
Requirements Engineering With Agent-Oriented Models

Tanel Tenso1 and Kuldar Taveter2

1PhD Student, Department of Informatics, Tallinn University of Technology, Raja 15, 12618, Tallinn, Harjumaa, Estonia
2Professor, Department of Informatics, Tallinn University of Technology, Raja 15, 12618, Tallinn, Harjumaa, Estonia

tanel.tenso@mail.ee, kuldar.taveter@ttu.ee

Keywords: requirements engineering, agent-oriented modeling, systems modeling, user stories, agile development

Abstract: We have repeatedly encountered in industry-oriented research projects missing stakeholder input and invalid
requirements. This has prompted us to come up with a novel idea to mitigate the problem of collecting and
documenting requirements. The essence of the approach proposed by us lies in linking two kinds of artifacts
proposed by agent-oriented modeling – goal models and behavioral scenarios – to user stories. In the paper, we
first provide short overviews of requirements engineering in agile software development and agent-oriented
modeling. We then present our approach of using agent-oriented modeling in agile requirements engineering,
and illustrate it with an example from a real-life application. Finally we discuss anecdotal evidence received
from this and other real-life projects and set future research directions. The main conclusion from the work
performed is that our approach enables simple and lightweight identifying, tracing, and documenting require-
ments.

1 INTRODUCTION

There is evidence that main cause for the failure of
software projects is missing stakeholder input and
invalid requirements (Group, 1995; El Emam and
Koru, 2008). We have encountered these problems
also in our work. This has prompted us to come
up with a novel idea to mitigate the problem of col-
lecting and documenting requirements. In the cen-
ter of our approach to requirements engineering (RE)
lies using the goal modeling technique from agent-
oriented modeling (AOM) as a backbone for require-
ments elicitation and representation. Goal modeling
alone is not a new idea because goal-based RE is de-
scribed by several authors (Hull et al., 2011; Dard-
enne et al., 1993; van Lamsweerde, 2001; van Lam-
sweerde, 2009). The novelty of our approach is link-
ing goal models to user stories (Cohn, 2004), which
are regarded as most widely used requirements doc-
umentation artifacts in agile software development
(ASD) (Ramesh et al., 2010; Cao and Ramesh, 2008).
In this paper we present our technique for improving
RE in an agile setting.

We have successfully tried our approach out in
two real-life projects. The nature of these projects
is different: one is concerned with complementing
an existing client-server web application with a new
functionality, while the other addresses RE for a large

crisis simulation system. In this paper we use an ex-
ample from one of these experiments for illustrating
our approach. We plan to publish findings from both
of these appli-cations as detailed case studies.

The structure of this paper is as follows. In Sec-
tion 2, we provide short overviews of RE, ASD and
briefly describe AOM. In Section 3, we present our
approach of using AOM in RE, and illustrate it with
an example from a real-life application project. In
Section 4, we discuss anecdotal evidence received
from real-life projects and set future research direc-
tions.

2 BACKGROUND

We can summarize RE very shortly by saying that it is
a process for finding out, analyzing, documenting and
checking requirements for what and how should some
complex system work (lan Sommerville and Sawyer,
1997; Hull et al., 2011; Kotonya and Sommerville,
1998; Sommerville, 2010). RE is quite a wide area
and in the context of this paper we concentrate on the
requirements elicitation activity. We leave validation
and management of requirements out of the scope.

ASD can be viewed as consisting of agile prac-
tices. In ASD the emphasis is on code and collabora-
tion rather than on documentation and up-front elici-



tation (Alliance, 2013; Paetsch et al., 2003). In princi-
ple RE processes are present in ASD but they are less
distinctive and iterative. Identifying a link between
RE and ASD has been the goal for several researchers
(Paetsch et al., 2003; Cao and Ramesh, 2008).

Due to preferring collaboration over documenta-
tion, there are different approaches for documenta-
tion in agile projects. Some are quite radical by mini-
mizing documentation to almost non-existing (Cock-
burn, 2002), while some others acknowledge the need
for some documentation (Ambler, 2002). We take
the latter viewpoint. Several researchers (Ambler,
2002; Beck, 2008) have proposed ideas to be consid-
ered when collecting and documenting requirements
in ASD projects. We have used principles that have
been expressed in a more detailed context by (Am-
bler, 2002). The author subsumed his research results
under the term ”Agile Modeling” (AM), which is es-
sentially a practice-based methodology for effective
modeling and documentation of software-based sys-
tems. For example, we have adapted the number and
content of models normally used in AOM to match
the AM principle “just barely enough”.

User story is one of the most popular requirements
artifacts in ASD (Cohn, 2004; Ramesh et al., 2010;
Paetsch et al., 2003). There are several approaches
to employing user stories in agile development, out
of which we have used in our approach a format pro-
posed by (Cohn, 2004). A user story includes a writ-
ten sentence or two and should invoke a series of con-
versations about the desired functionality. The format
of composing user stories can be described as follows:

1. A user story is a short, simple description of a fea-
ture described from the perspective of the person
or role who desires the new capability, usually a
user or customer of the system.

2. The template for user stories corresponds to the
following pattern according to (Cohn, 2004): As
a 〈type of user or role〉, I want/must 〈some goal〉
so that 〈some reason〉.

3. A user story must be small enough to be imple-
mented within one iteration. Large user stories
must be divided into smaller user stories.

Final cornerstone of our approach is agent-
oriented modeling (Sterling and Taveter, 2009).
Agent-oriented modeling (AOM) is a holistic ap-
proach for analyzing and designing socio-technical
systems consisting of humans and technical compo-
nents. The case studies presented in (Miller et al.,
2011; Miller et al., 2012; Taveter et al., 2012)
and several others have demonstrated that the agent-
oriented paradigm is useful for requirements engi-
neering and design, irrelevant of whether the resulting

Table 1: Notation for modeling goals and roles.

Symbol Meaning

Goal

Quality goal

Role

Relationship between goals
Goal and quality goal

relationship

system is a multi-agent system in the classical sense
(Wooldridge, 2001). AOM is centered on the notion
of agent1.

We have selected AOM as the central part of our
RE and design approach because the types of models
included by AOM are clear and understandable for
all stakeholders when building any complex socio-
technical system (Miller et al., 2011). Canonical
models of AOM are described in detail by (Sterling
and Taveter, 2009). Next we will give an overview of
two types of models from the AOM that we decided
to use in our approach for RE. These are goal models
and behavioral scenarios.

A goal model can be considered as a container
of three components: goals, quality goals, and roles
(Sterling and Taveter, 2009). A goal is a representa-
tion of a functional requirement of the socio-technical
system. A quality goal, as its name implies, is a
non-functional or quality requirement of the system.
Goals and quality goals can be further decomposed
into smaller related sub-goals and sub-quality goals.
The hierarchical structure is to show that the subcom-
ponent is an aspect of the top-level component. Func-
tional goals represent functional requirements, while
quality goals represent non-functional requirements.
Goal models also determine roles that are capacities
or positions that are needed to achieve the goals. In
the original AOM methodology roles are modeled
in detail by role models in the viewpoint of interac-
tion analysis. The notation for representing goals and
roles is shown in Table 1.

An example of a goal model is represented in Fig-
ure 1. The example originates in the Release Manage-
ment System (RMS) project that is briefly described
in Section 3. The model expresses that the highest-

1Agent is an entity that performs specific activities in
an environment of which it is aware and can respond to
changes in the environment.



level goal – purpose – of the system is “Manage Re-
lease Lifecycle”. This goal is elaborated into two sub-
goals. The first of them – Manage Release Vehicles –
is performed by the roles Release Manager and Re-
lease Admin. Achieving of the second sub-goal –
Manage Product Features – requires the roles Ana-
lyst, Architect, Product Manager, and Project Man-
ager. We can also see that Figure 1 represents sev-
eral quality goals describing non-functional require-
ments that characterize how functional goals should
be achieved. For example, the quality goal attached
to the functional goal “Manage Product Features” ex-
presses that Product Features (whatever they are, this
is not important here) should be managed in such a
manner that they have sufficient information for de-
velopment.

Figure 1: An excerpt of the main goal model for the RMS.

The setup and usage of goal models is quite sim-
ilar to the principles suggested by (Hull et al., 2011).
Like in some other modeling frameworks like i* and
Tropos (Yu, 2011; Bresciani et al., 2004), in AOM
non-functional requirements can be represented as
quality goals visually separated from functional goals
but at the same time linked to them. A resulting goal
model contains sufficient amount of information, but
compared to the corresponding type of model used in
i* and Tropos, is still simple to understand for all par-
ticipants in a RE process (Sterling and Taveter, 2009;
Miller et al., 2011). Another difference is that we use
goal models for high-level problem domain analysis
rather than for system-specific design. We employ for
design user stories from ASD.

A behavioral scenario in the AOM methodology
describes how agents achieve the goals set for the
system by performing a sequence of activities (Ster-
ling and Taveter, 2009). In our approach to RE, we

modified the original format of behavioral scenarios.
A behavioral scenario of the resulting kind describes
the sequence of activities required for achieving the
goals, as well as the resources used by and the roles
involved in the scenario.

An example behavioral scenario is represented in
Table 2. This behavioral scenario consists of a se-
quence of activities that are required for achieving the
“Manage Release Vehicles” goal modeled in Figure 1.
The scenario also includes its initiating role(s), trig-
gering condition, and failure condition. The latter de-
scribes the state of affairs in case the scenario fails.
For each activity is shown the condition for perform-
ing the activity. The implicit performing condition is
“Sequential”.

3 METHOD

Goal-based requirements modeling in RE has been
found to be useful by several authors (Hull et al.,
2011; van Lamsweerde, 2009). User stories have
been connected to RE in several publications about
requirements‘ collecting problems in ASD (Ramesh
et al., 2010; Haugset and Stalhane, 2012). One can
conclude based on these sources that user stories can
basically be viewed as goals (Haugset and Stalhane,
2012; Vanhanen et al., 2009). This was one impor-
tant factor contributing to the idea of connecting user
stores to AOM goal models.

We have tried our combined approach out in two
real-life applications. The first application was a Re-
lease Management System (RMS). The purpose of
the project was to enhance an existing Issue Man-
agement System (IMS) with additional functional-
ity for release management. The second application
was a crisis simulation system. The purpose of this
project was to provide a universal tool for studying
evolvements of different kinds of crises, such as earth-
quakes, floods, industrial accidents, etc., and train-
ing personnel for the crises. Both projects were quite
different starting from the scope and ending with the
number of participants.

Our purpose in both projects was to find if our ap-
proach combining AOM and user stories could im-
prove communication between participants of a soft-
ware process. The rationale for choosing AOM was
its simplicity and the fact that goal-based approaches
to requirements engineering have considerably im-
proved communication in various software engineer-
ing projects (Miller et al., 2011). We chose user sto-
ries because they are common in ASD (Cohn, 2004).

In the following, we will outline the software en-
gineering process of our approach. The following de-



Table 2: Manage Release Vehicles behavioral scenario.

SCENARIO 2
Goal Manage Release Vehicles
Initiator Release Manager, Release Admin
Trigger New planning session begins
Failure No Release Vehicle will be produced
Cond. Step Activity Roles Resources/

Knowledge Items
Additional comments on design

Optional,
Interleaved

1 Create Release
Category

Release
Admin

Release Category Define category name and order

2 Create Release
Track

Release
Admin

Release Track Define track name and order

3 Create Release
Status

Release
Admin

Release Status Define status name and order

Sequential 4 Create Release
Vehicle

Release
Man-
ager

Release Vehicle,
Release Track,
Release Status,
Release Category

Release Vehicle has some prelimi-
nary metadata defined

5 Edit Release
Vehicle

Release
Admin

Release Vehicle,
Release Track,
Release Status,
Release Category

Release Vehicle metadata is
changed to appropriate values
when release scope and responsible
persons have approved the change

Optional 6 Delete Release
Vehicle (Sce-
nario 7)

Release
Man-
ager

Release Vehicle,
Issue

Release Vehicle is deleted, a con-
nected objects of the Issue type are
associated with another Release Ve-
hicle or the connection is deleted

scription is illustrated by Figure 2:
1. Create the top-level hierarchical goal model:
1.1. Determine the purpose of the socio-technical

system being designed. Represent the purpose
of the system as the root goal. For example in
Figure 1 the root goal is “Manage Release Life-
cycle”.

1.2. Elaborate the main goal into sub-goals, each
representing an aspect of achieving the main
goal. For example, in Figure 1 the main goal
has been elaborated into the “Manage Release
Vehicles” and “Manage Product Features” sub-
goals.

1.3. For the main goal and its sub-goals: where ap-
propriate, complement a functional goal with
a quality goal, representing a quality aspect of
achieving the functional goal. For example, in
Figure 1 the functional goal “Manage Product
Features” has been modified by the quality goal
“Product Features have sufficient information
for development”.

2. Elaborate the top-level goal model into lower-
level goals:

2.1. Choose each sub-goal of the top-level goal
model as the main goal.

2.2. Apply step 1 of the process to the main goal.

3. Recursively repeat elaboration of the goal model
until you have reached the lowest level of reason-
able and achievable goals:

3.1. Lowest level goal model is usually a goal that
can be accomplished by a single role or accom-
plishing the goal can be easily described.

3.2. Revise goal models at any point whenever more
accurate information becomes known.

4. Elaborate sub-goals of the lowest level into behav-
ioral scenarios, the format of which is defined by
Table 2:

4.1. Map goals to activities in behavioral scenarios,
whereby several activities may correspond to
the same goal.

4.2. Add temporal and conditional perspectives to
performing the activities in behavioral scenar-
ios.

4.3. Specify roles, resources, and knowledge, and
any additional information relevant performing
the activities.

4.4. A behavioral scenario is finished when the
achievement of all goals in the corresponding
goal model is described.



Figure 2: Concept of using models.

5. Link User Stories to Behavioral Scenarios:

5.1. A user story covers only one aspect of achiev-
ing the goal or performing the corresponding
behavioral scenario. For example elaborating
Step 4 “Create Release Vehicle” in Table 2 can
be elaborated into User Stories as follows:
• As a (human playing the role of) Release Ad-

min, I must be able to add a new Release Ve-
hicle;

• As a Release Admin, I must be able to change
Release Vehicles;

• As a Release Manager, I must be able to see a
list of Release Vehicles;

• As a Release Manager, I should not be able to
edit a list of Release Vehicles;

• As a Release Manager or Release Admin, I
should be able to sort a list of Release Vehicles
into the ascending or descending order.

5.2. The columns of behavioral scenarios, as repre-
sented by Table 2, are mapped to user stories as
follows:
• Role – a user story is always written from the

perspective of a particular role.
• Activity – activity defines how the corre-

sponding goal is achieved. Performing an ac-

tivity can be described by a number of imple-
mentable user stories.

• Resource/ Knowledge Item – a resource of
any kind required by actors playing roles to
achieve the goals set for the system. They may
be knowledge items that actors playing roles
create or physical or virtual resources that are
provided beforehand.

• Additional comments on design – any kind of
project-related information that is useful when
describing and implementing user stories.

• Step – provides a temporal view to be consid-
ered in user stories.

• Condition – can be reflected in a user story as
a Condition of Satisfaction or denotes dividing
the user story into separate user stories.

6. Remember the following remarks when creating
and elaborating goal models, behavioral scenar-
ios, and user stories:

6.1. Completing all goal models at once is not re-
quired. For example, one branch of the goal
model can be elaborated down to the lowest
sensible level, while the rest of the branches left
as they are for the time being. Other branches
can be revisited and further elaborated later on.

6.2. Completing all behavioral scenarios at once is
not required. Different independent branches
of the overall goal model can be analyzed in
parallel and at different paces.

6.3. Goal models can change according to the find-
ings during the implementation of user stories.

6.4. Goal models and behavioral scenarios present
an overall view of the system to be designed,
describing what is required to be accomplished.
User stories present specific design-related de-
tails for the system and link goals to concrete
features of the system to be implemented.

6.5. An unlimited number of user stories can be cre-
ated for each lowest-level behavioral scenario.

4 CONCLUSIONS AND FUTURE
WORK

This was a nutshell description of our approach to RE
by means of AOM and user stories. We claim that
identifying, tracing and documenting requirements is
simpler and more lightweight with our method than
with full-fledged RE practices. We have verified the
simplicity of our approach by applying it in two real-
life ASD projects. We acknowledge that we have not
yet used any formal method or metric for measuring



the efficiency of our approach. This is one of the
major tasks for our future research work. We intend
to investigate the relevant literature, e.g. (El Emam
and Madhavji, 1995), and find an appropriate method
for measuring the efficiency of our approach. How-
ever, so far we have a lot of overwhelmingly posi-
tive anecdotal evidence about successful application
of our method. Participants in the projects conducted
by us have adopted the method and have successfully
used it for eliciting and representing requirements, as
well as for turning requirements into user stories for
design and implementation.

The future work to be performed by us will in-
clude presenting our findings from the projects as de-
tailed case studies. This should validate our findings
with hard evidence. We have also been working on a
prototypical RE and design environment that would
accommodate our method. The prototype will be
based on a wiki and will include an issue and project
tracking system to add some flexibility and visibility
to the RE and design processes.

REFERENCES

Alliance, A. (2013). Manifesto for agile software
development. http://www.agilealliance.org/
the-alliance/the-agile-manifesto/. [Online,
accessed May 2013].

Ambler, S. W. (2002). Agile Modeling. John Wiley & Sons.
Beck, K. (2008). Tools for agility - a white paper.

http://www.microsoft.com/en-us/download/
details.aspx?id=4401. [Online, accessed May
2013].

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J.,
and Perini, A. (2004). Tropos: An agent-oriented
software development methodology. Journal of Au-
tonomous Agents and Multi-Agent Systems.

Cao, L. and Ramesh, B. (2008). Agile requirements engi-
neering practices: An empirical study. IEEE Softw.

Cockburn, A. (2002). Agile Software Development.
Addison-Wesley.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. The Addison-Wesley Signature Series.
Addison-Wesley.

Dardenne, A., van Lamsweerde, A., and Fickas, S. (1993).
Goal-directed requirements acquisition. In SCIENCE
OF COMPUTER PROGRAMMING, pages 3–50.

El Emam, K. and Koru, A. (2008). A replicated survey of it
software project failures. Software, IEEE, 25(5):84–
90.

El Emam, K. and Madhavji, N. (1995). Measuring the
success of requirements engineering processes. In
Requirements Engineering, 1995., Proceedings of the
Second IEEE International Symposium on, pages 204
– 211.

Group, S. (1995). Chaos report. https://cs.nmt.edu/
˜cs328/reading/Standish.pdf. [Online, accessed
May 2013].

Haugset, B. and Stalhane, T. (2012). Automated acceptance
testing as an agile requirements engineering practice.
In Proceedings of the 2012 45th Hawaii International
Conference on System Sciences, HICSS ’12, pages
5289–5298, Washington, DC, USA. IEEE Computer
Society.

Hull, E., Jackson, K., and Dick, J. (2011). Requirements
Engineering. Springer.

Kotonya, G. and Sommerville, I. (1998). Requirements en-
gineering: processes and techniques. Worldwide se-
ries in computer science. John Wiley & Sons.

lan Sommerville and Sawyer, P. (1997). Requirements En-
gineering - A Good Practice Guide. John Wiley &
Sons.

Miller, T., Pedell, M., Sterling, L. S., and Lu, B. (2011).
Engaging stakeholders with agent-oriented require-
ments modelling. Agent-Oriented Software Engineer-
ing, 6788(XI).

Miller, T., Pedell, S., Sterling, L., Vetere, F., and Howard,
S. (2012). Understanding socially oriented roles and
goals through motivational modelling. J. Syst. Softw.,
85(9):2160–2170.

Paetsch, F., Eberlein, A., and Maurer, F. (2003). Require-
ments engineering and agile software development.
In Proceedings of the Twelfth International Workshop
on Enabling Technologies: Infrastructure for Collab-
orative Enterprises, WETICE ’03, Washington, DC,
USA. IEEE Computer Society.

Ramesh, B., Cao, L., and Baskerville, R. (2010). Ag-
ile requirements engineering practices and challenges:
an empirical study. Information Systems Journal,
20(5):449–480.

Sommerville, I. (2010). Software Engineering. Addison-
Wesley, Harlow, England, 9. edition.

Sterling, L. and Taveter, K. (2009). The Art of Agent-
Oriented Modeling. MIT Press.

Taveter, K., Du, H., and Huhns, M. N. (2012). Engineering
societal information systems by agent-oriented mod-
eling. J. Ambient Intell. Smart Environ., 4(3):227–
252.

van Lamsweerde, A. (2001). Goal-oriented requirements
engineering: a guided tour. In Requirements Engi-
neering, 2001. Proceedings. Fifth IEEE International
Symposium on, pages 249 –262.

van Lamsweerde, A. (2009). Requirements Engineering -
From System Goals to UML Models to Software Spec-
ifications. Wiley.

Vanhanen, J., Mantyla, M., and Itkonen, J. (2009).
Lightweight elicitation and analysis of software prod-
uct quality goals: A multiple industrial case study.
In Third International Workshop on Software Product
Management (IWSPM), pages 42 –52.

Wooldridge, M. (2001). Introduction to Multiagent Systems.
John Wiley & Sons, Inc., New York, NY, USA.

Yu, E. (2011). Modelling strategic relationships for process
reengineering. Social Modeling for Requirements En-
gineering, 11.


