
Fast Software Implementations of SC2000

Helger Lipmaa

Laboratory for Theoretical Computer Science
Department of Computer Science and Engineering

Helsinki University of Technology
P.O.Box 5400, FIN-02015 HUT, Espoo, Finland

helger@tcs.hut.fi

Abstract. The block cipher SC2000 was recently proposed by a research group
of Fujitsu Laboratories as a candidate cipher for the CRYPTREC and NESSIE
projects. The cipher was designed so that it would be highly flexible and fast on
many platforms. In this paper we show that the cipher is really fast on the Pen-
tium III and AMD platforms: Our C implementation of SC2000 on Pentium III
is only second to the best C implementations of RC6 on the same platform, and
faster than for example the world fastest implementation of Twofish in assembly.
In particular, we improve the bulk encryption and decryption times by almost

��� �
times as compared to the previous best implementation by Fujitsu. Finally, we
report new Rijndael and RC6 implementation results that are slightly better than
these of Aoki and Lipmaa.

Keywords: block cipher design, fast implementation, large S-boxes, SC2000.

1 Introduction

While Rijndael [DR02] has been recently approved as the new US governmental stan-
dard, Europe and Japan are in a quest for their own standards. SC2000 is one of the
new block ciphers that was recently proposed by a research group from Fujitsu Labo-
ratories [SYY

�
01] in the context of CRYPTREC in Japan and NESSIE in Europe. The

cipher features many standard constructs of modern block ciphers, mixed in a way that
makes it potentially fast in many different execution environments when using suitable
implementation strategies. However, such design also makes the cipher more complex
than some of the rivals.

An example design decision that makes it possible to code an implementation of
SC2000 that takes into account the peculiarities of the target processor is the use of two�

-bit S-boxes and four � -bit S-boxes. All six S-boxes can be accessed in parallel. One
could then use the straightforward � �	� � � � � � � � �
��� -implementation for implementing
SC2000 on low-end storage-constrained environments with only �� � different S-box
entries. On high-end microprocessors with large cache size, one might instead want to
use a ��� �	� � ��� -implementation where six small S-boxes are combined into two large
S-boxes. The number of table look-ups required by such an implementation would
decrease by ��� per encrypted or decrypted block, while the S-box tables would have

�� ��� � � ���	� entries. Another example of the flexibility of SC2000 is the B func-
tion that may be implemented without or with bit-slicing techniques, depending on the
concrete processor.

On the other hand, although many strategic choices are available for the imple-
menter it is not a priori clear whether SC2000 will perform well on any concrete
platform. As an concrete example, the designers of SC2000 [SYY

�
01] have reported

SC2000 implementations that at least on Pentium III are severely less efficient than cor-
responding implementations of Rijndael [DR02], RC6 [RRSY98], MARS [BCD

�
98]

and Twofish [SKW
�

99], four of the five AES finalists. Complexity of SC2000 without
any referable performance advantages was probably the main reason why this cipher
did not pass to the second round of NESSIE.

We have chosen to implement SC2000 in the C language. For the sake of gen-
erality, we report the results of all implementations when compiled with gcc, icc or
(when available) hand-coded in assembly on both Pentium III and AMD’s Athlon. (See
Table 1.) However, our implementations are specifically optimized for the ��� � � � ��� -
strategy for the icc 5.0 compiler and for the Pentium III. Chosen processors are suf-
ficiently powerful to enable the usage of large S-boxes and to support efficient bit-
slicing, but they are not as powerful as to make the resources used by our implementa-
tions unreasonable in other common processors. In particular this means that while the
��� � � � ��� -implementation strategy might seem to be luxurious when using a Pentium III
or an Athlon, it will become more realistic in the near future also in the commercial
setting. Additionally, we focused our work on implementing the � � -bit key version of
SC2000, SC2000-128, since this version seems to be commercially the most relevant
for the foreseeable future.

We show that one can significantly improve upon the implementation results
of [SYY

�
01]. On Pentium III, we report a pure C ��� �	� � ��� -implementation of SC2000

that is almost ��
 � times faster than the C implementation, and approximately ��
 � times
faster than the combined C-assembly implementation of Fujitsu [SYY

�
01]. Such a

large speed-up is mainly caused by the use of large S-boxes, and demonstrates the flex-
ible design of SC2000. We also report fast implementations of SC2000 in different
implementation strategies.

Additionally, we report fast implementations of Rijndael and RC6 that are some-
what faster than the ones described by Aoki and Lipmaa [AL00]. We then compare our
implementations of Rijndael, RC6 and SC2000. On the Pentium III, our C implemen-
tation of SC2000 takes ���� cycles (or runs at � � � Mbit/s) that is faster than the best
assembly implementation of Twofish on the same platform [AL00] and is only second
to the assembly implementations of RC6 and Rijndael, reported in this paper. In par-
ticular, the only well-known block cipher that can be implemented faster in C on the
same platform seems to be RC6. One of the main conclusions of this paper is that given
current knowledge, it seems to be relatively easy to design fast (and secure) ciphers.

Road-map. In Section 2, we will give a short overview of the programming environment
and previous best results. Then, in Section 3 we will describe our new implementations.
There we will also give a summary of our final results. We conclude the paper with some
recommendations, further work and acknowledgments.

Table 1. Comparison of Rijndael, RC6 and SC2000 implementations on Pentium III. N/A means
that corresponding entry was not implemented. Enc means that the decryption key schedule is
equal to the encryption key schedule. Subscript � means high optimization in terms of the spent
time, with more pluses signifying better optimization

Cipher Compiler Encr. Decr. Key schedule
Encr. Decr.

Rijndael assembly ��� ������� ����	 � N/A N/A
icc 5.0
���� 453 185 319
gcc 3.0.4 ��
 � ��� ��� � ��� � � � ��� ����

���

SC2000 icc 5.0 �����
���

����
���

�����
���

Enc
gcc 3.0.4 � � 	 ��� ��� � 357 Enc

RC6 assembly � � 	 � ����� � N/A N/A
icc 5.0 ����� ���	 �
�� � Enc
gcc 3.0.4 ����
 � � � � � ���� Enc

2 Environment and State-of-the-Art

2.1 Description of Target Processor

We decided to optimize our implementations for one concrete widely used processor
but also test them on at least on another one. At the time of writing this paper main-
stream computers shipped at least three different processor families that, while inter-
compatible, were internally sufficiently different to make it necessary to use specialized
implementation strategies to achieve the best performance: Namely, Intel’s P6 fam-
ily (of which the Pentium III was the most high-end representative), Intel’s P7 family
(mainly, Pentium 4), and AMD’s Athlon family.

We chose the P6 family (most precisely, the Pentium III) mostly because of the
wide availability of comparison materials: For example, the results of Aoki and Lip-
maa [AL00] on implementing four of five AES finalists can be directly compared to
ours. Our main development and target processor was a 1200 MHz Pentium III Mobile
that was used in high-end laptops at this point. (The performance of our implementa-
tions on Pentium III Mobile and Pentium III (Katmai) was the same, so we will mostly
omit the word ‘Mobile’ in the next.)

A relevant introduction of the Pentium II for cipher designers and implementers is
given by Aoki and Lipmaa [AL00]. The main difference of Pentium III, as compared to
Pentium II (namely, inclusion of several new multimedia instructions) has no relevance
to our work: Our implementations are coded in C, and neither the Gnu C or the Intel
C Compiler generated any MMX technology instructions at all. As opposed to that,
a quite relevant change is the increase in size of cache to � � KB. Larger cache size
made it feasible to use the � � �	� � � � -implementation strategy (see Section 3.1). On the
other hand, increased cache size has not benefitted other block ciphers as greatly: our
best implementations of AES finalists on the Pentium III, while being slightly faster,
take approximately as much times as the implementations of Aoki and Lipmaa on the
Pentium II [AL00]. (This can be seen from Table 1.) The main reason behind that seems

to be the fact that, as a rule, other block ciphers do not have specific implementation
strategies that require �� �
�

 �	�� KB of memory.

In Section 3.2 we will also describe our results of implementing SC2000 on AMD’s
Athlon processor. The concrete Athlon had �� � KB cache and ran at 1400 MHz. Since
we did not make any specific effort of optimization for Athlon—we stress that one could
get a better performance on Athlon, after spending more time on implementation—, we
will omit description of this processor family.

2.2 Description of General Environment

We have coded our implementations under the Linux operating system, by using two
different compilers, gcc 3.0.4 (Gnu C Compiler) and icc 5.0 (Intel C Compiler). The
choice of operating system was partially due to the envisioned scenario of using our im-
plementations in (say) routers, firewalls and servers that often run a version of Linux.
Such machines usually do not serve as workstations, they instead execute a few spe-
cialized tasks. Therefore, in such machines memory usage of � �

�
 � � � KB for one
particular cipher seems to be quite reasonable if it results in

� ��� win in throughput. We
also chose to use a high-level language with a highly optimizing compiler so as to be
able to simply port our implementations to other machines and on the other hand, not
to loose seriously in throughput compared to implementations coded in the assembly
language.

More precisely, we tested our results on two different machines, one having a �� � �
MHz Pentium III Mobile, �	�� KB cache, ���� MB RAM, both gcc 3.0.4 and icc 5.0
compilers, and Linux 2.4.18 operating system. The second machine had a � ����� MHz
Athlon, �� � KB cache, � GB RAM, gcc 3.0.3 compiler and Linux 2.4.17 operating
system. The gcc compiler was used with flags

-O4 -fomit-frame-pointer -mcpu=XXX -march=XXX
-D__OPTIMIZE__ -fexpensive-optimizations
-funroll-loops -mpreferred-stack-boundary=2

where XXX corresponded to the processor type (pentiumpro or athlon). The icc com-
piler was used without any explicit optimization flags since their usage did not result in
any gain in performance.

2.3 Overview of Related Results

As far as we know, the only optimized implementation of SC2000 on the Pen-
tium III thus far is by the designers [SYY

�
01]. Their results, together with information

from [Shi02], is summarized in Table 2.
Aoki and Lipmaa [AL00] implemented several AES finalists on the Pentium II,

and described thoroughly their timing methods, implementation criteria (e.g., no self-
modifying code), etc. We follow their sensible guidelines. This allows precise compari-
son of our results to theirs. We refer to [AL00] for description of the timing subroutines
and other background information. Appendix A contains a short overview of the used
time measurement procedures.

Table 2. The previously best implementations of SC2000-128 [Shi02], compiled with VC++ 6.0
and tested under Microsoft Windows

Processor Strategy Language Encr. Decr. Key
sched-
ule

Pentium III
(Katmai)

� ���
� � � � � � ��� C+assembly ����
����
����
C
 � �
 �

����� ����� � � � ����� C+assembly ����� �����
��
C ���
 ��
�	
��

Athlon

� ���
� � � � � � ��� C+assembly ��	��
����
�� �
C ����
����
�� �� ����� � � � ����� C+assembly � � ����	 �����
C ����� ���� �����

3 Main Contributions

3.1 Choice of Implementation Strategy

General Strategy. We omit the full description of SC2000 and refer to [SYY
�

01] in-
stead. Our implementation and its strategy, described in this subsection, follows some-
what loosely the recommendations given in that paper about implementing SC2000 on
32-bit processors.

Cipher state. Cipher state consists of four
� -bit variables that are initialized by the

plaintext and then get modified by the B, B �	��
 , I, M and R functions.

S-boxes. From numerous available possibilities of combining the S-boxes we chose
the variant ��� �	� � ��� : That is, the case with two S-boxes that both contain �� elements,
all elements being

� -bit integers. The total storage needed by such S-boxes, � �� KB,
does not seem to be prohibitive in the target environment. However, when indeed one
must save the memory, one can use also the � ��� � ��� � ��� � -implementation strategy when
S-boxes have been partitioned into ��� , ��� and ��� -bit S-boxes. In this case, the S-boxes
require only � KB of storage space, but the resulting implementation will also be

� � �
slower. Several intermediate strategies are possible, the most natural ones are summa-
rized in Fig. 1. We implemented all four strategies.

Function M. We have chosen the strategy, outlined already in [SYY
�

01], to combine
the M function and S-boxes into single table. Therefore, M function does not add any
additional overhead to the implementation, compared to the S-boxes alone. Indeed, our
implementation features a function called SM.

Function R. Implementing R is straightforward, since it only includes two calls to the
SM function and a few Boolean operations. There was basically no choices to be done
while implementing this function.

#CellsLook−upsStrategy

6

6 6

65 5 5 5

10 10

11 10 11

16 16

�����

�������

���	��

�	���	
����

�

�

�

Fig. 1. Different implementation strategies for the S-boxes, with the number of table look-ups per
SM function and the total number of elements in all S-boxes

Function I. Function I consists of XOR-ing of a part of the key schedule to the in-
ternal state of the function. An implementer has almost no freedom in optimizing this
subroutine either.

Function B. We chose to implement B by using bit-slicing techniques, as also suggested
in [SYY

�
01], but improved considerably upon the example code given in [SYY

�
01].

Our code for B function consists of �� instructions that belong to one of the next five
available primitive operations of the target processor: a=b, a=˜b, a|=b, aˆ=b and
a&=b. Our implementation of B also uses three temporary registers.

Function B �	��
 . We also use bit-slicing to implement the function B ���	
 . Our code for B �	��

function consists of � instructions and uses four temporary registers. As we see later,
the difference in the complexities of B and B �	�	
 functions seem to be relevant under the
gcc compiler.

Key schedule. Our key implementation proceeds first by creating intermediate keys
and then the final key. Both parts are relatively straightforward. During creation of in-
termediate keys, one has to apply the SM function � � times on different inputs; this part
also includes some Boolean operations. During creation of the extended key schedule,
we invoke a subroutine EKEY � � times, where every invocation of EKEY consists of
four table look-ups and a few simple instructions.

Encryption During encryption, we first invoke the “encryption meta-round” function�
�
�

R ��� R ��� I � B � I six times, and then apply I � B � I to the result. Here, by�
�

�
we denote the serial composition of first

�
and then � ; R � denotes the R function

with constant �����������������	� ��� �� � �"!$#&% � � . More precisely, every invocation of I

feeds a new part of the extended key schedule to I, and the four elements in the state
of the cipher are permuted after each component function. The final state is stored as
the ciphertext. Permuting is implemented by inputting a different permutation of the
four state variables as arguments to different subroutines and therefore permuting is
free. Permutations are chosen so as to minimize the amount of ����� -type instructions in
different functions.

Decryption During decryption, we first invoke the “decryption meta-round” function
�

�
�

R � � � � R � � � � I � B ���	
 � I six times, and then apply I � B ���	
 � I to the result.
Therefore, our code of decryption looks very similar to our code of encryption, except
of the exchange in indexes of R functions and the replacement of B with B �	�	
 . (Also, the
permutations of B �	��
 function are different of the permutations of B function.) Thus, in
all our implemented strategies, the encryption and decryption routines have exactly the
same complexity except that there are

�
additional instructions in every B �	�	
 function

(and one additional temporary register in use) as compared to the B function.

3.2 Summary of Results

We implemented the SC2000 by using four possible strategies and compared the results
obtained when using two different compilers (gcc and icc) on two different platforms
(the Pentium III and Athlon). Summary results are given in Table 3 and in Table 4.
We specifically optimized the � � �	� � � � -implementation for Pentium III under the icc
compiler (the first row in Table 3), and no specific effort was made in optimizing results
in any other row. If such effort will be made, numbers in many fields will most probably
decrease significantly. We specifically expect that significantly improved performance
can be achieved on Athlon.

Our results indicate that the above-mentioned difference between the B and B �	��

functions is substantial in the case of gcc that runs short of registers in decryption
routine: This can result in decryption being almost twice slower. On the other hand,
when icc is used, encryption and decryption will have almost identical timings. Thus,
the small number of integer registers of the target processors makes implementations
extremely sensitive to proper allocation of registers.

The Intel C Compiler tends to optimize better the key schedule algorithm, while the
superiority of one compiler over the another one in producing better encryption code
seems to depend very much on the concrete implementation strategy. From the imple-
mentation strategies, � � � � � � � seems to yield the best throughput on the Pentium III,
while � ��� � ��� � ��� � suits better the Athlon. The difference is caused mainly by the fact
that the Pentium III Mobile and Katmai feature �	�� KB cache, twice as much as the
target Athlon. Really, when using the ��� �	� � ��� -strategy, the S-boxes have size � � KB
and therefore, when using the � � �	� � � � -strategy, accessing the S-boxes produces many
cache misses on Athlon.

On the other hand, this problem with the � � � � � � � -strategy non-withstanding, Athlon
seems to be a slightly better processor than the Pentium III. Our implementations (ex-
cept the ��� � � � ��� -implementation) run faster on the Athlon even if no special optimiza-
tion was made for Athlon! More precisely, icc-compiled implementations had often bet-

Table 3. Our SC2000 implementation results in the table form (cpb=cycles per block)

Processor Strategy Compiler Encr. Decr. Key sch.
(cpb) (cpb) (cpb)

Pentium III

� � � � � ��� icc 5.0 ����� ����� ��� �
gcc 3.0.4 � � 	
��	 ����	� ����� � � � ����� icc 5.0 ��
�	 ��� �
 ���
gcc 3.0.4
���� � � � ��� �� ���
� � � � � � ��� icc 5.0
���	
 �

���
gcc 3.0.4 ��� � ��	 � ���� ��� � � � � � � � � � � icc 5.0 ��� � ����� � � 	
gcc 3.0.4 ����� ��
 � � �

Athlon

� � � � � ��� icc 5.0 � � � �� � ����
gcc 3.0.3 ����
 ��
�� ����	� ����� � � � ����� icc 5.0 � � 	 ����� � ���
gcc 3.0.3 � � � ����� ��	��� ���
� � � � � � ��� icc 5.0
 � � ��� �
���

gcc 3.0.3 � ��� � � �
���� ��� � � � � � � � � � � icc 5.0
�� �
���
 ���
gcc 3.0.3
 � � �
�� ����

ter timings on Athlon than gcc-compiled implementations on Athlon (or icc-compiled
implementations on Pentium III), even if icc does not optimize for Athlon! When the
next versions of gcc will be properly tuned to perform heavy Athlon-specific optimiza-
tions, we can definitely expect to see our performance numbers to improve on Athlon.

3.3 Implementations of Rijndael and RC6

We have also implemented Rijndael, the new AES, and RC6 for both Pentium III.
These implementations are slightly better than the implementations of Aoki and Lip-
maa [AL00] for Pentium II. For example, instead of � � cycles, our Rijndael encryption
takes � � cycles. Also, instead of � � cycles, our RC6 encryption takes ��� cycles. We
also implemented the key schedule algorithms of Rijndael, although in C, and achieved
very good results. (The Rijndael key scheduling implementation that was available for
the authors of [AL00] was substantially slower.)

4 Conclusions and Further Work

4.1 Conclusions

Following Section 3.2, we can conclude that from the depicted choices, a Pentium III
running the icc-compiled � � �	� � � � -implementation of SC2000 would be the best one
when only raw throughput is important. If, additionally, the available memory is con-
strained, one might consider switching to Athlon and to the ����� � � � � ��� � -strategy. This,

Table 4. Our SC2000 implementation results as a bar graph. It is clearly seen that the
� � ��� � � �

-
implementation strategy is more fit for the Pentium III than for the Athlon

P3 gcc
Athlon gcc

P3 icc
Athlon icc

Implementation strategy

C
yc

le
s

pe
r

bl
oc

k

� � ��� � � �� � ��� � � � � � �� ��� � � � � � � � �� ��� � � � � � � � � � �

550

500

450

400

350

300

250

in particular, demonstrates the importance of the cache size in software implementa-
tions.

Our results show that after additional scrutiny from the security viewpoint, the
SC2000 might be a serious contender in the block cipher arena just because of excellent
throughput in different environments, as shown by this paper and by [SYY

�
01]. (We

however stress that we did not analyze the security of SC2000 at all.) Based on Table 1,
on Section 3.3 and on [AL00], our C implementation of SC2000 is slower than the
best assembly implementations of Rijndael and RC6, while being faster than the best
C implementations of Rijndael and the best assembly implementations of Twofish and
MARS [AL00] on Pentium III. This leaves us wondering how fast SC2000 could be in
assembly, and also lets us to conclude that nowadays it is possible to create surprisingly
fast ciphers.

Our improvement, �
 � times in encryption speed compared to the previous best
is quite significant. However, we used significantly more memory than the previous
implementations and therefore the implementations are not directly comparable. It is
an interesting open question how efficiently can one implement (say) Rijndael, given
similar amount of memory— � � KB—for internal storage.

Note that in many environments, the large S-box tables can be stored in ROM.
Since ROM is potentially both cheaper and faster than RAM, this would even more
decrease the price per performance ratio. Alternatively, one can create the � � -bit S-
box tables from a small seed of � � � elements. (The latter strategy was used in our
implementations.)

4.2 Further Work

We did not implement SC2000 in assembly, but nevertheless we made some observa-
tions. While both used compilers seemed to generate a very good code, a few things can
be certainly improved in assembly:

1. Use of MMX technology would benefit in at least two ways: First, it would make
more internal registers available to the cipher implementer. This would eliminate
some memory accesses. Second, the MMX technology features the nand instruc-
tion that could be used to somewhat speed up the implementations of B and B �	��
 .

2. Better register allocation: Even without using the MMX technology, one could re-
duce memory accesses by re-allocating some of the internal variables to correspond
to registers.

3. Advanced optimization: Do complete optimization that would take into account
trade-offs between different stages of the work of Pentium III, as described, say,
in [AL00]. This would include careful instruction reordering, manipulating the
length of individual instructions, etc.

4. Better bit-slicing: our implementations of B and B �	��
 might well be suboptimal.
To achieve a better throughput, one might have to write a brute force program for
generating (at least heuristically) close-to-optimal implementation of B and B �	��
 .
Here, such an implementation should both have a small number of Boolean oper-
ations but also a very small number of temporary registers. Most likely, optimal
implementation depends on the processor family, chosen strategy but also on the
compiler.

The fourth item in this list, finding better bit-slicing code, is also an interesting research
question by itself, and does not only concern SC2000 but also some other ciphers like
Serpent [ABK98].

Acknowledgments

We are thankful to Masahiko Takenaka, Takeshi Shimoyama and anonymous reviewers
for useful comments. This work was partially supported by Fujitsu Laboratories. Our
results were first presented at ISEC 2002 [TLT02].

References

[ABK98] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A Flexible Block Cipher
With Maximum Assurance. In The First Advanced Encryption Standard Candidate
Conference, Ventura, California, USA, 20–22 August 1998.

[AL00] Kazumaro Aoki and Helger Lipmaa. Fast Implementations of AES Candi-
dates. In The Third Advanced Encryption Standard Candidate Conference, pages
106–120, New York, NY, USA, 13–14 April 2000. National Institute of Stan-
dards and Technology. Entire proceedings available from the conference homepage
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3conf.htm.

[BCD
�

98] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro, Shai
Halevi, Charanjit Jutla, Stephen M. Matyas Jr., Luke O’Connor, Mohammad Peyra-
vian, David Safford, and Nevenko Zunic. MARS — A Candidate Cipher for AES.
Available from
http://www.research.ibm.com/security/mars.html, June 1998.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. AES - The Advanced
Encryption Standard. Springer-Verlag, 2002.

[RRSY98] Ronald L. Rivest, Matt J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6 Block
Cipher. Available from
http://theory.lcs.mit.edu/˜rivest/rc6.ps, June 1998.

[Shi02] Takeshi Shimoyama. Personal communication. April 2002.
[SKW

�
99] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels

Ferguson. The Twofish Encryption Algorithm: A 128-Bit Block Cipher. John Wiley
& Sons, April 1999. ISBN: 0471353817.

[SYY
�

01] Takeshi Shimoyama, Hitoshi Yanami, Kazuhiro Yokohama, Masahiko Takenaka,
Kouichi Itoh, Jun Yajima, Naoya Torii, and Hidema Tanaka. The Block Cipher
SC2000. In Mitsuru Matsui, editor, Fast Software Encryption ’2001, volume 2355
of Lecture Notes in Computer Science, pages 312–327, Yokohama, Japan, 2–4 April
2001. Springer-Verlag, 2002.

[TLT02] Masahiko Takenaka, Helger Lipmaa, and Naoya Torii. The Implementation of The
Block Cipher SC2000 (III). In ISEC 2002, Tohoku University, Sendai, Japan, 18–
19 July 2002. In Japanese.

A Timing

We use exactly the same convention of measuring the time as in [AL00] and is de-
scribed in Fig. 2. The inputs and key of the cipher are generated randomly before the
measurement. The input variable lenBlk was chosen to be equal to � ��� � . Also, time
is a work area of type uint32, used in later calculations.

We would get some overhead when outputting the result of this function alone due
to both high latency of the rdtsc instructions and also the overhead caused by looping
instructions like jnz which are not formally part of the cipher itself. We measure this
overhead by using the null function shown in Fig. 3 obtaining a value nulltime,
and then we subtract it from the value of time obtained by measuring the speeds of
different encryption/decryption procedures. Finally, this result is divided by the number
of blocks encrypted. Intuitively, by using this method we obtain the number of cycles
corresponding to unrolled implementation of the block cipher, or to the implementation
where we only care about the time it takes to encrypt one block, without adding any
extra overhead. The subtracted overhead number was equal to �

�
on the Pentium III

and � � on the Athlon in the case �
� � ��� � . One could just add this number to those

presented later to get the number of cycles with overhead.
Finally, we did a loop of ��� � times over the described measurements and then chose

the smallest number for every cipher, since that corresponds most likely to the case
where most of the data and code are in L1 cache and the branch prediction works suc-
cessfully: i.e., to the bulk encryption speed of the cipher itself.

movd mm0, dword ptr [time]; /* warm cache and set MMX state */
xor eax, eax;
cpuid; /* serialize instructions */
rdtsc; /* read time-stamp counter */
mov dword ptr [time], eax; /* save counter */
xor eax, eax;
cpuid; /* serialize instructions */
/* call to xxEnc() or xxDec() */
xor eax, eax;
cpuid; /* serialize instructions */
rdtsc; /* read time-stamp counter */
sub dword ptr [time], eax; /* compute the difference */
emms; /* empty MMX state */

Note that time is a
 bytes work area.

Fig. 2. Time measurement code

/* push all used registers */
cmp dword ptr [lenBlk], 0;
jz L1;
align 16;

L0:
dec dword ptr [lenBlk];
jnz L0;

L1:
/* pop these registers once more */

Fig. 3. Null function

