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Abstract. Cryptographic accumulators are well-known to be useful in
many situations. However, the most efficient accumulator (the RSA ac-
cumulator) it is not secure against a certificate authority who has herself
selected the RSA modulus n. We generalize previous work and define
the root accumulator in modules over Euclidean rings. We prove that
the root accumulator is secure under two different pairs of assumptions
on the module family and on the used hash function. Finally, we propose
a new instantiation of the root accumulator, based on class groups of
imaginary quadratic order, that combines the best properties of previ-
ous solutions. It has short (non)membership proofs like the RSA accu-
mulator, and at the same time it is secure against a malicious certificate
authority. Up to this point, this seems to be the only unique applica-
tion of class groups of imaginary quadratic orders, and we hope that this
paper will motivate more research on cryptography in the said groups.
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1 Introduction

Cryptographic accumulators have been proven to be extremely useful in the
public-key infrastructure, anonymous credential systems and many other appli-
cations. Briefly, in a cryptographic accumulator, for any document set S, a server
can compute a short digest Dig(S), such that for any candidate document m one
can find a succinct (non)membership proof Proof(m,S) of m (not) belonging to
S. The digest Dig(S) is published, and everybody can obtain it in an authenti-
cated manner. Finally, different clients use the verification algorithm Ver. It is
required that Ver(m,Dig(S),Proof(m,S)) = Member if m ∈ S, and (in some of
the papers like [5,6,23]) Ver(m,Dig(S),Proof(m,S)) = NotMember if m 6∈ S. Ac-
cumulators are required to be collision-resistant, that is, it should be difficult to
construct a triple (m,S, p), such that m 6∈ S but Ver(m,Dig(S), p) = Member [1].

One can construct collision-resistant accumulators (with nonmembership
proofs) based on hash-trees, see [5,6]. However, hash-tree based solutions have
relatively long — logarithmic in |S| — (non)membership proofs. The more suc-
cinct RSA accumulator was introduced in [2], further studied in [1,25,26,11], and
proven to be collision-resistant in [1]. Further accumulators have been proposed
in say [24,10].
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Unfortunately, one cannot rely on the accumulating party (say, the certifi-
cate authority) to honestly generate the value Dig(S).1 In particular, she could
publish d (not necessarily knowing the corresponding S) such that she can later
generate both membership and nonmembership proofs for some selected elements
m. To tackle this situation, Buldas, Laud and Lipmaa [5,6] required accumulators
to be undeniable in the next sense: it should be infeasible to generate a tuple
(m, d, p, p), such that Ver(m, d, p) = Member but Ver(m, d, p) = NotMember.
(The same security requirement — under different names — has been indepen-
dently reinvented in say [9].) Thus, in the case of certificate management, when
a client sees a certificate m, digest d and (say) a proof p that m was revoked,
she can be certain that there does not exist a contradictory proof p that m was
not revoked. Buldas, Laud and Lipmaa also constructed a concrete undeniable
accumulator based on hashed search trees. (They called it an undeniable attester
since it is not based on the RSA accumulator.) Because their solution is based
on hashed search trees, it is trapdoorless and thus secure against a malicious
server. Unfortunately, there the (non)membership proofs p have length that is
logarithmic in the size of S.

For a long time, it was not known how to construct short nonmembership
proofs for the RSA accumulators. Only in 2007, Li, Li and Xue [23] showed how
to do that. In their modification to the RSA accumulator, a membership proof
consists of one group element and a nonmembership proof consists of one group
element and one exponent. Unfortunately, in the case of the RSA accumula-
tor, the server can generate the RSA modulus n herself, and thus knowing the
factorization of n she can efficiently break the accumulator. That means that
the Li-Li-Xue construction is only secure in the trusted setup model where n
is generated by a trusted third party who does not disclose its factorization to
the server. Sander [25] tried to eliminate the trapdoor in the RSA accumulator
but his construction, while trapdoorless, is very inefficient. Moreover, from the
perspective of a client who just started to use the accumulator, it still does not
guarantee that the server does not know the trapdoor. Our goal is to get rid
of the trusted setup assumption, and to achieve efficiency that is comparable to
that of the RSA accumulator.

Our Contributions. We first substantially generalize the RSA accumulator
as modified by Li, Li and Xue. The generalized root accumulator works in RD,
which is a family of modules D over Euclidean rings R, and uses a hash function
(family) H. This generalization serves two different purposes. First, by gener-
alizing the algebraic setting to the widest one, it may become possible in the
future to find other more efficient instantiations of the primitive. (Even if at this

1 The original motivation of this line of research is digital time stamping, where the
digest over answers to time-stamping queries is computed by the time-stamping
authority [17,7,8]. Cryptographic methods are precisely in place to counter the case
where the authority may be malicious. In particular, a malicious time-stamping
authority can clearly compute a spurious value of Dig(S). See [5] for more discussion
and motivation.
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moment, the only known instantiations consist of Abelian groups D and R = Z,
with the module operation ◦ : R× D → D defined as α ◦ x := xα.) Second, the
construction of the root accumulator depends crucially on the existence of the
Extended Euclidean Algorithm in the underlying ring. In addition, most of the
security reductions of this paper make an explicit use of the Extended Euclidean
Algorithm. Thus, we think it is methodologically useful to explicitly point out
that the Extend Euclidean Algorithm algorithm must exist in the underlying
algebraic structure, and must be efficient. While modules over rings have been
used in cryptography before, see [16], we are unaware of any previous use of
modules over Euclidean rings in cryptography. Thus, this generalization may be
a contribution by itself.

Before proving the security of the root accumulator, we must define the
corresponding security notions and underlying security assumptions. The first
technical difficulty (and novelty) there is that because we want the accumulator
to be secure without trusted setup, the security definitions will become more
involved. In particular, an accumulator must have a public key divided into two
parts, one of which (say, the RSA modulus n) is generated by using a public
randomness known by the adversary, and another one (say, a generator of a
large subgroup in Z∗n) can be chosen by using a non-public randomness. Because
it was the trapdoor in n that we were worried about, this division is fine for
our purposes. (We leave it as an interesting open question to solve the second
part in an accountable way.) Similarly, when defining the security assumptions,
we must consider the case where the adversary knows the randomness that is
used when choosing the module (again, in the case of the RSA accumulator this
corresponds to the adversary knowing the factorization of n) where the root
accumulator will be run.

Then, we show that the root accumulator is both collision-resistant and
undeniable if either (a) RD is a strong prime root module family and H is a
prime-valued injective function [1], or (b) RD is a strong divisible root module
family [13] and H is a division-intractable function family [15]. (Corresponding
security definitions are given later in the paper.)

Based on those results, we show that if factorization is hard in the Euclidean
ring, then the security of the root accumulator—given that H is prime-valued
injective—is based on a presumably weaker assumption than the strong root
assumption (e.g., the security of the RSA accumulator is based on a presumably
weaker assumption than the strong RSA assumption). We also show that the
strong divisible root assumption is equivalent to the strong root assumption
(which is known to be secure in the generic group model [14]), given that the
module satisfies another seemingly unrelated small root assumption. (The latter
is related but generalizes significantly the small root assumption of [13].)

As a concrete instantiation, we propose to use class groups of imaginary
quadratic orders with a large discriminant ∆ where −∆ is a prime [4]. Many
previous cryptographic schemes are based on the strong root assumption in such
groups. Importantly, ∆ can be chosen by a malicious adversary with only neg-
ligibly changing her probability of breaking the root accumulator. While the
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applicability of class groups of imaginary quadratic order has been studied quite
extensively in the cryptographic literature (see [3,18] for an overview), one has
been mostly interested in such groups because they are one of the very few group
families known (in addition to say multiplicative groups of residue rings and (hy-
per)elliptic curve groups) that are suitable for cryptographic use. We show that
there is a natural cryptographic problem—construction of secure accumulators
without trusted setup—for which class groups of imaginary quadratic order are
the only known suitable group family. We hope that this will generate additional
interest in cryptography based on such groups.

Basic Notation. We assume that Member, NotMember and Error are special
symbols. k denotes the security parameter. The working time of all algorithms
and the security of all primitives is measured as a function of the security param-
eter k. negl(k) denotes an arbitrary negligible function in k, poly(k) denotes an
arbitrary polynomial function in k. PPT means probabilistic polynomial time.
We note that in the context of this paper, the adversary can always be non-
uniform; however, our reductions themselves are all uniform. If S is a set, then
x← S denotes random sampling, and x← S(ω) denotes random sampling while
using ω as the random tape. If A is an algorithm, then x← A(y) denotes random
sampling of the output of A, given input y.

2 Collision-Resistant And Undeniable Accumulators

First, we will state the syntax of accumulators that allow nonmembership proofs
as in [5,6,23]. (In [5,6], an accumulator with nonmembership proofs was called
an attester.) Informally, an accumulator is a mechanism that for each candidate
element m and a set S produces a succinct (non)membership proof that attests
to the fact that m ∈ S or m 6∈ S. Based on m, the short digest of S and the
corresponding proof (and without access to any other information), one can later
verify whether m ∈ S or not.

Definition 1 (Accumulator). Let M, D and P be three sets (the message
set, the digest set and the proof set correspondingly). A quadruple Acc =
(Gen,Proof,Dig,Ver) of PPT algorithms is a (strong) accumulator, if it satisfies
the next conditions:

Generating algorithm Gen(1k) outputs a public key pk.
Membership algorithm Proofpk(m,S) : If m ∈ M and S ⊆ M, then it outputs

a membership proof p ∈ P, otherwise it outputs Error.
Digest algorithm Digpk(S) : If S ⊆ M then it outputs a digest d ∈ D, other-

wise it outputs Error.
Verification algorithm Verpk(m, d, p): If m ∈ M, d ∈ D and p ∈ P then it

outputs either Member or NotMember, otherwise it outputs Error.

An accumulator must satisfy the next correctness property: for valid pk ∈
Gen(1k), m ∈ M and S ⊆ M, Verpk(m,Digpk(S),Proofpk(m,S)) outputs Member
if m ∈ S, and NotMember if m 6∈ S. ut
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Note that because all algorithms work in probabilistic polynomial time, it is
always implicitly required that |S| = poly(k).

Definition 2 (Security in Trusted Setup Model). Let Acc =
(Gen,Proof,Dig,Ver) be an accumulator. Acc is collision-resistant [1] (in the
trusted setup model) if

Pr

[
pk← Gen(1k), (m,S, p)← A(pk) :

m 6∈ S ∧ Verpk(m,Digpk(S), p) = Member

]
= negl(k)

for any PPT adversary A. Acc is undeniable [5,6,23] (in the trusted setup model)
if

Pr

[
pk← Gen(1k), (m, d, p, p)← A(pk) :

Verpk(m, d, p) = Member ∧ Verpk(m, d, p) = NotMember

]
= negl(k)

for any PPT adversary A.

Proofs p and p are contradictory if for some m and d, Verpk(m, d, p) = Member
and Verpk(m, d, p) = NotMember.

It was proven in [1] that the RSA accumulator [2] is collision-resistant (in
the trusted setup model). However, in several potential usage scenarios of ac-
cumulators, the trusted setup assumption is really inappropriate. For example,
imagine the setting (similar to digital time stamping [17,7], where cryptographic
methods are introduced precisely to obtain security against a corrupt authority)
where a certificate authority periodically revokes certificates. Instead of period-
ically publishing certificate revocation lists, she publishes their short digests. To
every client who wants to check whether or not some particular certificate was
revoked during that period, she also sends a succinct (non)membership proof
with respect to this revocation list. If the accumulator is undeniable (without
any trusted setup), the client can be certain that nobody else has a contradictory
proof.

In the case of the RSA accumulator, the certificate authority may know the
factorization n = PQ of the RSA modulus n. (The same attack is also valid in
other scenarios, obviously.) Even when using threshold methods to generate n,
there is always a coalition of parties who know P and Q. In striking contrast
with many other cryptographic applications, here we cannot assume that the
client herself participated in the generation of n, since she might have not been
using the services of this certificate authority at the that time. See [5,6] for more
motivation and [25] for an early paper on trapdoorless RSA accumulator.

We will now define security in the case without trusted setup. The RSA ac-
cumulator is not secure without trusted setup, because even a semi-honest party
who generates n can later cheat (e.g., by revealing its prime factors after being
adaptively corrupted). We tackle this problem by introducing a new Setup algo-
rithm (that generates the algebraic structure we are working in), and requiring
that the adversary must have access to the random tape ω of Setup. On the other
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hand, Gen’s random tape must remain hidden. (In the case of RSA accumulator,
the latter corresponds to the part that is used while generating a generator of
some large subgroup of Z∗n.) We thus naturally augment the definition of accu-
mulators with the Setup algorithm, and assume that all other algorithms get the
output of Setup as one of the inputs.

Definition 3 (Security without Trusted Setup). Let Acc =
(Setup,Gen,Proof,Dig,Ver) be an accumulator. Acc is collision-resistant
(without trusted setup) if

Pr
ω

 parm← Setup(1k, ω), pk← Gen(1k, parm),

(m,S, p)← A(ω, parm, pk) :

m 6∈ S ∧ Verpk,pk(m,Digparm,pk(S), p) = Member

 = negl(k)

for any PPT adversary A. Acc is an undeniable accumulator (without trusted
setup) if

Pr
ω


parm← Setup(1k, ω), pk← Gen(1k, parm),

(m, d, p, p)← A(ω, parm, pk) :

(Verparm,pk(m, d, p) = Member)∧
(Verparm,pk(m, d, p) = NotMember)

 = negl(k)

for any PPT adversary A.

Note that this is somewhat similar to security definitions in the common refer-
ence string model, where parm is honestly chosen, and the adversary (usually a
simulator) can choose parm herself together with a corresponding trapdoor ω.
In fact, one can consider a stronger requirement, where ω is not only known to
the adversary but actually chosen by her. However, in this case in all subsequent
security assumptions one would have to assume that the assumptions hold even
if the adversary can choose the underlying module. Unfortunately, no module
families are known where such security assumptions would hold. On the posi-
tive side, checking that pk is generated correctly is more plausible than checking
that the trapdoor information ω is not known to the adversary. For example, pk
can be generated by using verifiable randomness published in newspapers or the
NIST beacon (http://www.nist.gov/itl/csd/ct/nist_beacon.cfm).

3 Module-Based Cryptography

Many public-key primitives are based on groups. We generalize the group-based
setting to the module-based one. For this we generalize several well-known no-
tions and introduce a few new ones. In the next section, we propose an accu-
mulator that is based on a module over a Euclidean ring. Within this paper, all
rings are commutative.

http://www.nist.gov/itl/csd/ct/nist_beacon.cfm
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Algebraic Background and Definitions. A (left) R-module over the ring
R consists of an Abelian group (D,+) and an operation R × D → D (that
we denote by α ◦ g), such that for all α, β ∈ R and x, y ∈ D, we have (a)
α◦(x+y) = α◦x+α◦y, (b) (α+β)◦x = α◦x+β ◦x, (c) (α ·β)◦x = α◦(β ◦x),
and (d) 1 ◦ x = x.

A commutative ring R with identity is called an integral domain if for all
α, β ∈ R, αβ = 0 implies α = 0 or β = 0. A ring R is Euclidean if it is an
integral domain and there exists a function deg : R→ Z+, called the Euclidean
degree, such that (a) if α, β ∈ R with αβ 6= 0 and α 6= 0, then deg(α) ≤ deg(αβ)
and (b) if α, β ∈ R then there exist γ, δ ∈ R such that α = γβ + δ with
either δ = 0, or δ 6= 0 and deg(δ) < deg(β). Every Euclidean ring possesses
a multiplicative identity. An element α of R which is neither 0 nor 1 is called
irreducible if there are no non-1 elements β and γ with α = β · γ. Define Irr(R)
to be the set of irreducible elements of R.

Some examples of Euclidean rings R are Z with deg(α) := |α|, Z[i] (the ring of
Gaussian integers) with deg(α) := |α|2, K[X] for arbitrary field K with deg(α)
being the degree of polynomial α when α 6= 0, the ideals of polynomial ring
Zp[X] (that are modules over Zp[X]), and arbitrary field K where deg(α) := 1
when α 6= 0. An example of a non-commutative Euclidean ring is the polynomial
ring P [x] over a skew field (division ring) P . In all such cases one can talk about
the irreducible elements of R.

Intractable Problems in Modules. Because we want the accumulator to be
secure without trusted setup, it must also be the case that in the underlying
security assumptions the adversary can see the coins used while selecting the
concrete module.

Definition 4 (Security Assumptions without Trusted Setup). Let RD =
((Ri)Di

) be a family of modules with i ∈ I and an efficient deterministic al-
gorithm Setup(1k, ω) that picks some i ∈ I. We assume that A is a stateful
algorithm.

1. RD is a discrete logarithm module family if for every PPT adversary A,

Pr
ω

[RD ← Setup(1k, ω), (x, y)← D, α← A(x, y, ω) : α ◦ y = x] = negl(k) .

2. RD is an order module family if for every PPT adversary A,

Pr
ω

[RD ← Setup(1k, ω), x← D, y ← A(x, ω) : ord(x) = y] = negl(k) .

3. RD is a root module if for every PPT adversary A,

Pr
ω

[RD ← Setup(1k, ω), x← D, α← R, y ← A(x, α, ω) : α◦y = x] = negl(k) .

4. RD is a strong prime root module if for every PPT adversary A,

Pr
ω

[
RD ← Setup(1k, ω), x← D, (y, α)← A(x, ω) :

(α ◦ y = x) ∧ (α ∈ Irr(R))

]
= negl(k) .
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Setup Algorithm Setup(1k, ω):
Generate random i← I according to ω. Let parm← i.

Generating Algorithm Gen(1k, parm):
Generate random g ← Di. Publish pk← g.

Digest Algorithm Digparm,pk(S):
1. If i 6∈ I or g 6∈ Di, then return Error.
2. If S 6⊆ Mi, then output Error.
3. Otherwise, output (

∏
s∈S H(s)) ◦ g.

(Non)Membership Proof Algorithm Proofparm,pk(m,S):
1. If i 6∈ I or g 6∈ Di, then return Error.
2. If m 6∈ Mi or S 6⊆ Mi, then return Error.
3. If m ∈ S then define Proofpk(m,S) := (

∏
s∈S\{m}H(s)) ◦ g.

4. Otherwise, let δ ←
∏

s∈S H(s) ∈ Ri. Because Ri is Euclidean and
gcd(H(m), δ) = 1, there exist α, β ∈ Ri, such that α ·H(m) + β · δ = 1.
Let Proofpk(m,S) := (α ◦ g, β).

Verification Verparm,pk(m, d, p):
1. If i 6∈ I or g 6∈ Di, then return Error.
2. If m 6∈ Mi or d 6∈ Di, then return Error.
3. If p ∈ Di, then check whether H(m) ◦ p = d.

If it is, then return Member, else return Error.
4. Otherwise, if p = (q, β) ∈ Di×Ri, then check whether H(m) ◦ q+β ◦ d = g.

If it is, then return NotMember, else return Error.
5. Otherwise, return Error.

Fig. 1. Root accumulator for (RD, H)

5. RD is a strong root module if

Pr
ω

[
RD ← Setup(1k, ω), x← D, (y, α)← A(x, ω) :

(α ◦ y = x) ∧ (α 6= 1)

]
= negl(k)

for every PPT adversary A.
6. RD is a strong divisible root module if

Pr
ω

[
RD ← Setup(1k, ω), x← D, (y, α, β)← A(x, ω) :

((αβ) ◦ y = β ◦ x) ∧ (α 6= 1)

]
= negl(k)

for every PPT adversary A.

In the trusted setup model, one does not require security in the case A knows ω,
and thus A may be able to break the assumption by obtaining access to it.

The strong prime root and (to certain extent) the strong divisible root as-
sumption are novel, while others are generalizations of well-known assumptions.
The assumptions are ordered starting from the “weakest” one, see Sect. 6. For
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example, if one can solve the discrete logarithm problem in RD then one also
clearly solve the order problem.

The cryptographically familiar example of modules is RD with α ◦ x := xα

for x ∈ D and α ∈ R = Z. The order assumption for groups is well known—for
the RSA group, it is also called the RSA assumption. That RSA groups are
strong root groups was postulated in [1] (the corresponding assumption being
called the strong RSA assumption). Damg̊ard and Fujisaki [13] enlisted some
candidate strong divisible root groups. Note that in the case of RSA groups the
assumptions can only hold in the trusted setup model.

4 Accumulator with Prime-Valued Injective Functions

In this section, we propose the root accumulator for R-modules that generalizes
previous work of [23] that considered only the setting of RSA groups, and prime
inputs m.

Setting. For some set M and Euclidean ring R, function f : D→ R is a prime-
valued injective function if it is an injective function D → Irr(R). We will not
propose new prime-valued injective functions, see [1,15] for some existing designs.
Let RD = (Ri)Di for i ∈ I, where Di is an Abelian group and Ri is a Euclidean
ring. Let H be a prime-valued injective function H : Mi → Ri. Here, I depends
on k and H depends on i. The root accumulator is depicted by Fig. 1.

Security Proofs.

Theorem 1. The root accumulator satisfies the correctness property.

Proof. Assume all participants are honest. Thus i ∈ I, g ∈ Di, m ∈ Mi and
d = Digpk(S) ∈ Di. We need to show that if m ∈ S then Verpk(m, d, p) =
Member, and if m 6∈ S then Verpk(m, d, p) = NotMember. First, if m ∈ S then
p = (

∏
s∈S\{m}H(s)) ◦ g. Thus,

H(m) ◦ p = H(m) ◦ ((
∏

s∈S\{m}

H(s)) ◦ g) = (
∏
s∈S

H(s)) ◦ g = d .

Second, if m 6∈ S then p = (q, β) ∈ Di×Ri, with q = α◦g and α ·H(m)+β ·δ = 1
for some α. But then

H(m) ◦ q + β ◦ d = (α ·H(m)) ◦ g + (β · δ) ◦ g = 1 ◦ g = g ,

since δ =
∏
s∈S H(s) and d = δ ◦ g. ut

The next two proofs show that in some sense, collision-resistancy and unde-
niability of the root accumulator are equivalent, though their reductions to the
same underlying problem have different costs. In general, it seems to be difficult
to prove that every undeniable accumulator is collision-resistant, because in the
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case of undeniability the adversary has to return a (possibly fake) digest, while
in the case of the collision-resistancy, the adversary has to return a set which
may not be easily computable from the fake digest. Moreover, clearly not every
collision-resistant accumulator is undeniable; see [5,6] for discussions.

Theorem 2 (Sufficient Conditions (with Prime-Valued Injective Func-
tions)). Let H be a prime-valued injective function. (1) If RD is a strong prime
root module family, then the root accumulator is collision-resistant. (2) If RD is
a strong prime root module family, then the strong root accumulator is undeni-
able.

Proof. (1) Construct a machine B to break the strong prime root assumption
using as the oracle an adversary A that breaks the collision-resistancy of the
root accumulator.

1. B obtains i← Setup(1k, ω), and random ω.
2. B obtains his challenge x← Di.
3. B queries (m,S, p)← A(x, ω).
4. B sets δ ←

∏
s∈S H(s), d ← δ ◦ x. B finds a pair (α, β), such that α ·

H(m) + β · δ = 1.
5. B returns (α ◦ x+ β ◦ p,H(m)).

Since m 6∈ S and H is prime-valued injective, thus gcd(H(m), δ) = 1. Because
Ri is a Euclidean ring, (α, β) can be found efficiently by using the Extended
Euclidean Algorithm. Then

H(m) ◦ (α ◦ x+ β ◦ p) =(α ·H(m)) ◦ x+ (β ·H(m)) ◦ p
=(α ·H(m)) ◦ x+ (β · δ) ◦ x
=(α ·H(m) + β · δ) ◦ x = x .

Clearly if A is successful then B is successful. B’s running time is dominated
by the running time of A and by the time it takes to execute the Extended
Euclidean algorithm (and thus, Ri has to be Euclidean).

(2) Construct a machine B to break the strong root assumption using as the
oracle an adversary A that breaks the undeniability of the root accumulator.

1. B obtains i← Setup(1k, ω), and random ω.
2. B obtains his challenge x← Di. B sets pk = (i, x).
3. B queries (m, d, p, p)← A(pk, ω), where p = (q, α).
4. B returns (q + α ◦ p,H(m)).

If A is successful, then H(m) ◦ p = d and H(m) ◦ q + α ◦ d = x. Thus,

H(m) ◦ (q + α ◦ p) = H(m) ◦ q + (α ·H(m)) ◦ p = x .

Therefore, B breaks the strong root problem with the same probability that A
breaks the undeniability of the root accumulator, in time that is dominated by
A’s running time. (For this reduction to go through, Ri does not have to be
Euclidean.) ut
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5 Accumulator with Division-Intractable Function Family

One of the drawbacks of the root accumulator (as described in the previous
section) is that prime-valued injective functions (see [1] for some examples) may
be inefficient. In this section, we consider a variation of the root accumulator that
works with potentially more efficient division-intractable functions [15]. However,
due to that, it is based on a (probably) stricter assumption on RD.

Division-intractable functions. Let I be an index set. As always, let RD be
an R-module over Euclidean ring R. A hash function family H = {Hi} with
H : Mi → Ri for every Hi ∈ Hi is a division-intractable function family [15] if

Pr

Hi ← Hi, (m,S)← A(Hi) :

(S ⊆ Di) ∧ (m ∈ Di \ S) ∧ (H(m) |
∏
s∈S

H(s))

 = negl(k)

for any PPT adversary A. Clearly, every prime-valued collision-resistant function
is a division-intractable function family by itself. Division-intractable function
families can be more efficient than prime-valued injective functions, see [15] for
some constructions.

One can instantiate the root accumulator with a division-intractable function
family, by letting the hash function H ← H to be a part of the public key pk.
One also has to modify the definition of the non-membership proof. Namely, if
m 6∈ S, Proof works as follows:

– Let δ ←
∏
s∈S H(s). For γ ← gcd(H(m), δ), find α, β ∈ Ri, such that

α ·H(m) + β · δ = γ. Let Proofpk(m,S) := (α ◦ g, β, γ).

Analogously, verification of non-membership is modified as follows:

– If p = (q, β, γ) ∈ Di ×Ri ×Ri, then check whether H(m) ◦ q+ β ◦ d = γ ◦ g,
γ | H(m), and γ 6= H(m). If it is, then return NotMember, else return Error.

(Note that γ 6= H(m) because H is division-intractable.)

Theorem 3 (Sufficient Conditions (with Division-Intractable Function
Families).). Let H be a division-intractable function family. Let RD be a family
of modules over Euclidean rings. (1) If RD is a strong divisible root module
family, then the root accumulator is collision-resistant. (2) If RD is a strong
divisible root module family, then the root accumulator is undeniable.

Proof. (1) Construct a machine B that breaks either the strong divisible root
assumption of RD or the division-intractability of H using as an oracle an ad-
versary A who can break the collision-resistancy of the root accumulator.
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1. B obtains i← Setup(1k, ω), and random ω.
2. B obtains his challenge x← Di, and H ← H.
3. B sets pk← (i, x,H).
4. B queries (m,S, p)← A(pk, ω).
5. B sets δ ←

∏
s∈S H(s).

6. B sets β∗ ← gcd(H(m), δ), α∗ ← H(m)/β∗. If α∗ = 1, then B aborts.
7. By using the Extended Euclidean Algorithm, B computes γ and γ′, such

that γ ·H(m) + γ′ · δ = β∗.
8. B returns (γ ◦ x+ γ′ ◦ p, α∗, β∗).

Clearly,

(α∗ · β∗) ◦ (γ ◦ x+ γ′ ◦ p) =H(m) ◦ (γ ◦ x+ γ′ ◦ p)
=(γ ·H(m)) ◦ x+ (γ′ ·H(m)) ◦ p
=(γ ·H(m)) ◦ x+ (γ′ · δ) ◦ x = β∗ ◦ x .

Thus, if A is successful and B does not abort, then B is successful. But if B
aborts, then β∗ = H(m) and thus B has broken the division-intractability of H.

(2) Construct a machine B that breaks either the strong divisible root as-
sumption of RD or the division-intractability of H using as oracle an adversary
A who can break the undeniability of the root accumulator.

1. B obtains i← Setup(1k, ω), and random ω.
2. B obtains his challenge x← Di, and H ← H.
3. B sets pk← (i, x,H).
4. B queries (m, d, p, p)← A(pk, ω), where p = (q, β, γ).
5. B sets α∗ ← H(m)/γ. If α∗ = 1, then B aborts.
6. B returns (q + β ◦ p, α∗, γ).

If A is successful, then H(m)◦p = d and H(m)◦q+β ◦d = γ ◦g for γ | H(m)
and γ 6= H(m). Thus,

(α∗γ) ◦ (q + β ◦ p) = H(m) ◦ q + (βH(m)) ◦ p = H(m) ◦ q + β ◦ d = γ ◦ g .

Thus, if A is successful and B does not abort, then B is successful in breaking
the strong divisible root assumption. But if B aborts, then B has broken the
division-intractability of H. ut

Now, we show that independently of the properties of RD, the family H must
be division-intractable.

Lemma 1. If the root accumulator is collision-resistant, then H is division-
intractable.

Proof (Sketch.). By contradiction: assume an adversary finds a pair (m,S), m 6∈
S, such that

∏
s∈S H(s) = α ·H(m), for some α ∈ Ri. Now,

d = (
∏
s∈S)

H(s) ◦ g = (α ·H(m)) ◦ g = H(m) ◦ (α ◦ g) = H(m) ◦ p

with p = α ◦ g, and therefore the adversary has broken the accumulator. ut
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6 Relations between New Assumptions

Clearly, if RD is a strong root module family, then it is also a strong prime
root module family. (If it is difficult to find (y, α) such that α ◦ y = x, then
it is also difficult to find (y, α) with α irreducible, such that α ◦ y = x.) The
opposite holds only if factorization is easy in the Euclidean ring. Moreover, if
RD is a strong prime root module family, then it is clearly a root module family.
Thus, the strong prime root assumption is in its strength somewhere between
the root assumption and the strong root assumption. Because we showed that
root accumulator with prime-valued injective function H is secure if and only if
the underlying module module is strong root module family, we get

Theorem 4. Let H be a prime-valued injective function. If factorization is dif-
ficult in the underlying Euclidean ring, then the security of root accumulator is
based on a security assumption that is weaker than the strong root assumption.

(In particular, the security of RSA accumulator can be based on an assumption
that is weaker than the strong RSA assumption.)

Clearly, if RD is a strong divisible root family, then RD is also a strong
root module family. (To break the strong divisible root assumption, just return
(g, α, 1), where (g, α) was returned by an adversary who breaks the strong root
assumption.) To show that the proposed strong divisible root assumption in this
special case is not too strong, we reduce its security to the strong root assumption
conditionally to the small root assumption that generalizes an earlier assumption
of the same name by Damg̊ard and Fujisaki [13]. (In their paper, it was assumed
that β = 2.) See [13] for discussion.

Theorem 5. Let RD be defined as always. Let the next two assumptions hold:
(a) RD is a strong root module family, (b) For any i ∈ I, it is intractable to
find elements g ∈ Di such that α ◦ g = 0 for some α with non-minimal non-zero
degree deg(α), but β ◦ g 6= 0 for some deg(β) < deg(α) (we call this a small root
assumption). Then RD is a strong divisible root module family.

Proof. Assume that adversary A breaks the strong divisible root assumption.
Construct a machine B that breaks one of the two premises as follows.

1. B obtains i← Setup(1k, ω) and ω.
2. B gets his challenge x← D of the strong root problem game.
3. B obtains (y, α, β)← A(x, ω).
4. B returns (y, α).

Assume that A is successful. Then (α · β) ◦ y = β ◦ x and α 6= 1. If β = 1
then we are done. Otherwise, denote w ← α ◦ y − x. If w = 0 then we are done.
Otherwise,

β ◦ w = β ◦ (α ◦ y)− β ◦ x = (α · β) ◦ y − β ◦ x = β ◦ x− β ◦ x = 0 .
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Choose some β′ ∈ R with deg(β′) < deg(β). By the small root assumption, also
β′ ◦w = 0. Thus, by application of the Euclidean algorithm, α = x · β′ + q such
that deg(q) < deg(β′). By the choice of β′,

α ◦ w = x ◦ (β′ ◦ w) + q ◦ w = q ◦ w .

By the small root assumption, w = 0 and thus α ◦ y = x. ut

7 Example Instantiations

7.1 RSA Accumulator

In the RSA accumulator, as modified by [1,26], the public parameters contain
n = PQ that is a product of two safe primes, and Dn = Z∗n, Rn with α ◦ g := gα

(mod n). If the factorization of n is known to a collusion of parties (say, generated
by a malicious server or in a threshold manner by several parties who are all
later corrupted), they can jointly compute membership proofs of any element

m by defining p ← Dign,g(S)H(m)−1 (mod φ(n)) (mod n). Therefore, the RSA
accumulator is not collision-resistant without trusted setup.

7.2 Root Accumulator in Class Groups of IQ Order

Class group preliminaries. Let ∆ be a negative integer such that ∆ ≡ 0, 1

(mod 4). The ring O∆ = Z + ∆+
√
∆

2 · Z is an imaginary quadratic order of

discriminant ∆. Its field of fractions is Q(
√
∆). The discriminant ∆ is funda-

mental if ∆ is square-free if ∆ ≡ 1 (mod 4) or ∆/4 is square-free if ∆ ≡ 0
(mod 4). The ring O∆ is a maximal order if ∆ is fundamental. The fractional
ideals of O∆ are of form q(aZ + (b +

√
∆)/2Z) with q ∈ Q, a ∈ Z+, b ∈ Z and

4a | (b2−∆). Therefore, a fractional ideal can be represented by a triple (q, a, b).
An ideal (q, a, b) is integral if q = 1; an integral ideal can be represented by a
pair (a, b). Two fractional ideals a, b ⊆ O∆ are equivalent if for some nonzero
α ∈ Q(

√
∆), a = αb. The set of equivalence classes forms an Abelian group

under ideal multiplication; this group is called the class group and denoted by
Cl(∆). The class group is always finite, its order is called the class number and
denoted by h(∆) := |Cl(∆)|.

For an integral ideal there exists a c ∈ Z+, such that ∆ = b2 − 4ac. An ideal
is called reduced if (a) gcd(a, b, c) = 1, (b) −a < b ≤ a ≤ c and (c) b ≥ 0 if a = c.
Every equivalence class contains exactly one reduced ideal. Thus, every element
of Cl(∆) can be represented by a reduced ideal of O∆, and checking equality of
two ideal classes means comparing the representatives. The neutral element of
Cl(∆) is represented by (1, ∆ (mod 2)). The inverse of the ideal class represented
by (a, b) is the ideal class represented by (a,−b). The group operation in Cl(∆) is
ideal multiplication followed by reduction; a group operation requires O(log2 |∆|)
bit-operations. If (a, b) is reduced then a ≤

√
|∆|/3. For more information on

computations in class groups see [12, Chapter 5] or [3]; for algorithms see [21,3].
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Class groups and cryptography. Class groups were first proposed for use in
cryptography by Buchmann and Williams [4]. The class number is not efficiently
computable if ∆ is fundamental, but the even part of h(∆) can be efficiently
computed if the prime factorization of ∆ is known. All problems of Def. 4 can be
instantiated to the class groups, and the known efficient algorithms for tackling
the discrete logarithm, order, and root problem are tightly connected [3].

General number fields sieve [22], the best currently known factorization algo-

rithm, runs in time Ln[1/3, 3

√
64
9 ]. The best currently known algorithm (MPQS)

for the root problem in maximal orders runs in time L∆[1/2, 1 + o(1)] [21].
Even this time is only empirically suggested, the best rigorous algorithm for
computing the discrete logarithm runs in time L∆[ 12 ,

3
4

√
2 + o(1)] assuming the

Extended Riemann Hypothesis [27]. On the other hand, if O∆ is non-maximal
then the discrete logarithm problem in Cl(∆) can be reduced to the discrete log-
arithm problem in multiplicative groups of finite fields [20]. On the other hand,
a (p − 1)-like algorithm can compute the class number efficiently, given that
h(∆) is smooth [19]. Hamdy and Möller estimate the probability that a h(∆) is
B-smooth for randomly chosen k-bit ∆, and conclude that if k-bit discriminants
are large enough to guarantee security against the MPQS algorithm, then the
probability to find a sufficiently smooth h(∆) by choosing k-bit ∆’s randomly
and applying the (p − 1)-like algorithm to them, is negligible. Their heuristic,
that we also follow, is that the same holds true even when |∆| is chosen to be a
k-bit random prime.

In general, we rely on the next properties of the class groups:

– If −∆ is a random k-bit prime, for large k, then computing the roots in the
class group Cl(∆) as well as the order of a random element from Cl(∆) is
assumed to be intractable. In particular, the length of the discriminant ∆ is
reasonable: to achieve the same security as with k = 1536 in the RSA case,
it seems to be sufficient to take k ≈ 1000 [19].

– if −∆ is prime and ∆ is fundamental, then with high probability 0.9775
the class group Cl(∆) of imaginary quadratic order is cyclic. Moreover, then
h(∆) is odd.

Root Accumulator in Class Groups of Imaginary Quadratic Order.
Let us now concentrate on the case where Ri = Z, and Di is a class group of
imaginary quadratic order, with α ◦ x := xα in Di.

In the setup phase, for class groups, choose a random negative k-bit prime
fundamental discriminant ∆, that is, let −∆ be a random k-bit prime with
∆ ≡ 1 mod 4. For a k-bit prime i, let Di := Cl(−i). Note that for a random
k-bit negative ∆, h(∆) is not smooth [19], and it was also conjectured in [19]
that this also holds when ∆ is a random negative k-bit prime.

Another assumption that we make (but that is common to all previous papers
on class group-based cryptography) is that with probability 1−negl(k), a random
element of Cl(∆) is a generator of some sufficiently large subgroup of Cl(∆).
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Word of Caution. While the (weaker) root assumption is a well known as-
sumption in class groups, we are not aware of any a priori use of the strong
root assumption in class groups except [13]. Since also [13] did not analyze the
strong root assumption but only used it, we must warn that this assumption
is yet almost unstudied in the class groups. However, we hope that the current
paper provides new incentive to study strong root assumption (and related as-
sumptions) in class groups. A disproof of such assumptions would constitute a
major result by itself.
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