
Towards Radical Agent-Oriented Software Engineering Processes

Based on AOR Modeling

Gerd Wagner

Eindhoven University of Technology,

Faculty of Technology Management

G.Wagner@tm.tue.nl

Kuldar Taveter

VTT Information Technology

(Technical Research Centre of Finland)

Kuldar.Taveter@vtt.fi

Abstract

We propose a new agent-oriented software

engineering process, called RAP, which follows the

Rational Unified Process (RUP) in many ways, but is

based on Agent-Object-Relationship (AOR) modeling

instead of object-oriented modeling. Two particular

features of the proposed methodology are: it is supported

by a foundational ontology, and it employs a certain form

of agent-based discrete event simulation for achieving

more agility in the development process.

1. Introduction

A Radical Agent-Oriented Process (RAP) defines a

software engineering process
1
 based on agent-oriented

modeling of both the system to be engineered and the

engineering process itself using the Agent-Object-

Relationship (AOR) modeling language proposed in [1].

In AOR modeling, the agents in a problem domain are

distinguished from the (non-agentive) objects. The

agents’ actions, perceptions, commitments and claims, as

well as their rights and duties, are explicitly included in

the model.

The RAP/AOR methodology is based on the Business

Agents’ approach proposed in [2] and can be viewed as

an agent-oriented refinement of the Rational Unified

Process (RUP) [3]. It aims at achieving more agility than

the RUP by using simulation for early testing of analysis

and design models, and by adopting an agent-oriented

project management approach.

Agile methodologies have received much attention

recently (see [4]). They emphasize the value of

lightweight ad-hoc processes based on rapid prototyping

and de-emphasize the value of (detailed) modeling on

which they blame the heavy weight and inflexibility of

traditional methodologies and the RUP. While we

acknowledge the significance of agility, we disagree with

their analysis that blames modeling as the source of

inflexibility. Rather, we agree with the Model-Driven

1 Strictly speaking, the RAP defines a process type family whose

members are process types that can be instantiated by different process

individuals. It is common practice, though, to use the term ‘process’

ambiguously both at the level of types and at the level of instances.

Architecture (MDA) approach of the OMG [5] where

modeling is identified as the core of state-of-the-art

software engineering that is scientifically well-founded.

When a model-driven approach includes early testing of

models by means of simulation, agility is achieved even

without setting a focus on code and rapid prototyping.

Unlike many other agent-oriented methodologies,

RAP/AOR is more concerned with distributed

information systems (such as enterprise resource planning

and supply chain management systems) and not so much

with Artificial Intelligence systems. This difference

implies that we are not so ambitious about capturing

human-like intelligence features such as desires and

intentions, or sophisticated forms of pro-active behavior.

Rather, in RAP/AOR we focus on declarative models of

communication and interaction founded on reactive

behavior and on the basic mental state components of

beliefs, perceptions and commitments.

2. Ontological foundations

The ontological foundation of the RAP/AOR concepts

is provided by the Unified Foundational Ontology (UFO)

proposed in [6]. In addition to a foundation layer, called

UFO-A, and the perdurant ontology layer UFO-B, UFO

includes an agent ontology layer, UFO-C, which is the

basis of AORML. While beliefs and perceptions are

categorized as mental moments (endurants that

existentially depend on one agent, their ’bearer’),

commitments are categorized as social moments

(endurants that existentially depend on several agents).

Notice that the UML concept of an actor corresponds

to the UFO concept of an agent role type. For instance,

the actor type Employee is a role subtype of the base type

Person. In many cases, an actor type corresponds to the

UFO concept of an agent role mixin type. For instance,

the actor type BookingClerk can be partitioned into

HumanBookingClerk (being a role subclass of Person) and

SoftwareAgentBookingClerk (being a role subclass of

SoftwareAgent).

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

3. The AOR modeling language

The AOR modeling language is based on an

ontological distinction between active and passive

entities, that is, between agents and (non-agentive)

objects of the real world. The agent metaphor subsumes

artificial (software and robotic), natural (human and

animal) as well as social/institutional agents (groups,

organizations).

In AORML, an entity is an agent, an event, an action,

a claim, a commitment, or an ordinary object. Only agents

can communicate, perceive, act, make commitments and

satisfy claims. Objects are passive entities with no such

capabilities. Besides human and artificial agents,

AORML also includes the concept of institutional agents,

which are composed of a number of other agents that act

on their behalf. Organizations and organizational units are

important examples of institutional agents.

Figure 1 shows the most important elements of

external (i.e., modeled from the perspective of an external

observer) AOR state structure modeling. There is a

distinction between action events and non-action events,

and between a communicative action event (or message)

and a non-communicative action event. Figure 1 also

shows that a commitment/claim is coupled with the action

event that fulfils that commitment (or satisfies that claim).

AOR state structure modeling can be defined as a

UML Profile, i.e., it is a conservative extension of UML

class modeling [7].

Figure 1. The core state structure modeling elements of

external AOR diagrams.

The most important behavior modeling element of

AORML are reaction rules, which are used to express

interaction patterns. As is shown in Figure 3, a reaction

rule is visualized as a circle with incoming and outgoing

arrows drawn within the agent rectangle whose reaction

pattern it represents. Each reaction rule has exactly one

incoming arrow with a solid arrowhead: it specifies the

triggering event type. In addition, there may be ordinary

incoming arrows representing state conditions (referring

to corresponding instances of other entity types). There

are two kinds of outgoing arrows: one for specifying

mental effects (changing beliefs and/or commitments) and

one for specifying the performance of actions.

4. The methodology

A RAP defines who is doing what (producing which

artifact using which language), how, when and why.

These interrogatives refer to the following modeling

elements:

who is doing: agent role types;

what is done: action/activity types;

what is produced: artifact types;

how and when is something done: behavioral

patterns;

why is something done: purposes/goals.

The RAP/AOR viewpoint modeling framework is

based on the ideas of the Zachman framework [8] and is

well-aligned with the Model-Driven-Architecture (MDA)

framework of the Object Management Group [5]. It

consists of a matrix with three rows representing its

abstraction/modeling levels of conceptual modeling,

computational design, and implementation, and five

columns representing the viewpoint aspects actors,

motivation, interaction, information, and behavior. Each

cell in this matrix, if applicable, represents a specific

viewpoint, such as Conceptual Interaction Modeling,

Computational Information Design, or Behavior

Implementation.

In the sequel, we briefly describe each type of model

by using a case study of business-to-business e-

commerce. The case study is based on the RosettaNet

standard [9], whose “Request Quote” Partner Interface

Process® (PIP) enables a buyer to request a product quote

from a provider and a provider to respond with a quote.

The prices and product availability reflected in a quote

may be influenced by an existing or potential relationship

between a buyer and provider. We now discuss the

conceptual modeling of this problem domain in terms of

the RAP/AOR viewpoint-modeling framework.

4.1. The organizational and informational aspects

The organizational aspect concerns the modeling of

actors (within organizations), i.e. agents and agent types

and relationships between them. The organizational

aspect is captured by AOR agent models which are

represented by using agent diagrams. An agent model

includes all agent (role) types of a business domain. The

purpose of an agent model is to give an overview of the

business system viewed as a multiagent system. The agent

model of the domain of business-to-business e-commerce

represents the agent role types Buyer and Seller with their

respective internal agent types.

The informational aspect deals with the modeling of

beliefs of the agents. The informational aspect is captured

by conceptual AOR information models. An AOR

information model describes agent, object, (action) event,

and commitment types, as well as their relationships with

each other. AOR information modeling is based on UML

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

class diagrams (see [10]). In the information model of the

case study, the object types PurchaseOrder, Quote, and

Invoice are shared between agents of the types Buyer and

Seller, while the object instances :SellerDatabase and

:ProductDatabase are represented exclusively within agents

of the types Buyer and Seller, respectively. An object of the

type QuoteLineItem satisfies one of the following status

predicates: isBid, isNoBid, and isPending, while an object of

the type ProductLineItem is characterized by the status

predicate isAccept, isReject, or isPending.

4.2. The interactional aspect

The interactional aspect concerns the modeling of

interactions and communication between the agents. It is

captured by conceptual AOR interaction models which

are represented by using interaction frame diagrams of

AORML. According to [1], an interaction frame

diagram of AORML provides a static picture of the

possible interactions between two (types of) agents

without modeling any specific process instance. The

interaction frame diagram covering the business process

types of quoting and ordering between the agent role

types Buyer and Seller is depicted in Figure 2 by using the

notation described in Figure 1.

SellerBuyer request inform

(?Quote)

inform

(?Quote)

provideProduct

(?PurchaseOrder)

request

provideProduct

(?PurchaseOrder)

Figure 2. The interaction frame between the agent roles Buyer

and Seller.

4.3. The functional / motivational aspect

The functional / motivational aspect deals with the

modeling of the types of activities performed by the

agents (specifying what has to be done) and with the

modeling of the goals defined for the activity types.

Within this aspect, we declare for each activity type its

name, optional input parameters, and an optional goal

which is defined in terms of the input parameters. The

functional / motivational aspect is captured by activity

diagrams of the extended AORML [2].

An activity type (task in [11]), like “Confirm quote” in

Figure 3, is defined as a prototypical job function in an

organization that specifies a particular way of doing

something [11]. It seems natural to allow specifying the

start of a first-level activity in the action part of a reaction

rule. For example, in Figure 3 an activity of the type

“Manage quoting”, which is visualized as a rectangle with

rounded left and right sides, is started by reaction rule R1

in response to receiving a message containing a request

for quote. As is shown in Figure 3, an activity of the type

“Manage quoting” consists of sequential subactivities of

the types “Process product items” and “Confirm quote”.

Each activity type represented in Figure 3 is

characterized by the corresponding goal that its instance

is trying to achieve. For example, the goal of an activity

of the type “Process product items” can be represented

informally as “For each product item included by the

request for quote is known whether it is to be bid or not”.

This goal can be formalized by means of the Object

Constraint Language (OCL) of UML [10] as is shown in

Figure 3 for the activity type “Process product items”.

4.4. The behavioral aspect

The behavioral aspect of the RAP/AOR viewpoint

modeling framework addresses the modeling of business

behavior (specifying when, how, and under what

conditions activities have to be performed). It also deals

with the decomposition of activities into actions. The

behavioral aspect is captured by the conceptual AOR

behavior models which can be represented by AORML

activity diagrams proposed in [2].

In order to turn activity diagrams of the functional /

motivational aspect into activity diagrams of the

behavioral aspect, they are elaborated on by introducing

into them behavioral constructs by means of reaction

rules. In [2], we have shown that AORML activity

diagrams allow representing 16 out of the 19 behavioral

workflow patterns defined in [12]. The behavioral model

of the business process type of quoting modeled from the

perspective of the agent role Seller is represented in Figure

3. As the figure shows, the function model has been

complemented by the behavioral construct of the type

“For-each loop”. In addition, elementary actions that the

activity types “Process product item” and “Confirm

quote” consist of have been specified.

According to the behavioral construct of the type “For-

each loop” mentioned above, upon the start of an activity

of the type “Process product items”, its subactivity of the

type “Process product item” is performed for each

instance of the object type QuoteLineItem for which the

precondition quote = q evaluates to true. The precondition

limits the set of QuoteLineItems for which the subactivity is

performed to the ones belonging to the instance of Quote

that is identified by the value of the input parameter q.

When all subactivities of the type “Process product item”

have ended, the enclosing activity of the type “Process

product items” also ends.

The subactivity “Process product item” in Figure 3

checks the availability of the given product item that is

specified by the input parameter item of the type

QuoteLineItem. If the product item is available in the

quantity requested, the status of the QuoteLineItem is set to

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

isBid. In the opposite case, the status of the QuoteLineItem

is changed to isNoBid. In both cases, the attributes of the

QuoteLineItem are accordingly updated.

A reaction rule may have more than one triggering

event: in such a case the rule is triggered only when all

specified triggering events have occurred (without any

required order). For example, in an activity state of the

type “Confirm quote” represented in Figure 3, the

triggering events of reaction rule R4 are the starting event

of the current activity of the type “Confirm quote” and an

approval of the quote by a human agent instance of the

type Clerk.

Seller

inform

(?Quote)

Manage quoting

(q: Quote)

Confirm

quote

(quote: Quote)

Buyer

Process

product item

(item: QuoteLineItem)

R4

R1

U

C
request inform

(?Quote)

Quote

QuoteLineItem

R2
{quote = q}

Clerk
approveQuote

Process

product items

(q: Quote)

R3

:Product

Database

ProductItem

isAvailable

(Integer)

U

isNoBid

QuoteLineItem

StatusCode

isBid

isPending

productID: String

unitPrice: Float

itemsAvailable: Integer

{isAvailable

(item.requestedQuantity) and

productID =

item.GlobalProductIdentifier}

inform

(?Quote)

RR
triggering

event

pre-

condition

mental

effect

outgoing

message
action

q.quoteLineItem.forAll->

(q.isBid or q.isNoBid)

Figure 3. Behavior model of the quoting business process from

the Seller perspective.

5. The role of simulation

It is shown in [2] that activity diagrams of both the

functional / motivational aspect and behavioral aspect are

executable. This facilitates the use of simulation in the

RAP/AOR methodology. We have shown in [13] that,

with some minor extensions, AOR models can be used for

a certain form of agent-based discrete event simulation,

called Agent-Object-Relationship Simulation (AORS). In

RAP/AOR, we employ AORS for achieving more agility

in the software engineering process by getting feedback

from the execution of models before they are

implemented in a target technology platform. AORS

allows animating and testing conceptual AOR behavior

models, as well as AOR behavior design models An

AORS system includes an environment simulator that is

responsible to simulate exogenous events and the

causality laws of the physical environment. Other actors

of the problem domain can be simulated with various

degrees of realism.

6. Conclusions

In this paper we have introduced the RAP/AOR

methodology for agent-oriented information systems

engineering. Unlike many other agent-oriented

methodologies, RAP/AOR is not confined to the

development of AI systems, but rather targets the

development of large-scale distributed and cross-

enterprise business information systems. Two particular

strengths of RAP/AOR are its ontological foundation and

its use of simulation for achieving more agility.

7. References

[1] Wagner, G. The Agent-Object-Relationship Meta-Model:

Towards a Unified View of State and Behavior. Information

Systems 28:5 (2003), 475-504. See http://aor.rezearch.info/.

[2] Taveter, K. A Multi-Perspective Methodology for Agent-

Oriented Business Modelling and Simulation. Ph.D. thesis,

Tallinn University of Technology, 2004 (ISBN 9985-59-439-8).

[3] Kruchten, P. Rational Unified Process – An Intoduction.

Addison-Wesley, 1999.

[4] Martin Fowler. The New Methodology.

http://martinfowler.com/articles/newMethodology.html#N40031

5 [captured 29 June 2004].

[5] OMG Model Driven Architecture, http://www.omg.org/mda/

[6] Wagner, G., Guizzardi, G., Guarino, N., Sinderen, M. van.

An Ontologically Well-Founded Profile for UML Conceptual

Models. In: Persson, A., Stirna, J. (Eds.), Advanced Information

Systems Engineering, 16th International Conference CAiSE

2004, Riga, Latvia, June 7-11, 2004, Proceedings. Lecture

Notes in Computer Science (LNCS), Vol. 3084. Spinger-Verlag,

2004.

[7] Wagner, G. A UML Profile for External AOR Models. In:

Giunchiglia, F., Odell, J., Weiss, G. (Eds.), Agent-Oriented

Software Engineering III, Third International Workshop, AOSE

2002, Bologna, Italy, July 15, 2002, Revised Papers and Invited

Contributions. Lecture Notes in Computer Science, Vol. 2585.

Springer-Verlag, 2003.

[8] Sowa, J. F., Zachman, J. A. Extending and formalizing the

framework for information systems architecture. IBM Systems

Journal 31 (3) (1992).

[9] RosettaNet, http://www.rosettanet.org.

[10] OMG Unified Modeling Language Specification, version

1.5, March 2003, http://www.uml.org/ [captured 30 June 2004].

[11] Yu, E. Modeling Strategic Relationships for Process

Reengineering. PhD thesis, Department of Computer Science,

University of Toronto, 1995.

[12] Workflow Patterns,

http://tmitwww.tm.tue.nl/research/patterns/ [captured 30 June

2004].

[13] Wagner, G., Tulba, F. Agent-Oriented Modeling and

Agent-Based Simulation. In: Giorgini, P., Henderson-Sellers, B.

(Eds.), Conceptual Modeling for Novel Application Domains.

Lecture Notes in Computer Science, Vol. 2814. Springer-

Verlag, 2003.

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

	footer1:

