressway from Agent-Oriented Models to Prototypes 161

contrary, starts with modelling requirements at a high level of abstraction that
is understandable to both domain experts and software engineers. We acknowl-
edge that we fall short of [2] in fully automated generation of models from design
models. However, as has been shown in [11,27], this is not hard to accomplish
with our approach, which we plan to do in the near future.

We emphasise that the contribution is that we can generate prototypes rapidly
from high-level requirements prior to commitments to detailed design decisions.
Other agent-oriented methodologies tend to concentrate on an ultimate agent
implementation, and have not focussed on early rapid prototyping. While in prin-
ciple this may be possible, for example, generating prototypes from Prometheus
system overview diagrams [14], not all information such as agent beliefs have been
identified or are available during requirements analysis and high level design.

Because of limited space, we confine specific comparisons with related work
to other MDA-related model mapping techniques. CIM models employed in [15]
represent agent component types, such as belief, trigger, plan, and step. Jay-
atilleke et al.’s approach assumes from the very beginning that a system will be
implemented as a software agent system. However, in our view this is a design
decision, which should be postponed until the design phase. Considering this, the
starting point for our approach entails technology-independent notions of goals,
roles, social policies, and domain entities. Differently from us, the approaches
described in [28] and [29] address only mapping from PIM to PSM in the con-
text of software agent systems, while our approach has a more generic software
engineering stance.

In [25], agents in domain modelling are described in terms of their capabilities,
which are then mapped into plans consisting of activities. Differently from [25],
we view activities as fundamental concepts. This enables to distinguish between
contextual, goal-oriented, and routine activities. The notion of norms used in [26]
is roughly equivalent to what we mean by rules. However, we think that the work
reported in [26] could benefit from the precise modelling of actions and events
adopted by us.

In summary, our technique can be used for rapid production of prototypes
from agent-oriented models. The technique has been used in industry-related
projects of business-to-business electronic commerce [11,27], manufacturing sim-
ulation [24], and future home management [23]. We are currently applying the
technique in a research project with industry dealing with airport simulation
and optimisation.

References

1. MDA Guide Version 1.0.1. Retrieved February 3, 2007, from
http://www.omg.org/cgi-bin/doc?omg/03-06-01

2. Barak, D., Harel, D., Marelly, R.: InterPlay: Horizontal scale-up and transition
to design in scenario-based programming. IEEE Trans. Soft. Eng. 32(7), 467–485
(2006)

3. Juan, T., Sterling, L.: The ROADMAP meta-model for intelligent adaptive multi-
agent systems in open environments (Revised Papers). In: Giorgini, P., Müller, J.P.,
Odell, J.J. (eds.) AOSE 2003. LNCS, pp. 826–837. Springer, Heidelberg (2004)

http://www.omg.org/cgi-bin/doc?omg/03-06-01

162 K. Taveter and L. Sterling

4. Kuan, P.P., Karunasakera, S., Sterling, L.: Improving goal and role oriented analy-
sis for agent based systems. In: Proceedings of the 16th Australian Software Engi-
neering Conference (ASWEC 2005), Brisbane, Australia, 31 March – 1 April 2005,
pp. 40–47. IEEE Computer Society Press, Los Alamitos (2005)

5. Castelfranchi, C., Falcone, R.: From automaticity to autonomy: The frontier of
artificial agents. In: Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.) Agent Au-
tonomy, pp. 103–136. Kluwer Academic Publishers, Dordrecht (2003)

6. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI architecture. In:
Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of Knowledge Representation
91 (KR-91), pp. 473–484. Morgan Kaufmann, San Francisco (1991)

7. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60(1), 51–92
(1993)

8. Wagner, G., Schroeder, M.: Vivid agents: Theory, architecture, and applications.
Journal of Applied Artificial Intelligence 14(7), 645–675 (2000)

9. Taveter, K.: A multi-perspective methodology for agent-oriented business mod-
elling and simulation. PhD thesis, Tallinn University of Technology, Estonia (ISBN
9985-59-439-8) (2004)

10. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-oriented methodologies. Idea
Group (2005)

11. Taveter, K., Wagner, G.: Towards radical agent-oriented software engineering pro-
cesses based on AOR modelling. In: [10], pp. 277–316

12. Unified Modeling Language: Superstructure. Version 2.0 (August, 2003), Retrieved
February 5, 2007 from http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

13. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a
FIPA-compliant agent framework. Software - Practice and Experience 31, 103–128
(2001)

14. Padgham, L., Winikoff, M.: Developing intelligent agent systems. John Wiley &
Sons, Chichester (2004)

15. Jayatilleke, G.B., Padgham, L., Winikoff, M.: A model driven component-based
development framework for agents. Comput. Syst. Sci. & Eng. 20(4) (2005)

16. Kuutti, K.: Activity Theory as a potential framework for human-computer inter-
action research. In: Nardi, B. (ed.) Activity Theory and Human Computer Inter-
action, pp. 17–44. MIT Press, Cambridge (1995)

17. Rahwan, I., Juan, T., Sterling, L.: Integrating social modelling and agent interac-
tion through goal-oriented analysis. Comput. Syst. Sci. & Eng. 21(2), 87–98 (2006)

18. DeLoach, S.A., Kumar, M.: Multi-agent systems engineering: An overview and case
study. In: [10], pp. 317–340

19. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Multi-agent systems as computa-
tional organizations: The Gaia methodology. In: [10], pp. 136–171

20. Caire, G., Coulier, W., Garijo, F., Gomez-Sanz, J., Pavon, J., Kearney, P., Mas-
sonet, P.: The MESSAGE methodology. In: Bergenti, F., Gleizes, M.-P., Zam-
bonelli, F. (eds.) Methodologies and Software Engineering for Agent Systems: The
Agent-Oriented Software Engineering Handbook, pp. 177–194. Kluwer Academic
Publishers, Dordrecht (2004)

21. Cossentino, M.: From requirements to code with the PASSI methodology. In: [10],
pp. 79–106

22. Iglesias, C. A., Garijo, M. The agent-oriented methodology MAS-CommonKADS.
In: [10], pp. 46–78.

http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

An Expressway from Agent-Oriented Models to Prototypes 163

23. Sterling, L., Taveter, K.: The Daedalus Team. Building agent-based appliances with
complementary methodologies. In: Tyugu, E., Yamaguchi, T. (eds.) Knowledge-
Based Software Engineering: Proceedings of the Joint Conference on Knowledge-
Based Software Engineering, Tallinn, Estonia, August 28-31, 2006, pp. 223–232.
IOS Press, Amsterdam (2006)

24. Taveter, K., Wagner, G.: Agent-oriented modelling and simulation of distributed
manufacturing. In: Rennard, J.-P. (ed.) Handbook of Research on Nature Inspired
Computing for Economy and Management, pp. 541–556. Idea Group (2006)

25. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder intentions to
software agent implementations. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 465–479. Springer, Heidelberg (2006)

26. Kasinger, H., Bauer, B.: Towards a model-driven software engineering methodol-
ogy for organic computing systems. In: Hamza, M.H. (ed.) Computational Intelli-
gence: IASTED International Conference on Computational Intelligence, Calgary,
Alberta, Canada, July 4–6, 2005, pp. 141–146. IASTED/ACTA Press (2005)

27. Taveter, K.: A Technique and Markup Language for Business Process Automation.
In: Proceedings of the Workshop on Vocabularies, Ontologies, and Rules for The
Enterprise (VORTE 2006), held in conjunction with the Tenth IEEE International
EDOC (The Enterprise Computing) Conference, Hong Kong, 16–20 October 2006,
IEEE Computer Society Press, Los Alamitos (2006)

28. Perini, A., Susi, A.: Automating model transformations in agent-oriented modeling.
In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 167–178.
Springer, Heidelberg (2006)

29. Hahn, C., Madrigal-Mora, C., Fischer, K., Elvester, B., Berre, A.-J., Zinnikus, I.:
Metamodels, models, and model transformations: Towards interoperable agents. In:
Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI),
vol. 4196, pp. 123–134. Springer, Heidelberg (2006)

	An Expressway from Agent-Oriented Models to Prototypes
	Introduction
	Computation Independent Modelling
	Platform Independent Design
	Interaction Design
	Information Design
	Behaviour Design

	Platform Specific Design and Rapid Prototyping
	Related Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

