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Abstract. Of the five AES finalists four—MARS, RC6, Rijndael, Twofish—
have not only (expected) good security but also exceptional performance on the
PC platforms, especially on those featuring the Pentium Pro, the NIST AES
analysis platform. In the current paper we present new performance numbers
of the mentioned four ciphers resulting from our carefully optimized assembly-
language implementations on the Pentium II, the successor of the Pentium Pro.
All our implementations follow well-defined API and timing conventions and
sensible guidelines, like no using of self-modifying code and key-specific static
data — i.e., tricks that speed up the implementation but at the same time restrict
the field of application. Our implementations are up to26% percent faster than
previous implementations. Our work also shows how a simple change (inclu-
sion of the MMX technology) in the analysis platform can influence the relative
encryption speed of different ciphers. To enable everyone to compare their imple-
mentations to ours, we also fully specify our procedures used to obtain the speed
numbers.

1 Introduction

For more than20 years, DES [FIP77] has been a widely employed cryptographic stan-
dard. While the best cryptanalytic attacks against DES (differential and linear cryptanal-
ysis) are still highly impractical, during the last years DES has became obsolete for its
too short key and block sizes, not withstanding the current advances in computing tech-
nology. Motivated by this, NIST initiated a new effort to replace DES as a standard.21
algorithms were submitted and15 algorithms were accepted as AES (Advanced Encryp-
tion Standard) candidates, of which5 candidates—MARS [BCD+98], RC6 [RRSY98],
Rijndael [DR98], Serpent [ABK98], Twofish [SKW+99b]—were chosen to the second
round.

However, the AES process was started not only due to the theoretical reasons: there
are a few well-known constructions, including 3DES, that seem to have very good secu-
rity margins. Unfortunately, 3DES, based on the hardware-oriented DES, is unsatisfy-
ingly slow on the modern32- and64-bit computer architectures: modern block ciphers
are up to10 times faster than 3DES. Regardless of these ciphers having unproven (even
by time) security properties, they are widely used in the industry by pragmatic reasons:
hardware applications like1 GBits/s Ethernet or on-the-fly encryption of160 MByte/s



SCSI hard disks are requesting for faster ciphers. Clearly, the situation of having a
(moderately) secure and (moderately) fastde jurestandard DES, a (probably) secure
and (clearly) slowde factostandard 3DES and some fast but with unknown security
marginde factostandards is not acceptable: there should be a single standard that is
both secure and fast. This is one of the reasons why, when inviting the public to pro-
pose candidates for the AES, NIST explicitly stated that the new standard should be
both “more secure and faster” than 3DES.

While security of the candidates cannot be exactly quantified by the currently known
methods, it seems to be easier to measure their speed. However, there is still a lot of
ambiguity in answering the question what AES candidate is the fastest. Several pa-
pers (including [Lip99,SKW+99a]) have compared AES candidates speed, but since
the implementations quoted in them are often incomparable (or based on pure estima-
tions), one cannot make direct conclusions about the efficiency of the ciphers based
on the published papers. Incomparability stems from the different implementation as-
sumptions, API’s, hardware (e.g., processors) and software (e.g., compilers) used by
implementers. Even more, some of the timings presented in previous papers correspond
to “show-case” (as opposed to practically applicable) implementations, some exam-
ples of those being the fastest implementation of Twofish [SKW+99b] that uses self-
modifying code and Brian Gladman’s implementations of AES candidates [Gla99] that
use a number of key-specific static variables instead of allocating a register to address
them, therefore effectively freeing some registers for other uses. Especially in the case
of the Pentium family, where the number of available registers is very restricted, such
implementations may result in a huge speed up. However, both types of implementation
tricks restrict the application area of the implementation.

In the current paper we try to give a satisfactory answer to the question “what cipher
is the fastest on the Pentium II” by carefully optimizing the4 fastest AES candidates—
MARS, RC6, Rijndael and Twofish—in Pentium II assembly, using for all implementa-
tions exactly the same, reasonable in practice, API and speed measurement conditions
for all the ciphers. Due to this, our results are much fairer than most of the previously
known ones: our implementations can be seen as black boxes applicable in almost any
possible application of block ciphers on an environment featuring Pentium II. Addi-
tionally, careful optimization process resulted in implementations that are clearly faster
than the previously known implementations. (Except for Twofish, which has still a faster
“show-case” implementation.)

We start the paper by describing our platform of choice (Section 2), implementation
philosophy and API (Section 3). Section 4 briefly surveys our results, and Section 5
gives more details on the problems encountered when implementing the ciphers. More
information about the Pentium II is given in the Appendices.

2 Choice of the Platform

Our first principal choice was the decision what processor to use. By purely pragmatic
reasons we decided that the implementation environment equips an Intel Pentium family
CPU: while this family is not the most modern processor family available, it is the most
widespread one at the moment of writing this paper and most probably also during the
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next few years. Therefore, since in the foreseeable future most of the software-based
commercial security applications run on the Pentium family (as recognized also by the
AES finalists designers), this family has the most direct impact on the choice of a cipher
by security consumers.

At second, from the Pentium family we decided to choose the Pentium II processor.
At first, it is a more advanced processor than Pentium Pro, the NIST AES analysis
platform: the Pentium II provides (twice) larger register space due to the added MMX
technology, and many new MMX-specific commands. Compared to the Pentium Pro,
the Pentium II is also easier to obtain at the current stage, since Pentium Pro has been
out of the manufacturing for a while. On the other hand, the Pentium II was preferred
by the authors to the Pentium III since the latter is somewhat too new and controversial
due to the privacy issues.

Another reason to choose Pentium II was that as the successor of the NIST AES
analysis platform, implementing the AES candidates on the Pentium II could provide
some insights on how generally suitable are the candidates, some of which were specif-
ically optimized for the Pentium Pro, on future processors having features unpredicted
by algorithm designers. While this is not as crucial as withstanding the “future attacks”,
it still gives some ideas about the possible longevity of the cipher. (We clearly would
not want the AES in20 years to have the role the 3DES has today!)

As shown in [Lip98], the MMX technology can seriously speed up IDEA ([LM90],
[LMM94]), one of the believably most secure block ciphers with 64-bit block size. As
stated in [Lip98], this can be done since IDEA has its key attributes similar to those
of multimedia applications, for which the MMX technology was originally created. An
open question posed in [Lip98] was how much would the MMX technology help imple-
menting other ciphers, including the AES candidates. In the following we will partially
answer to that question, showing that also some ciphers using only “simple” operations
can greatly benefit from the added MMX technology. A short overview of Pentium II
that is necessary for implementers and for cryptographers who design ciphers optimized
for this platform is given in Appendix A. We refer for Intel manuals for a more complete
overview.

3 Implementation Considerations

Several papers (including, in particular, [Lip99,SKW+99a]) have compared AES can-
didates speed, but since the implementations quoted in them are often incomparable (or
based on pure estimations), one cannot make direct conclusions about the efficiency of
these algorithms based on the published papers. Incomparability stems from the differ-
ent implementation assumptions, API’s, hardware (processors) and software (compil-
ers) platforms used by implementers. Even more, some of the numbers there correspond
to the “show-case” (as opposed to practically applicable) implementations; including
the bizarre case that one candidate was claimed to be the fastest on its inventors laptop
under some suitable conditions.

As another example of the unsuitability of some “show-case” implementations, the
fastest implementation of Twofish [SKW+99b] uses self-modifying code and therefore
cannot be used in a number of applications, while Brian Gladman’s implementations of
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AES candidates [Gla99] use a number of key-specific static variables instead of allo-
cating a register to address them, therefore effectively freeing some registers for other
uses. Especially in the case of the Pentium family, where the number of available reg-
isters is very restricted, such implementations may result in a huge speed up. On the
other hand, Gladman’s implementations cannot be used several applications, including
multithreaded programs and SMP (symmetric multi-processing) systems.

Most of the security customers need however speed numbers applicable in whatever
product they use in whatever environment in runs (for example, in a Linux kernel-
supported IPSEC implementation, secure login or multithreaded access to encrypted
storage arrays). For users it is necessary to know in what environment the measured
speed numbers were obtained, to be able to calculate the possible efficiency of the
ciphers in their own environments. Additionally, full specification is important for other
implementers to be able to compare their implementations with ours. Hence, apart from
providing “clean” implementations under some reasonable public assumptions, we shall
also next fully specify these assumptions:

– We do not use self-modifying code (“code compilation” [SKW+99b]) since it
makes the implementation inapplicable in a number of situations, e.g., in operation-
system kernel and ROM-based applications.

– We additionally decided not to use key-specific static areas since then the imple-
mentation could not be used, e.g., in SMP-capable systems and multithreaded pro-
grams.

– We decided to maximally use the MMX technology since it should not be forbidden
in any reasonable modern environment. (While using self-modifying code and key-
specific static areas is generally considered to be a bad programming practice.)

– We decided to use exactly the same API (specified later in Section 3.1) in all our
implementations.

– A number of well-understood assumptions that 1) improve the speed and can be
easily followed by implementers or 2) are essential to even be able to measure the
speed:
• All codes and data are correctly aligned.
• Input and output texts and codes are preloaded to L1 cache in the possible

extent to reduce the number of cache misses.
• Simplicity of code: we tried to reduce time spent during writing and optimiz-

ing the code. In particular, all our implementations use highly optimized but
round-number independent round macros. (Hence, our results could be slightly
bettered if every round would optimized separately to avoid, e.g., delays in
fetching stage.)

3.1 API

Since a different API can be influence the speed of an implementation severely, we also
decided to fully specify the API used by us to make for the other implementers easier
to compare their implementations to the ours. We felt that this is necessary, since AES
candidate implementations reported in [Lip99] vary greatly in their API’s.
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void xxKS(char *master, uint32 bitLen, char *eKey);
void xxEnc(char *inBlk, uint32 lenBlk, char *eKey,

char *outBlk);
void xxDec(char *inBlk, uint32 lenBlk, char *eKey,

char *outBlk);

where

xx is algorithm name (e.g.,Rijndael ).
xxKS is key scheduling subroutine.
xxEnc is encryption subroutine that encryptslenBlk blocks of plaintext starting from the

addressinBlk to the ciphertext locationoutBlk , by using extended keyeKey , in ECB
block cipher mode.

xxDec is decryption subroutine with the same input conventions asxxEnc .
uint32 is the type of32-bit unsigned integers (in the case of Pentium II, equal tounsigned

long in the case of most compilers).
master is pointer to the master key bits.
bitLen is the bit length of a master key.
eKey is pointer to subkeys and other initialization data, used later by encryption and decryption.
inBlk is pointer to input texts to be encrypted in the case ofxxEnc and to be decrypted in the

case ofxxDec .
outBlk is pointer to the corresponding output texts.
lenBlk is number of blocks to be encrypted or decrypted.

Fig. 1.Specification of our API.

Note that our API, depicted in Figure 1, is essentially equivalent to the API’s used
in most of the commercial applications, specifying only those inputs and outputs to the
algorithms that are really needed by the algorithms. (Names of the subroutines and their
parameters of course do not affect the speed, of course.) Our API was fixed for the key
length of128-bits due to the feeling that at the time when greater key sizes become
necessary, our implementation platform would already be a history.

Here, the key schedule and decryption subroutines are specified only for complete-
ness. Since in the current paper we are not interested in the optimization of these sub-
routines, we almost do not mention decryption and key schedules hereafter.

3.2 How to Measure a Number of Cycles

Different time measurement methods may change the speed numbers quite dramati-
cally. As in the case of the API’s, we decided to use one, sensible published andfully
specifiedconvention (specified in Figure 2) for all the implementations. (Note that this
wrapping corresponds almost exactly to the method specified in [Fog00], to which the
reader is referred for a throughout explanation of the method.) The inputs and key of
the cipher are generated randomly before the measurement begins, to prevent “opti-
mization” for specific class of keys. The input variablelenBlk was chosen to be equal
to 8000 so that the input and output texts would not fit in the L1 cache. Also,time is
a work area of typeuint32 , used in later calculations.
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movd mm0, dword ptr [time]; /* warm cache and set MMX state*/
xor eax, eax;
cpuid; /* serialize instructions*/
rdtsc; /* read time-stamp counter*/
mov dword ptr [time], eax; /* save counter*/
xor eax, eax;
cpuid; /* serialize instructions*/
/* xxEnc() or xxDec() */
xor eax, eax;
cpuid; /* serialize instructions*/
rdtsc; /* read time-stamp counter*/
sub dword ptr [time], eax; /* compute the difference*/
emms; /* empty MMX state */

Note thattime is a4 bytes work area.

Fig. 2.Time measurement code

/* push all used registers*/
cmp dword ptr [lenBlk], 0;
jz L1;
align 16;

L0:
dec dword ptr [lenBlk];
jnz L0;

L1:
/* pop these registers once more*/

Fig. 3.Null function

Note that this method has some overhead, due to both high latency of therdtsc
instructions and also the overhead caused by looping instructions likejnz which are
not formally part of the cipher itself. (Looping instructions can be seen as a part of
the block cipher mode, however.) We measure this overhead by using the null function
shown in Fig. 3 obtaining a valuenulltime , and then we subtract it from the value of
time obtained by measuring the speeds of different encryption/decryption procedures.
Finally, this result is divided by the number of blocks encrypted. Intuitively, by using
this method we obtain the number of cycles corresponding to unrolled implementation
of the block cipher, or to the implementation where we only care about the time en-
crypting one block takes without adding any extra overhead. (Note that the subtracted
overhead number was equal to≈ 6 in the casen = 8000. One could easily add this
number to those presented later to get the number of cycleswith overhead.)

Chosen time measurement method is also reasonable in practice: when the value
of lenBlk was chosen to be different, for most of the implementations (including
the implementation of null cipher), the execution times increased by almost the same
constant. Hence, the null cipher proved experimentally to be well-defined.
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Cipher Mbits/s on a 450
MHz Pentium II

Cycles per
block

Best previous resultSpeedup

Null cipher — 6 — —
RC6 258 Mbits/s 223 243 [Riv98] 8%
Rijndael 243 Mbits/s 237 320 [DR98] 26%
Twofish 204 Mbits/s 282 315 [SKW+99b] 11%
MARS 188 Mbits/s 306 390 [BCD+98] 22%

Table 1.Performance in clock cycles per block of output of four AES finalists. (Only encryption
considered)

Finally, we did a loop of500 times over the described measurements and then chose
the smallest number for every cipher, since that corresponds most likely to the case
where most of the data and code are in L1 cache and the branch prediction works suc-
cessfully: i.e., to the bulk encryption speed of the cipher itself.

4 Implementation Results

From the five AES finalists, one (Serpent) is regarded as a very conservative design
but at the same time also being clearly slower than the other AES finalists. Rest of the
finalists have comparable timings on most of the modern computer platforms, where
one of the ciphers is the fastest in one platform, and another one in another platform.
Since also on the Pentium II processor, Serpent seems to be very slow by the published
data, we decided postpone its implementation to the future and concentrate on the fast
ciphers.

Timings, obtained by measuring the speed of implementations by following pre-
viously specified procedures are summarized in Table 11. The numbers in the middle
columns show how many cycles it takes to encrypt one128-bit block by using the cho-
sen cipher with a128-bit key. These results indicate that the chosen four AES finalists
are extremely fast. For comparison, the standard hash algorithm SHA-1hashesa 512-
bit block in 837 cycles (i.e.,13.1 cycles per byte) and DES and 3DES encrypt a64-bit
block respectively in340 and928 cycles (resp.,42.5 and116 cycles per byte) [PRB98],
while RC6 and Rijndael respectively encrypt a128-bit block in 223 and 237 cycles
(resp.,13.9 and14.8 cycles per byte). However, note that the cited timings in [PRB98]
were obtained on a plain Pentium and therefore could most probably be improved on
the Pentium II.

Our results seem to indicate, that the speed difference between different ciphers is
less than expected: as before, RC6 is still the fastest cipher on the Pentium II, but the
difference between it and Rijndael has decreased seriously. Hence we hesitate to say
that RC6 is the fastest cipher. However, based on the cited results, we can classify the
ciphers to two groups: blastingly fast ciphers RC6 and Rijndael and somewhat slower,
but still very fast ciphers Twofish and MARS.

1 We also started to code the decryption routines, finishing RC6 decryption (209 cycles per
block) and Twofish decryption (276 cycles per block).
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However, one has to keep in mind that RC6 and MARS have design features that
make them specifically efficient on the Pentium Pro (and its successors), while their
performance seriously degrades on other processors [Lip99,SKW+99a]. This is due to
the use of complex instructions (32-bit multiplication and data-dependent rotation) that
are cheap on the P6 family (Pentium Pro, Pentium II, Celeron, Xeon and Pentium III)
but very expensive on most of the other platforms. Interestingly, also the next generation
Pentium processor (code-named “Willamette”, [Int00]) has latency10 multiplication
and latency2 or 4 shifts, as compared to latency4 multiplication and latency1 shifts on
the P6 family [Int00, Section 4.1.3]. Hence, RC6 and MARS would considerably slow
down on the Willamette, the next generation Pentium family processor. On the other
hand, Rijndael and Twofish are based on simple operations, and run equally well on
all platforms. The speed ratio between Rijndael and Twofish seems be remainalmost
the same on the other platforms [Lip99] (namely, Rijndael being5 . . . 25% faster than
Twofish).

Note that the speed up percents in Table 1 correspond to the achieved speed ups
compared to the fastest “clean” implementations (i.e., those not using key-specific static
data or self-modifying code). However, these percents do not always mean that our
implementation techniques were exactly as much better. For example, the best previous
implementation of Rijndael was done for the plain Pentium, but not for the Pentium Pro:
a factor that may have negatively affected its performance. The best previous “clean”
implementation of MARS was written in C, and therefore had also a relatively slow
performance. However, our own C implementation of MARS is clearly faster than the
one given in Table 1. In the case of Rijndael, most of the acceleration Rijndael is due
to the efficient use MMX technology. In general, speed up comes mainly from better
optimization (elaborated tradeoff between processor operating stages) and full usage of
the Pentium II possibilities (i.e., the MMX technology).

To further clarify how does the Pentium II architecture impact the speed, Table 2
shows the detailed information of our implementations in encryption mode in the micro-
operation level. Usage of the table is simple. For example, in the intersection point of
“@round” row and “port01” column in TwofishEnc table one would find19. That
means that there are19 µoperations in the round function ofTwofishEnc which will
be executed on port0 or port1.

Interestingly, our implementations of MARS, Rijndael and Twofish all require ap-
proximately the same number ofµoperations, while RC6 is about two times “better”
in this category. On the other hand, RC6 is also the worst cipher to parallelize: while
in Rijndael, more than2.5 µoperations are executed per a cycle, RC6 can only mildly
use the super-scalar parallelism of Pentium II. More cipher-specific comments will be
given in the next.

5 Cipher-Specific Comments

5.1 MARS

In the case of MARS [BCD+98], the speed difference between a carefully optimized
C implementation (using a recent snapshot of thegcc compiler) and an optimized as-
sembly language implementation is only about11% on the Pentium II. The speedup
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port 0 port 1 port 01port 2 port 3 port 4 total

MARS encryption (1.87 µops/cycle)
prewhitening 5 8 13
forward mixing 16 77 32 125
@core (×16) 6 9 3 18
backward mixing 16 85 32 125
postwhitening 1 8 4 4 4 21
total 128 1 319 124 4 4 572

RC6 encryption (1.47 µops/cycle)
prewhitening 2 7 9
@round (×20) 8 5 2 15
postwhitening 1 4 5 5 5 20
total 160 1 106 52 5 5 329

Rijndael encryption (2.54 µops/cycle)
whitening 1 8 6 15
@round (×9) 4 1 34 19 58
last round 4 3 31 20 3 3 64
total 40 13 345 197 3 3 601

Twofish encryption (2.11 µops/cycle)
prewhitening 5 8 13
first round 5 19 10 34
@round (×15) 6 19 10 35
postwhitening 2 1 8 4 4 4 23
total 97 1 317 172 4 4 595

Table 2.Number ofµoperations in our implementations

comes mainly from a slightly more efficient allocation of the integer registers and some
(minimal) usage of the MMX instructions in the assembly implementation. However,
the MMX technology is only moderately useful for MARS, since the complex instruc-
tions performed in MARS (i.e., 32-bit multiplication, data-dependent rotation and S-
box lookups) are not available for the MMX registers. Additionally, due to the high
data-dependency there is very limited freedom in meaningfully rescheduling the in-
structions in MARS, which also means that one cannot avoid all the delays on all the
processor operating stages.

Another drawback is that during MARS encryption, some execution ports are con-
siderably more overloaded than others. Namely, more than78% ofµoperations go either
to port0 or 1. The most overloaded is port0, since128 µoperations go only to this port
— including16 multiplications and extensively used rotations.

5.2 RC6

From implementers point of view, problems arising when optimizing an RC6 imple-
mentation are similar to those arising when coding MARS in many aspects: both ci-
phers rely on the same complex instructions, have long critical paths and overloaded
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port 0. However, since RC6 uses multiplications even more extensively, it is even less
parallelizable. Table 2 shows that our implementation includes160 port 0 µoperations,
which includes40 multiplications with latency4.

RC6 is a very Pentium II-friendly cipher, and it is very easy to code it even in the
assembly language. It can also be very efficiently implemented in C: the speed differ-
ence between a C implementation and an assembly implementation is about18%. (The
difference is bigger than in the case of MARS sincegcc , the test compiler, performs
very poorly in translating the quadratic formulas of typex · (2x+ 1) to the Pentium II
assembly language.) It is straightforward to obtain an optimized assembly language
implementation from the C implementation: one does not have many possibilities to
reschedule the code.

5.3 Rijndael

As opposed to MARS and RC6, Rijndael [DR98] is not C-friendly (at least notgcc -
friendly) in the sense that assembly implementation is about44% slower thangcc -
implementation of the same cipher. It is however mainly due to the inefficiency of the
gcc compiler: our implementation of Rijndael makes very heavy use of the MMX
technology, but also of 8-bit instructions provided by Pentium family. However,gcc
cannot efficiently use either of these.

Rijndael can effectively use the MMX since Rijndael is based only on most simple
imaginable operations (load , xor ), all of which are supported by the MMX technol-
ogy. Additionally, since Rijndael has large internal parallelism (at least four-times, but
partially up to16-times parallelism!), there is a large number of possibilities to resched-
ule its code. Our implementation was obtained by doing so in a way that all the delays
in the different stages of the Pentium II operation would be minimized. The final result
is very impressive for the Pentium II: it executes2.54 µoperations per a cycle.

Not the last factor that makes Rijndael suitable for the Pentium II is the fact that
almost exactly one third of theµoperations in our implementation of Rijndael go to
port 2, while the remaining2/3 of µoperations go to ports0 and1. Due to this and
parallelism we get that during the Rijndael encryption3 µoperations could be executed
in parallel almost all the time. However, this (not to mention other aspects like decoding
and fetching delays) also makes20 cycles per round a lower bound for Rijndael and
shows that our result may be very close to the optimal one. To facilitate more efficient
implementations, the Pentium II should feature three ALUs, two concurrent memory
access ports and also more decoders and retirement units: features that are not cipher-
specific and would improve the speed of most of the applications.

Finally, we measured the timings ofr-round Rijndael for variabler without any
additional fine-tuning: those implementations are unoptimized since they use the same
round macros as the10-round Rijndael without any additional effort to optimize them
to reduce, say, fetching delays. In particular it turned out that8-round Rijndael (essen-
tially equivalent to the cipher Square [DKR97] from the implementers point of view)
encrypts a block in193 cycles.192-bit Rijndael (12 rounds) took286 cycles, and256-
bit Rijndael (14 rounds)—333 cycles. Note that since12-round Rijndael is very similar
to Crypton [Lim98],286 cycles is also a (hopefully) close approximation for the speed
of latter.
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5.4 Twofish

Twofish is designed to be well-suited on multiple platforms, including also the Pen-
tium II. From the implementers point of view it resembles Rijndael in many aspects, by
using only simple instructions but also some large-scale components of the latter (e.g.,
MDS, to provide diffusion). Due to the use of low-level instructions, Twofish is also
relatively slow in C compared to the assembly (the difference is about37%).

Main difference for implementers between Rijndael and Twofish is the inclusion
of the Pseudo-Hadamard Transformation that somehow complicates Rijndael’s clear
structure and makes it less parallelizable: while the number ofµoperations in our im-
plementation of Twofish is less than in our implementation of Rijndael, it turned out
to be very difficult to use the MMX technology to optimize Twofish. Hence, Twofish
is only moderately parallelizable, although the parallelism of our implementation (2.11
µoperations per cycle) is relatively good.

6 Conclusion and Work in Progress

We achieved the fastest implementations of four of the AES finalists on the Pentium II
processor, obtaining speedup8% . . . 26% compared to the previously known implemen-
tations. Since all implementations were coded by using the same sensible assumptions,
they provide a more adequate efficiency comparison of the AES finalists than the pre-
vious papers. We demonstrated that MMX can be quite efficiently used to speedup
Rijndael, but is only moderately useful for other ciphers. (However, our implemen-
tations depend on the availability of MMX technology to a lesser or greater extent
and in general do not run on the Pentium Pro.) We provided full specification on our
time-measurement conditions to simplify for the future implementers to compare their
implementations to ours.

Our implementations are not the final: we continue optimizing them. Up-to-date
results will be available at the AES efficiency table [Lip99].
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A Pentium II for Cipher Designers and Implementers

A.1 MMX Technology

The Pentium II has8 integer (including stack pointer) and8 new MMX registers; the
latter were not present in the Pentium Pro. While there is a great number of opera-
tions available on the integer registers, MMX registers are much more “RISCy”: only a
few instructions affect them, including move, Boolean operations,16-bit arithmetic and
shifts. Available set of instructions does not include several operations used in the mod-
ern block cipher design, including rotation and32-bit multiplication. On the other hand,
the MMX technology provides64-bit versions of Boolean operations and data moves
(i.e., the simplest possible operations), and also parallel4-way addition and multiplica-
tion of 16-bit data.16-bit multiplication is currently used in a very few ciphers, but as
shown in [Lip98], ciphers that base their security on extensive use of16-bit multiplica-
tion can be speed up considerably if using the MMX technology.

Despite of MMX’s attractiveness, at the current state of the affairs many C compilers
(for example,gcc , the standard compiler for Linux machines) do not yet produce MMX
code. Hence, for the Pentium II the assembly implementations are potentially more
efficient than C-language implementations. Partially by this reason, many designers
and implementers of AES candidates seem not to know about MMX at all.

A.2 Processor stages.

The Pentium II processor (as other processors in the P6 family) operates in several
stages. At first the instructions are fetched from the main memory and then broken
down (decoded) intoµoperations (simple instructions consist of only oneµoperation,
while complex instruction have moreµoperations). Thereafter, theµoperations go via
a short queue to the register allocation table that allows register renaming. After that,
instructions go to reorder buffer that enables out-of-order execution. There it stays un-
til the operands it needs are available. Ready-for-executionµoperations are sent to the
execution units, and thereafter retired [Int99,Fog00]. During the optimization one has
to count on all different stages of processor operation to find a good tradeoff between
the delays introduced in them. The technicalities presented hereafter could be most in-
teresting for the implementers, but also for the cipher designers who want to create
ciphers optimized for the Pentium II. The most important lesson from the next is that
fixing any processor stages (e.g., decoding), suitable reordering of the instructions can
considerably reduce the delays at this stage. However, the same reordering usually intro-
duces additional delays in some other stages and therefore, code reordering is always
a complicated tradeoff. To achieve really fast implementations, a cipher should have
great internal parallelism that provides many different instruction reordering possibil-
ities, from what the best could be found after possibly exhaustive search. Of course,
one could design a cipher that would have only one possible order of instructions, op-
timized specifically for Pentium II. However, such cipher could slow down severely
if even slightest modifications would be introduced to the processor. Moreover, paral-
lelism is necessary anyways, since already in the near future a processor could have
dozens simultaneously working executing units.
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Note that our survey is far from being complete, we refer an interested reader to
[Int99,Fog00]. However, during finishing our implementations we found that also the
official Pentium family optimization manual published by Intel [Int99] is far from being
complete. We encountered many problems that could not have been foreseen by using
only the official manuals. Often more accurate (although also not complete) information
about the Pentium II was found in [Fog00]. In several places of our implementations
we performed partial exhaustive search to optimally schedule the instructions. A lot of
experience and luck is necessary in optimizing for Pentium II if one desires to avoid
exhaustive search himself.

In-Order Decoding. Up to 3 instructions can be decoded toµoperations at time, but
only the first decoder can handle instructions with more than oneµoperation. It is rec-
ommended to order the instructions in the4-1-1 sequence, which means that only ev-
ery third instruction could combine in itself of more than oneµoperation [Int99]. By
this reason, algorithms using only “simple operations” can be potentially implemented
faster than those consisting of “complex instructions”. However, in some circuimstances
it would also beneficial to have at least some complex instructions. Namely, if the code
is properly scheduled in a way that exactly (almost) every third instruction has more
than oneµoperation, the decoder will feed the out-of-order execution pool with pace
more than3 µoperations per cycle. Now, if in some later stage less than3 µoperations
per cycle are fed to the execution unit (say due to the delays in fetching), this unit will
not idle waiting for the next instructions from the decoder.

Instruction In-Order Fetching. The Pentium II has16-byte internalifetch bufferswith
the peculiarity that a new buffer is forced to start at beginning of an instruction. The first
instruction of the ifetch buffer will be always decoded by decoder0, even if the previous
instruction was decoded by the same decoder and hence, other decoders would stay
idle. Hence, code reordering and possible use of semantically identical instructions (in
general, but not always,shorter instructions: for example,mov eax,[ebx+0] with
mov eax,[ebx] ) with different length could reduce the number of delays introduced
in this stage.

Register In-Order Renaming. Pentium II has40 hardware registers. The software
registers are renamed to hardware registers after a write to (or read from) the software
register. After a register has not been used for a while, it automatically retires and the
next time the same register is used, a new renaming is performed. It is important to know
that only two register renamings can be done during one machine cycle. In particular
this means that generally it is beneficial to gather all instructions operating on some
fixed data chunk together (i.e., to reorder the code in a suitable way). However, it is
extremely difficult to detect and remove delays introduced by this stage, and therefore
this stage may really becomethebottleneck in optimization: subtle modification of code
may introduce long delays in this stage. We refer to [Fog00] for more information.

Out-of-Order Execution. Pentium II has5 execution ports (port 0, port 1, . . . , port
4) that can execute instructions out-of-order. Every port has some specific meaning.
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Ports0 and1 are ALUs (they can perform arithmetic on operands in registers), port2
performs memory loads. Every memory write counts as twoµoperations, one in port
3 (address calculation) and another one in port4 (memory write). Up to3 ports can
execute an instruction in parallel. There are a number of arithmetic instructions that
can only run in port0 (most importantly, multiplication, rotation and integer register
shifts — instructions that are widely used by some AES finalists), while some other
instructions (most importantly, MMX register shifts) can only run in port1. To obtain
a throughput near to3 µoperations per cycle, the instructions should be distributed so
that no more than2/3 of them are arithmetic, no more than1/3 are memory loads and
no more than1/3 are memory writes: a condition that is very difficult to fulfill in a
practical application.

In-Order Retirement After execution,µoperations will retire in-order. During retire-
ment, hardware registers will be written back to software registers and theµoperations
leave the instruction pool. Since this is done in-order, several delays can occur, e.g., if
speculative out-of-order execution of some earlier long latency instruction is not fin-
ished at the moment of retirement.
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