
Efficient NIZK Arguments via Parallel
Verification of Benes Networks

Helger Lipmaa

Institute of Computer Science, University of Tartu, Estonia

Abstract. We work within the recent paradigm, started by Groth (ASI-
ACRYPT 2010), of constructing short non-interactive zero knowledge ar-
guments from a small number basic arguments in a modular fashion. The
main technical result of this paper is a new permutation argument, by
using product and shift arguments of Lipmaa (2014) and a parallelizable
variant of the Beneš network. We use it to design a short non-interactive
zero knowledge argument for the NP-complete language CircuitSAT
with Θ(n log2 n) prover’s computational complexity, where n is the size
of the circuit. The permutation argument can be naturally used to design
direct NIZK arguments for many other NP-complete languages.
Keywords. Beneš networks, modular NIZK arguments, perfect zero
knowledge, product argument, shift argument, shuffle.

1 Introduction

To construct a cryptographic protocol secure against malicious adversaries, one
needs to employ zero-knowledge proofs [14]. To enable verifiability even in the
case the prover is not online, zero-knowledge proofs must be non-interactive.
Since in many applications, the proof will be verified by many independent ver-
ifiers (e.g., by many voters in an e-voting applications), then it is also desirable
that the proofs be short. Finally, in several applications (like delegation of com-
putation) one needs to construct a short non-interactive zero-knowledge (NIZK)
proofs for generic NP-complete languages (like CircuitSAT).

Motivated by such applications, Groth [16] constructed a non-interactive zero
knowledge and computationally sound NIZK proof (i.e., an NIZK argument) for
CircuitSAT with communication that is a small constant number of group
elements. Groth’s CircuitSAT argument is constructed in a modular fashion
from a small number of more basic arguments. More precisely, it consists of
less than 10 basic Hadamard product (given three committed vectors, one of
them is an entry-wise product of the other two) and permutation (given two
committed vectors and a public permutation %, the coefficients of one vector are
%-permuted coefficients of the second vector) arguments. Unfortunately, both ba-
sic arguments have CRS length (in group elements) and prover’s computation (in
exponentiations) quadratic in the vector dimension n, and as the result, the cor-
responding complexity parameters of the CircuitSAT argument are quadratic
in the circuit size |C|. Due to this, Groth’s original argument can only be used
for relatively small |C|.

2 Helger Lipmaa

Subsequent research has improved on Groth’s modular approach by both in-
creasing the efficiency of Groth’s basic arguments and studying the possibility to
implement arguments for NP-complete languages by using different (hopefully
more efficient) basic arguments. Lipmaa [19] improved Groth’s basic arguments,
by using progression-free sets (see Sect. 2). For vectors of length n, Lipmaa’s ba-
sic arguments have CRS length of Θ(r−13 (n)) group elements, while the prover’s
computation is dominated by Θ(n2) scalar additions. Here, r3(N) is the size of
some progression-free subset of [N] = {1, . . . , N}. However, due to quadratic
prover’s computation, also Lipmaa’s CircuitSAT argument is useful only for
small |C|. In [12], Fauzi, Lipmaa and Zhang implemented Lipmaa’s product
argument in prover’s computational complexity Θ(r−13 (n) log r−13 (n)) multipli-
cations. Finally, in [21], Lipmaa used a different approach to construct a product
argument with the CRS length of Θ(n) group elements and prover’s computation
of Θ(n log n) non-cryptographic and Θ(n) cryptographic operations. His product
argument is based on the so called interpolating commitment scheme.

However, none of the subsequent work improved on the asymptotic computa-
tion of the permutation argument. Instead, [12] proposed a new z-left/right shift
argument (given two committed vectors, one of them is a coordinate-wise z-shift
of the second vector) with linear CRS size and prover’s computation. They then
used the product and shift arguments to implement computationally more effi-
cient modular NIZK arguments for the NP-complete languages SetPartition,
SubsetSum and DecisionKnapsack. (For the latter, they also need an effi-
cient NIZK range argument, [8], which can be constructed by using product and
shift arguments as shown in [12,21].) Lipmaa showed in [21] how to use the inter-
polating commitment scheme to efficiently implement the shift arguments, and
thus also the corresponding NP-complete languages. Since the prover’s compu-
tation in the arguments from [21] is Θ(n log n), these arguments are usable for
much larger input sizes n than the CircuitSAT arguments from [16,19].

On the other hand, while [12] proposed computationally efficient NIZK ar-
guments for SetPartition, SubsetSum and DecisionKnapsack, it did not
propose one for CircuitSAT. CircuitSAT is a natural language to be used
in various cryptographic applications, like verifiable computation. Moreover,
CircuitSAT is often used as a benchmark to show the efficiency of new zero-
knowledge techniques. Therefore, construction of a CircuitSAT argument with
subquadratic CRS length and prover’s computation and short (i.e., polylogarith-
mic) communication is still an important open problem.

Finally, any further advances will help one to better understand the power
and limitations of the modular approach. It is likely (we will motivate this intu-
ition later) that efficient modular arguments for other NP-complete languages
can be constructed by using the permutation argument, and thus it is important
to construct a permutation argument with better prover’s computation.

Our contributions. We construct a new permutation argument for n-bit vec-
tors, by using Beneš network [4] to combine Θ(log n) product and shift argu-
ments. This results in a permutation argument with Θ(n log2 n) prover’s com-

Efficient NIZK Arguments via Parallel Verification of Benes Networks 3

Bn−1

Bn−1

Bn−1

Bn−1

Fig. 1. The usual definition of Beneš network Bn (left), and our definition (right). The
boxes with blue X denote crossbars in the input and output stage

putation and logarithmic communication. We then plug the new permutation
argument in to the NIZK arguments of [16,19] to obtain a CircuitSAT ar-
gument with the same asymptotic complexity. Apart from being the most ef-
ficient CircuitSAT argument following from the modular paradigm, the new
CircuitSAT argument is the most complex known yet still competitively ef-
ficient NIZK argument in the modular framework. We also outline how to use
the new permutation argument to construct efficient NIZK arguments for other
NP-complete languages.

Let Sn denote the symmetric group. The Beneš network Blog2 n, see Fig. 1,
is a multistage interconnection network [18]. Every stage consists of a number
of crossbars, the outputs of which are wired to the inputs of the next stage’s
crossbars. The only changeable elements are the S2-permutations implemented
by each of the crossbars. Assuming that n is a power of 2, the definition of a
Beneš network Blog2 n is usually given recursively, from two copies of Blog2 n−1,
an input stage (that has n/2 crossbars) and an output stage (that has n/2 − 1
crossbars; one crossbar can be fixed to implement the identity map), as in Fig. 1
(left). The network B1 consists of a single crossbar. Each crossbar implements a
permutation from S2.

The Beneš network Blog2 n implements a permutation from Sn by using nearly
optimal n · log2 n− n+ 1 crossbars and 2 log2 n− 1 stages (log2 n input stages,
followed by a single stage that implements B1, followed by log2 n output stages).
A stage here consists of n/2 parallel crossbars, followed by wirings from the
outputs of the crossbars of the current stage to the inputs of the next stage.

A straightforward use of Beneš networks results in a permutation (and shuf-
fle) argument of length Θ(n log n) [1,2]. We achieve logarithmic communication
and Θ(n log2 n) prover’s computation by verifying in parallel that all crossbars
of the same stage of the Beneš network have been implemented correctly; this
seems to be a novel use of Beneš networks. We use a small number of product
and shift arguments from [21] (each of which has Θ(n log n) prover’s computation
and constant communication) at every stage. Since there are Θ(log n) stages, the
resulting permutation argument consists of Θ(log n) basic arguments.

4 Helger Lipmaa

It is not immediately clear from the standard recursive definition of Beneš
networks (Fig. 1, left) how to do parallel verification. We use a slight variant
(that we call a parallelizable Beneš network) of the usual Beneš network, see
Fig. 1 (right), that is also a well-known but not the usually presented definition.
In that variant, at every stage, input elements of the stage are permuted twice.

First, in crossbars, the ith input of a stage will become to the jth input of the
wirings, where depending on the S2-permutation implemented by the concrete
crossbar, j ∈ {i− 1 mod n, i, i+ 1 mod n}. That is, the jth output bit of the
crossbars is either equal to the jth bit of the input a of the crossbars, or it is
equal to the jth bit of either 1-left or 1-right shift of a. Which case happens
depends on the number of the stage, the index i, and the input to the network.

Second, after the wiring, the ith output of the crossbars will go to the jth
input of the next stage, where j ∈ {i − z mod n, i, i + z mod n}, where z is
a stage-dependent constant. That is, the jth output bit of the wiring is either
equal to jth input bit of the wiring, or to the jth bit of a z-left or z-right shift
of the input of the wiring. Importantly, which case happens depends only on the
number of the stage and on i, and not on the input to the network, that is, not
on the concrete permutation. In the usual variant of the Beneš networks as in
Fig. 1 (left), all possible z-shifts, z ≤ n/2, are used in wirings of every stage.

These observations make it possible to verify correct implementation of one
stage of the Beneš network by using a small constant number of shift and product
arguments. Therefore, correct implementation of the full Beneš network can be
verified by using a logarithmic number of shift and product arguments. This
results in a permutation argument with related complexity parameters.

While the resulting new permutation argument, has larger communication
than Groth’s and Lipmaa’s permutation arguments [19], it has smaller prover’s
computation.1 Since quadratic prover’s computation is the main obstacle in ac-
tually applying Groth’s short arguments, this means that now one can use a
significantly larger value of n. The relatively minor increase in the communica-
tion (from Θ(1) to Θ(log n), where n is the circuit size) is comparatively less
important.

Both the prover and the verifier have to execute an online routing algorithm
that outputs the necessary shift amounts. For (the standard variant of the) Beneš
network, routing can be done in time Θ(n log n) on a single processor [28,24], or
Θ(log2 n) on a parallel computer [23]. Clearly, routing algorithms can be modified
to work with the parallelizable Beneš networks without any loss in efficiency.

We can use the methodology of Groth [16] and Lipmaa [19] to construct
a CircuitSAT argument, given the product argument of [21] and the per-
mutation argument of the current paper. Hence, one can construct modular
NIZK arguments of knowledge for NP-complete languages SetPartition [12],
SubsetSum [12], DecisionKnapsack [12] and CircuitSAT ([16], [19], and
the current paper) that are all based on the simple “parallel programming lan-

1 It also has verifier’s computation of Θ(n logn) multiplications. This is larger than
in [16], but smaller than in [19], where one needed Θ(n) exponentiations. (Since one
exponentiation takes Θ(log p) multiplications, and n� p.)

Efficient NIZK Arguments via Parallel Verification of Benes Networks 5

guage” consisting of two arguments, Hadamard product and (z-)shift. The fact
that one can construct a CircuitSAT argument from the weaker set of ba-
sic primitives than in previous papers [16,19], where the programming language
consisted of the product and (arbitrary) permutation arguments, can be seen
as an additional contribution of the current paper. Since every shift argument
is quadratically more efficient than the permutation argument of [16,19], using
Θ(log n) of them results still in a major win in efficiency.

Interestingly, the arguments for SetPartition, SubsetSum and
DecisionKnapsack [12,21] are more efficient than the new argument for
CircuitSAT, and the new CircuitSAT argument is by far the most complex
existing program in such a language. We leave it as an open question to design
efficient direct (i.e., one obtained without a reduction to another NP-complete
language) NIZK arguments for other NP-complete languages, and to study
why some languages have more efficient arguments than others.

However, one can use the permutation argument and the product argument to
construct NIZK argument for many NP-complete languages as follows. First, use
a permutation argument (by using a secret permutation) to permute the inputs
randomly. (See App. B for a description of how to efficiently modify the new
permutation argument to handle secret permutations. The resulting argument
can be seen as a committed shuffle argument that one committed vector is a
shuffle of another vector.) Second, use a product argument to clear the bits of
the inputs that are not needed to verify the witness (this can be done by checking
that the permuted input a and the cleared version b satisfy ai · ci = bi, where ci
is a publicly known Boolean vector). After that, one reveals the cleared version
of the inputs, from which one can — in the case of many NP-complete languages
— directly verify the witness. This results in direct NIZK arguments for a large
family of NP-complete languages.

As a high-level example, in the case of the HamiltonianPath argument, the
prover has to show that there exists a path that visits each vertex once. Here, the
prover chooses a random secret permutation % that permutes the input (which is
usually represented as an n× n adjacency matrix), modulo the restriction that
the Hamiltonian path visits vertices in the order 1 → 2 → 3 . . . → n → 1. The
prover uses a committed shuffle argument to show that the (secret) permutation
was done correctly. The prover then uses a product argument to clear n2 − n
elements of the adjacency matrix, and then opens the cleared adjacency matrix.
In the case that the graph had an Hamiltonian path, the opened adjacency
matrix has 1-s in positions (i, i + 1 mod n). The language Clique has a very
similar argument, except that one verifies that the opened adjacency matrix
starts with an all-1 m ×m matrix for some parameter m. We leave the precise
details together with bringing further examples to the future work.

We remark that the parallel programming model that consists of shift and
entry-wise addition and product is well-known both in theoretical computer
science [26] and parallel computing [6], but up to our knowledge it has not been
applied before the current line of work (starting with [16] and made explicit

6 Helger Lipmaa

in [19,12]) to verify the solutions of NP-complete languages — even without
requiring the zero knowledge property.

Comparison to the QSP/QAP-Based Approach. In [13], Gennaro, Gen-
try, Parno, and Raykova showed how to construct a more efficient (linear CRS,
Θ(n log3 n) prover’s computation, constant communication, and linear verifier’s
computation) NIZK argument for CircuitSAT. The prover’s computation can
be improved toΘ(n log2 n) when one uses bilinear groups of well-chosen prime or-
der p [13,20,21]. Their — based either on Quadratic Span Programs or Quadratic
Arithmetic Programs — argument has been further improved in say [5,3,20].

First, the arguments of [13] are directly tailored for (arithmetic)
CircuitSAT. It is unclear how to use these arguments for any NP-complete
language L, except via a potentially costly polynomial-time reduction. Even if
this reduction takes time say Θ(n log2 n), the resulting argument for L becomes
too slow (in prover’s computation).

Second, our approach is completely different and therefore still interesting by
itself. It is clearly beneficial to study different approaches to the same problem.

2 Preliminaries

Let [L,H] = {L,L + 1, . . . ,H − 1, H} and [H] = [1, H]. By a, we denote the
vector a = (a1, . . . , an). For a group G, we utilize the fact that G2 = G × G
is a group and thus aggressively use notation like (g, h)a or (g1, h1) · (g2, h2).
If y = hx, then let logh y := x. We abbreviate probabilistic polynomial-time as
PPT, and let negl(κ) be an arbitrary negligible function.

Preliminaries on Interconnection Networks. The basic components of a
switching network [18] (e.g., see Fig. 1 or Fig. 2) are crossbars, and links that
connect crossbars. A crossbar with n inlets and m outlets is denoted by Xnm.
Any matching (one-to-one mapping) between the inlets and the outlets of a
crossbar is considered routable, that is, a crossbar is nonblocking. By using dif-
ferent terminology, a crossbar Xnn can be fixed to implement any permutation
from Sn. Two sets of crossbars are connected to outside world. One set of such
crossbars is called input crossbars and another set output crossbars. The links on
an input (output) crossbar linking to outside world are called inputs (outputs)
of the network. An (N,M)-network has N inputs and M outputs, and will be
called an N -network if M = N .

A network is (i) strict-sense nonblocking if one can, given the values of %
for some i together with corresponding routes in the network, always find non-
intersecting routes for the rest of the values of %, (ii) wide-sense nonblocking if
there is an algorithm for establishing paths in the network one after another,
so that after each path is established, it is still possible to connect any unused
input to any unused output, (iii) rearrangeable if it is only required that such
choice of routes can be done for all i at the same time.

Efficient NIZK Arguments via Parallel Verification of Benes Networks 7

An (m,n)-Clos network [9,18] for a permutation % ∈ SN , where N = mn,
is a three-stage network to implement %, in which each stage is composed in a
number of smaller crossbars. The first stage has m crossbars Xnn, the second
stage has n crossbars Xmm, and the third stage has m crossbars Xnn. Each
input crossbar is connected to each middle stage crossbar, and each middle
stage crossbar is connected to each output crossbar. See Fig. 2. To implement an
arbitrary permutation from Smn it suffices to use a rearrangeable non-blocking
network [9,4,18], for which one can choose an (m,n)-Clos network. (In fact, the
Clos network is strict-sense nonblocking.) For this one just has to choose the
2m+ n small permutations accordingly.

Beneš networks [4,18] implement an arbi-

n× n m×m n× n

Fig. 2. An (4, 4)-Clos network for
permutations from S16

trary permutation % : [N] → [N] by using
2 log2N − 1 stages of X22 crossbars. Beneš
network Bn (for permutation from S2n) is usu-
ally defined recursively by connecting an ini-
tial stage of n/2 X22 crossbars, two Bn−1 net-
works and a final stage of (n/2−1) X22 cross-
bars, as in Fig. 1, left. Clearly, the Beneš net-
work Blog2N has (N log2N−N+1) X22 cross-
bars. While the Clos network is strict-sense
nonblocking, the Beneš network is only rear-
rangeable. Recall that X22 implements either
an identity function id, id(x, y) = (x, y), or a
flip flip, flip(x, y) = (y, x).

Waksman [28] and Opferman and Tsao-Wu [24] proposed efficient routing
algorithms for the standard variant (Fig. 1, left) of the Beneš network. Their
algorithm instantiates the N log2N −N + 1 crossbars %i,j , given the input per-
mutation %, in time Θ(N logN). Nassimi and Sahni [23] proposed a parallel
routing algorithm for the Beneš network that works in time Θ(log2N), given N
parallel processors.

Cryptographic Preliminaries. On input 1κ, where κ is the security param-
eter, a bilinear map generator returns (p,G1,G2,GT , ê, g1, g2), where G1, G2

and GT are three multiplicative cyclic groups of prime order p, gz is a genera-
tor of Gz for z ∈ {1, 2}, and ê is an efficient bilinear map ê : G1 × G2 → GT
that satisfies in particular the following two properties: (i) ê(g1, g2) 6= 1, and (ii)
ê(ga1 , g

b
2) = ê(g1, g2)ab. Thus, if ê(ga1 , g

b
2) = ê(gc1, g

d
2) then ab = cd mod p.

The security of the arguments of the current paper depends on the q-type
computational and knowledge [10] assumptions, variants of which have been
studied and used in say [15,11,16,8,19,5,12]. In fact, all known (to us) adaptive
short NIZK arguments are based on q-type assumptions about genbp. We refer
to [21] for a description of these assumptions.

Trapdoor commitment scheme is a randomized cryptographic primitive in
the CRS model [7] that takes a message and outputs its commitment. It con-
sists of two efficient algorithms gencom (that outputs a CRS and a trapdoor)

8 Helger Lipmaa

and Com (that, given the CRS, a message and a randomizer, outputs a commit-
ment), and must satisfy the following three security properties. Computational
binding: without access to the trapdoor, it is intractable to open the same com-
mitment to two different messages. Perfect hiding: commitments of any two
messages have the same distribution. Trapdoor: given an access to the original
message, the randomizer and the trapdoor, one can open a commitment to (say)
0 to an arbitrary message. See, e.g., [16] for formal definitions.

We use the following interpolating commitment scheme from [21]. Assume n
is a power of 2, and assume that the group order p is such that there exist a nth
primitive unit of root modulo p [21]. Let this unit be ω. Let f0(X) = Z(X) and
fi(X) = `i(X) be polynomials, defined as follows:

1. Z(X) =
∏n
j=1(X − ωj−1) = Xn − 1, i.e., Z(ωi−1) = 0,

2. `i(X) =
∏
j 6=i(X − ωj−1)/

∏
j 6=i(ω

i−1 − ωj−1) is the ith Lagrange basic

polynomial, i.e., `i(ω
i−1) = 1 and `i(ω

j−1) = 0 for i 6= j.

The CRS generation algorithm gencom(1κ) first sets gk ← genbp(1κ), and then
generates the trapdoor (σ, α) ← Z2

p (with σ 6= 0). It then outputs the com-

mon reference string ck = ((g1, g
α
2)f(σ))f∈{Z,`1,...,`n}. The commmon reference

string ck is made public, while the trapdoor (σ, α) is only used in security

proofs. Define2 Comck((a1, . . . , ak); r) :=
∏k
i=1((g1, g

α
2)`i(σ))ai · ((g1, gα2)Z(σ))r =

(g1, g
α
2)rZ(σ)+

∑k
i=1 ai`i(σ). The computation of Com can be sped up by using ef-

ficient multi-exponentiations algorithms [27,25]. We denote the output of the
commitment either by (A1, A

α
2) or by (A, Â).

As shown in [21], the interpolating commitment scheme is perfectly hid-
ing, and computationally binding. Moreover, if a suitable knowledge assumption
holds, then for any non-uniform PPT A that outputs a valid commitment C,
there exists a non-uniform PPT extractor that, given A’s input together with
A’s random coins, extracts a valid opening of C.

An NIZK argument for a language L consists of three algorithms, gencrs, P
and V. The CRS generation algorithm gencrs takes as input 1κ (and possibly
some other, public, language-dependent information) and outputs the CRS crs
and the trapdoor td. The prover’s algorithm P takes as an input crs together
with a statement x and a witness w, and outputs an argument π. The verifier’s
algorithm V takes as an input crs together with a statement x and an argument
π, and either accepts or rejects.

We expect the argument to be (i) perfectly complete (the honest verifier
always accepts the honest prover), (ii) perfectly zero knowledge (there exists
an efficient simulator who can, given x, crs and td, output an argument that
comes from the same distribution as the argument produced by the prover),
and (iii) computationally sound (if x 6∈ L, then an arbitrary non-uniform PPT
prover has only a negligible success in creating a satisfying argument). We refer
to say [16,19] for formal definitions.

2 Here and in what follows, elements of the form (g, gα)x, where α is a secret random
key, can be thought of as a linear-only encoding of x, see [5] for a discussion

Efficient NIZK Arguments via Parallel Verification of Benes Networks 9

Assume that Γ is a (trapdoor) commitment scheme that commits to el-
ements a = (a1, . . . , an) ∈ Znp for a prime p and integer n ≥ 1. In an
Hadamard product argument [16,19], the prover aims to convince the verifier
that given commitments A, B and C, he can open them as A = Com(ck;a; ra),
B = Com(ck; b; rb), and C = Com(ck; c; rc), such that ci = aibi for i ∈ [n]. In
a z-right shift argument [12], the prover aims to convince the verifier that for
two commitments A and B, he knows how to open them as A = Com(ck;a; ra)
and B = Com(ck; b; rb), such that ai = bi+z for i ∈ [n − z], and ai = 0 for
i ∈ [n − z + 1, n]. That is, (a1, . . . , an) = (bz, . . . , bn, 0, . . . , 0). We define the
z-left shift argument dually. In a permutation argument [16,19], the prover aims
to convince the verifier that given commitments A and B and a permutation
% ∈ Sn, he can open them as A = Com(ck;a; ra) and B = Com(ck; b; rb), such
that bi = a%(i) for i ∈ [n].

We recall the following theorem from [21], but we only give the details that
are needed in the following (for example, we state the precise security guar-
antees, but we leave out the description of the arguments themselves and the
precise security assumptions). We do it to avoid overdependence on the concrete
implementation of the basic arguments. We remark that the condition (2) in the
theorem statement is called co-soundness, see [17] for an explanation.

Theorem 1 (Security of the product argument [21]). Let n = poly(κ).
Let Com be the interpolating commitment scheme.

1. The product argument from [21] is perfectly complete and perfectly witness-
indistinguishable.

2. (Co-soundness:) If genbp satisfies a q-type computational assumption
from [21], then a non-uniform probabilistic polynomial-time adversary
against the product argument from [21] has negligible chance, given crs ←
gencrs(1κ, n) as an input, of outputting inp× = (A, Â,B, B̂, C, Ĉ) and an
accepting argument π× together with a witness w× = (a, ra, b, rb, c, rc), such
that

(i) a, b, c ∈ Znp and ra, rb, rc ∈ Zp,

(ii) (A, Â) = Com(ck;a; ra), (B, B̂) = Com(ck; b; rb), and (C, Ĉ) =
Com(ck; c; rc), and

(iii) for some i ∈ {1, . . . , n}, aibi 6= ci.

The product argument of [21] has CRS of Θ(n) group elements, prover’s compu-
tation Θ(n log n) multiplications, verifier’s computation 3 pairings, and commu-
nication of 1 group element. We denote this argument as [[(A, Â)]] ◦ [[(B, B̂)]] =
[[(C, Ĉ)]].

For a vector a = (a1, . . . , an), denote lsft1(a) := (a2, a3, . . . , an, 0) and
rsft1(a) := (0, a1, a2, . . . , an−1). For z > 1, let lsftz(a) := lsft1(lsftz−1(a)) and
rsftz(a) := rsft1(rsftz−1(a)). In the case of the shift argument, [21] proved an
even weaker version of soundness, see [16] for explanation.

Theorem 2 (Security of the right shift argument [21]). Let n = poly(κ).
Let Com be the interpolating commitment scheme.

10 Helger Lipmaa

1. The shift argument of [21] is perfectly complete and perfectly witness-
indistinguishable.

2. (Weak soundness:) Let Φzrsft be as in [21]. If genbp satisfies a q-type
computational assumption from [21], then a non-uniform probabilistic poly-
nomial time adversary against the shift argument of [21] has negligible
chance, given crs ← gencrs(1κ, n) as an input, of outputting inprsft ←
(A, Â,B, B̂) and an accepting argument (π, πβ) together with a witness
wrsft ← (a, ra, b, rb, (f

∗
ϕ)ϕ∈Φzrsft), such that

(i) a, b ∈ Znp , ra, rb ∈ Zp, f∗ϕ ∈ Zp for ϕ ∈ Φzrsft,
(ii) (A, Â) = Com(ck;a; ra), (B, B̂) = Com(ck; b; rb),

(iii) logg2 π = loggα2 π
β =

∑
ϕ∈Φzrsft

f∗ϕ · ϕ(σ), and

(iv) (an, . . . , a1) 6= (0, . . . , 0, bn, . . . , bz+1).

The communication (argument size) of the right shift argument from [21] is 2 ele-
ments from G2. The prover’s computation is dominated by Θ(n) multiplications
in Zp and two (n+ 2)-wide multi-exponentiations. The verifier’s computation is
dominated by 4 bilinear pairings. The CRS consists of Θ(n) group elements.

The left shift argument is very similar to the right shift argument, see [12,21].

3 New Permutation Argument

We now propose a new permutation argument that has Θ(n log2 n) prover’s
computation, as compared to Θ(n2) in previous work. The main drawback of
the new argument, compared to say permutation arguments from [16,19], is
increased communication.

We will use parallelizable Beneš network [4] (see Sect. 2) to implement an
arbitrary permutation argument. Beneš networks have been used before in the
context of zero knowledge, see, e.g., [1,2,16]. In App. A, we explain why the
approach of [16] of using Clos networks does not give the gain in efficiency that
is necessary for our purposes, even if we use Beneš networks instead. Similar
reasoning applies to the approach of [1,2]. To simplify the presentation, we will
assume from now on that n is a power of 2.

More precisely, we show how to verify all basic permutations of the same
step of the Beneš network simultaneously. That is, for every step of the Beneš
network, we construct a short argument that this step was performed correctly
by the prover. We emphasize that we use the variant of the Beneš permutation
from Fig. 1 (right).

In a nutshell, at every stage we show separately that the crossbars are imple-
mented correctly and that the wiring is implemented correctly. As we explained
in the introduction, at both substages, the inputs will either stay at their origi-
nal position, or will be shifted up or down by a constant that only depends on
the stage. Next, we will show that one can compute efficiently the indexes of
elements that are not shifted at all, shifted up, or shifted down. (In the crossbar
substage, the prover and the verifier have to both use a routing algorithm for
this.) Given corresponding index vectors (that we call masks), one can then show

Efficient NIZK Arguments via Parallel Verification of Benes Networks 11

— by using a small number of product and shift arguments — the correctness
of each substage.

Consider the crossbar substage of the jth stage of the Beneš network, where
we start counting with j = 0. Clearly, after the crossbar, the pair of elements
indexed by (2i, 2i + 1) will now be indexed by either (2i, 2i + 1) or (2i + 1, 2i),
depending on whether the ith crossbar Cj,i of this stage implements id or flip.

We prove the following technical lemma. As usually, for a predicate P (X),
let [P (X)] = 1 if P (X) is true, and [P (x)] = 0 if P (X) is false.

Lemma 1. After following the crossbars, the vector aj of intermediate values

of all wires will change to a vector bj+1, where bj+1 := (1−mc,`
j+1 −mc,r

j+1) ◦
aj + mc,`

j+1 ◦ lsft1(aj) + mc,r
j+1 ◦ rsft1(aj). Here,

mc,`
j+1,2i := [Cji = flip] , mc,r

j+1,2i+1 := [Cji = flip] ,

mc,`
j+1,2i+1 := 0 , mc,r

j+1,2i := 0 .
(1)

Proof. Denote `cj+1 ← lsft1(aj) and rcj+1 ← rsft1(aj). Clearly, the pair
(bj+1,2i, bj+1,2i+1) depends only on (aj,2i, aj,2i+1) and Cji. More precisely, if
Cj+1 = id, then (bj+1,2i, bj+1,2i+1) = (aj,2i, aj,2i+1), and if Cj+1 = flip, then
(bj+1,2i, bj+1,2i+1) = (aj,2i+1, aj,2i). Thus, bj+1,2i obtains the value aj,2i if
Cij = id, and the value `cj+1,2i = aj,2i+1 otherwise. Analogously, bj+1,2i+1 ob-
tains the value aj,2i+1 if Cij = id, and the value rcj+1,2i = aj,2i otherwise. Thus,

bj+1,2i = aj,2i · [Cij = id] + `cj+1,2i · [Cij 6= id] + rcj+1,2i · 0

and

bj+1,2i+1 = aj,2i+1 · [Cij = id] + `cj+1,2i+1 · 0 + rcj+1,2i+1 · [Cij 6= id] .

Therefore, bj+1 can be expressed as in Eq. (1). ut

Here, the values mc,`
j+1 and mc,r

j+1 are publicly known but %-dependent. Thus,
they have to be computed as part of the argument. Their computation takes time
Θ(n log n), by using a standard routing algorithm.

Let z ← n/2j for j < log2 n and z ← 2j/n for j ≥ log2 n. That is, z ←
2|j−log2 n|. After additionally following the wiring substage, the new value of the
value vector is equal to aj+1, where aj+1,2i+1 = bj+1,2i+1, and, letting ⊕ to
denote the bitwise XOR, bj+1,2i⊕z. This follows directly from the definition of
the parallelizable Beneš network as given in Fig. 1, right. Thus, for some (public)

masks mw,`
j+1 and mw,r

j+1,

aj+1 := (1−mw,`
j+1−mw,`

j+1)◦bj+1 +mw,`
j+1 ◦ lsftz(bj+1) +mw,r

j+1 ◦ rsftz(bj+1) .

The vectors mw,`
j and mw,r

j are both publicly known and not dependent on %,
therefore they can be precomputed (if necessary, as a part of the CRS). We note
that since there are no wirings at the last stage, we will just have a2 log2 n =
b2 log2 n.

12 Helger Lipmaa

Let gk := (p,G1,G2,GT , ê)← genbp(1κ, n), g1 ← G1 \ {1}, g2 ← G2 \ {1}; Let
σ ← Zp; Generate the CRS of the following basic arguments separately, except
that use the same values (gk, σ, α) in all of them:

(i) the product argument,
(ii) the 2i-left shift argument for i < log2 n,

(iii) the 2i-right shift argument for i < log2 n.

The CRS of the permutation argument is equal to the union of all basic
arguments.

Algorithm 1: CRS generation on input (1κ, n)

Based on the explanation above, we now construct the permutation ar-
gument %([[(B, B̂)]]) = [[(A, Â)]], where (B, B̂) = (A0, Â0) and (A, Â) =
(B2 log2 n, B̂2 log2 n). Note that we can remove (B2 log2 n, B̂2 log2 n) from π%. See
Prot. 1, Prot. 2 and Prot. 3. Here, the prover commits to all values aj and bj ,
and then shows, by using intermediate masks m·,·j and left and right shifts, that
bj+1 is correctly computed from aj and that aj+1 is correctly computed from
aj+1. The (weak) soundness of the argument follows directly from the (weak)
soundness of the product and permutation argument. The concrete computa-
tional assumption is used to individually guarantee the (weak) soundness of the
product argument and 2i-left and 2i-right shift arguments for i < logn.

Theorem 3. Let Com be the interpolating commitment scheme.

(1) The new permutation argument is perfectly complete and perfectly witness-
indistinguishable.

(2) Let Φrsft
z be as in Thm. 2, Φlsft

z be as in Sect. 2, and Φperm :=
⋃log2 n−1
i=0 Φlsft

2i ∪⋃log2 n−1
i=0 Φrsft

2i . If genbp satisfies an appropriate computational assumption,
then a non-uniform PPT adversary against the new permutation argument
has negligible chance, given a correctly formed CRS crs as an input, of out-
putting inpperm ← (A, Ã,B, B̃, %) and an accepting argument πperm ← (π, π̃)
together with a witness wperm ← (a, ra, b, rb, (f

∗
φ)φ∈Φperm), such that

(i) a, b ∈ Znp , ra, rb ∈ Zp, and f∗φ ∈ Zp for φ ∈ Φperm,

(ii) (A, Ã) = Com(c̃k;a; ra), (B, B̃) = Com(c̃k; b; rb), % ∈ Sn,
(iii) logg2 π = logg̃2 π̃ =

∑
φ∈Φperm f∗φ · φ(σ), and

(iv) a%(i) 6= bi for some i ∈ [n].

Proof. Completeness follows from the previous discussion. Witness-
indistinguishability follows from the fact that the argument πperm is uniquely
defined, given the witness.

Computational soundness. Given an adversary A who can break the
soundness property, we construct an adversary A∗ that either breaks either a
computational or a knowledge assumption, as follows. For each stage, the ad-
versary A∗ uses the knowledge extractor to open the following commitments
(the adversary also obtains the used randomizers, which we will not specify):

Efficient NIZK Arguments via Parallel Verification of Benes Networks 13

Let (A0, Â0) = (A, Â) be the input commitment;

Let (B2 log2 n, B̂2 log2 n) = (B, B̂) be the output commitment;
Use a routing algorithm to find out the value of Cij for every crossbar;
for i← 0 to 2 log2 n− 1 do

/* Handling crossbars */

Construct a commitment (Bi+1, B̂i+1) to bi+1;

Construct a commitment (Lci+1, L̂
c
i+1) to `ci+1 ← lsft1(ai);

Construct a commitment (Rci+1, R̂
c
i+1) to rc

i+1 ← rsft1(ai);
Construct an argument πi+1,1 that lsft1([[Ai]]) = [[Lci+1]];
Construct an argument πi+1,2 that rsft1([[Ai]]) = [[Rci+1]];

Use Eq. (1) to construct valid masks mc,`
i+1,m

c,r
i+1 ∈ {0, 1}

n;

Construct a commitment (Dc,`
i+1, D̂

c,`
i+1) to dc,`

i+1 ←mc,`
i+1 ◦ `

c
i+1;

Construct a commitment (Dc,r
i+1, D̂

c,r
i+1) to dc,`

i+1 ←mc,r
i+1 ◦ r

c
i+1;

Construct a product argument πi+1,3 ← [[Lci]] ◦ [[Com(ck;mc,`
i+1; 0)]] = [[Dc,`

i+1]];

Construct a product argument πi+1,4 ← [[Rci]]◦ [[Com(ck;mc,r
i+1; 0)]] = [[Dc,r

i+1]];
Construct a prod. arg. πi+1,5 that
ai ◦ (1−mc,`

i+1 −mc,r
i+1) = bi+1 − dc,`

i+1 − dc,r
i+1;

πci+1 ← (Bi+1, B̂i+1, L
c
i+1, L̂

c
i+1, R

c
i+1, R̂

c
i+1, D

c,`
i+1, D̂

c,`
i+1, D

c,r
i+1, D̂

c,r
i+1,

(πi+1,j)j∈{1,2}, (πi+1,j)j∈{3,4,5});
if i < 2 log2 n− 1 then

/* Handling wirings */

Construct a commitment (Ai+1, Âi+1) to ai+1 ; /* Interim values

after the wirings */

if i < log2 n then z ← n/2i ;

else z ← 2i/n ;

Construct a commitment (Lwi+1, L̂
w
i+1) of `wi+1 = lsftz(bi+1);

Construct a commitment (Rwi+1, R̂
w
i+1) of rw

i+1 = rsftz(bi+1);

/* mw,`
i+1 and mw,r

i+1 can be part of CRS */

Construct valid masks mw,`
i+1,m

w,r
i+1 ∈ {0, 1}

n;

Construct a shift argument πi+1,6 for lsftz([[Bi+1]]) = [[Lwi+1]];
Construct a shift argument πi+1,7 for rsftz([[Bi+1]]) = [[Rwi+1]];

Construct a commitment (Dw,`
i+1, D̂

w,`
i+1) to dw,`

i+1 ←mw,`
i+1 ◦ `

w
i+1;

Construct a commitment (Dr,`
i+1, D̂

r,`
i+1) to dw,`

i+1 ←mw,r
i+1 ◦ r

w
i+1;

Construct a product argument
πi+1,8 ← [[Lwi]] ◦ [[Com(ck;mw,`

i+1; 0)]] = [[Dw,`
i+1]];

Construct a product argument
πi+1,9 ← [[Rwi]] ◦ [[Com(ck;mw,r

i+1; 0)]] = [[Dw,r
i+1]];

Construct a prod. arg. πi+1,10 that
ai+1 − dw,`

i+1 − dw,r
i+1 = (1−mw,`

i+1 −mw,r
i+1) ◦ bi+1;

πwi+1 ← (Ai+1, Âi+1, L
w
i+1, L̂

w
i+1, R

w
i+1, R̂

w
i+1, D

w,`
i+1, D̂

w,`
i+1, D

w,r
i+1, D̂

w,r
i+1,

(πi+1,6)j∈{6,7}, (πi+1,6)j∈{8,9,10});

end

end

The argument is π% ← ((πci+1, π
w
i+1)

2 log2 n−2
i=0 , πc2 log2 n

);

Algorithm 2: Prover’s algorithm on input (A, Â;a, ra, b, rb)

14 Helger Lipmaa

Use routing algorithm to compute Cij for all i, j;
for i← 0 to 2 log2 n− 1 do

Verify that Bi+1, L
c
i+1, R

c
i+1, D

c,`
i+1, D

c,r
i+1 are all group elements, and that

their knowledge component is correctly formed;

Construct valid masks mc,`
i+1 and mc,r

i+1 following Eq. (1);

Compute valid masks mw,`
i+1 and mw,r

i+1;

Verify 2 shift and 3 product arguments πj+1,i for i ≤ 5;
if i < 2 log2 n− 1 then

Verify that Ai+1, L
w
i+1, R

w
i+1, D

w,`
i+1, D

w,r
i+1 are all group elements, and that

their knowledge component is correctly formed;
Verify 2 shift and 3 product arguments πj+1,i for i ≥ 6;

end

end

Algorithm 3: Verifier’s algorithm on input (A, Â,B, B̂;π%)

(a) (Bi+1, B̂i+1) to bi+1, (b) (Lci+1, L̂
c
i+1) to `ci+1, (c) (Rci+1, R̂

c
i+1) to rci+1,

(d) (Dc,`
i+1, D̂

c,`
i+1) to dc,`

i+1, (e) (Dc,r
i+1, D̂

c,r
i+1) to dc,r

i+1, (f) (Ai+1, Âi+1) to ai+1,

(g) (Lwi+1, L̂
w
i+1) to `wi+1, (h) (Rwi+1, R̂

w
i+1) to rwi+1, (i) (Dw,`

i+1, D̂
w,`
i+1) to dw,`

i+1,

(j) (Dw,r
i+1, D̂

w,r
i+1) to dw,r

i+1. A∗ verifies that all the openings were successful. If not
(that is, A was not successful), she aborts.

Now, assume that A∗ has returned (inpperm, πperm, wperm) that satisfy condi-
tions (2i–2iv). Thus, in particular, a%(i) 6= bi for some i ∈ [n]. Since we obtained
by using the extractor the intermediate values ai and bi, A∗ verifies starting
from i = 0 and ending with i = 2 log2 n− 1 where is the first point where one of
those two values was computed incorrectly.

W.l.o.g., assume that for some i0, ai and bi have always been computed
correctly for i < i0, but bi0 is computed incorrectly. That is, bi0 is not equal to
the expression given in Lem. 1. But it must be the case that all πi0,3, πi0,4, and
πi0,5 verify while bi0 . Now we also have a case analysis depending on whether

dc,`
i0

= mc,`
i0 ·`ci0 and/or dc,r

i0
= mc,r

i0 ·rci0 , or not. Suppose, w.l.o.g., that both
equalities hold (the adversary A∗ can check it, because due to the extractor she

knows all the elements). In this case, dc,`
i0

and dc,r
i0

were correctly computed

and πi0,5 verifies, but (ai0 − dc,`i0 − dc,ri0) 6= (1 − dc,`i0 − dc,ri0) ◦ ai0 . But then by
contradicting Thm. 1, the adversary has broken an appropriate computational
assumption.

By an analogous case analysis, we obtain that the permutation argument
is weakly sound, unless the weak soundness (and then the corresponding com-
putational assumption) of one of the underlying product or shift arguments is
broken. ut

Efficiency. As seen from Prot. 2 and Prot. 3, every step can be done by us-
ing a small number of commitments, product, and rotation arguments. Thus, the

Efficient NIZK Arguments via Parallel Verification of Benes Networks 15

computational complexity of the whole permutation argument will be dominated
by Θ(log n) more basic product and rotation arguments. Since the product ar-
gument can be computed in Θ(n log n) non-cryptographic operations and Θ(n)
cryptographic operations, then the new permutation argument can be computed
in Θ(n log2 n) non-cryptographic operations and Θ(n log n) cryptographic oper-
ations. This improves on prover’s computation of Θ(n2) exponentiations in [16].

The verifier has to perform Θ(log n) pairings in total. Moreover, the verifier
has to run a routing algorithm to establish the values Cij , which takes Θ(n log n)
non-cryptographic operations. This is fine, since in all known applications of the
permutation argument, the verifier’s computational complexity is Ω(n) (much
more expensive) cryptographic operations.

We also note that the second component of all product arguments used in
Prot. 2 is a commitment to the masks. Both the prover and the verifier know the
masks, and thus the corresponding commitments do not have to be transferred.
On the other hand, both parties also have to compute these commitments, and
this takes Θ(n log n) multiplications in total.

The CRS length will be Θ(n log n) group elements because all Θ(log n) dif-
ferent shift arguments have to use a linear-length (and different) CRS.

4 CircuitSAT Argument

As shown in [16], one can construct a CircuitSAT argument out of Θ(1) prod-
uct and permutation arguments. Since Groth’s product and permutation argu-
ments had quadratic prover’s computation complexity, so did his CircuitSAT
argument. By using the product argument proposed in [21] and the permu-
tation argument of this paper, we end up with a CircuitSAT argument
with prover’s computation dominated by Θ(n log2 n) non-cryptographic oper-
ations and Θ(n log n) cryptographic operations. As shown in [16,19], witness-
indistinguishability and (weak) soundness of the underlying arguments is suf-
ficient to prove zero-knowledge and soundness of the CircuitSAT argument.
In fact, they can also be used to prove that the CircuitSAT argument is an
argument of knowledge. Again, since we do not want to introduce overdepen-
dence on concrete basic arguments, also here we omit the precise description of
the underlying assumptions; they can be derived directly from the assumptions
behind the product and shift arguments.

Theorem 4. There exists a perfectly complete and zero-knowledge
CircuitSAT argument. Under certain q-type computational and knowl-
edge assumptions, this argument is also computationally sound and an argument
of knowledge.

Proof. The CircuitSAT argument will be exactly the same as in [19], except
that it uses the new permutation argument from Sect. 3 together with the prod-
uct argument from [19]. The soundness of the CircuitSAT argument follows
from q-type computational and knowledge assumptions, as in [19]. We also get
that the CircuitSAT argument is an argument of knowledge, since during the

16 Helger Lipmaa

soundness proof of [19], the adversary uses the knowledge extractor to extract
the whole witness. ut

Acknowledgements. The author was supported by Estonian Research Council
and European Union through the European Regional Development Fund.

References

1. Abe, M.: Mix-Networks on Permutation Networks. In: Lam, K.Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Hei-
delberg

2. Abe, M., Hoshino, F.: Remarks on Mix-Network Based on Permutation Networks.
In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying Program Executions Succinctly and in Zero Knowledge. In: Canetti, R.,
Garay, J. (eds.) CRYPTO (2) 2013. LNCS, vol. 8043, pp. 90–108. Springer, Hei-
delberg

4. Beneš, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic.
Academic Press (Aug 28, 1965)

5. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct Non-
interactive Arguments via Linear Interactive Proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg

6. Blelloch, G.: Vector Models for Data-Parallel Computing. MIT Press (1990)

7. Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Appli-
cations. In: STOC 1988. pp. 103–112. ACM Press

8. Chaabouni, R., Lipmaa, H., Zhang, B.: A Non-Interactive Range Proof with Con-
stant Communication. In: Keromytis, A. (ed.) FC 2012. LNCS, vol. 7397, pp.
179–199. Springer, Heidelberg

9. Clos, C.: A Study of Non-Blocking Switching Networks. Bell System Technical
Journal 32(2), 406–424 (Mar 1953)

10. Damg̊ard, I.: Towards Practical Public Key Systems Secure against Chosen Ci-
phertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
445–456. Springer, Heidelberg

11. Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability As-
sumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) Computability
in Europe, CIE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg

12. Fauzi, P., Lipmaa, H., Zhang, B.: Efficient Modular NIZK Arguments from Shift
and Product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013.
LNCS, vol. 8257, pp. 92–121. Springer, Heidelberg

13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and
NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg

14. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. In: Sedgewick, R. (ed.) STOC 1985. pp. 291–304. ACM Press

15. Golle, P., Jarecki, S., Mironov, I.: Cryptographic Primitives Enforcing Communi-
cation and Storage Complexity. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp.
120–135. Springer, Heidelberg

Efficient NIZK Arguments via Parallel Verification of Benes Networks 17

16. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidel-
berg

17. Groth, J., Lu, S.: A Non-interactive Shuffle with Pairing Based Verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg

18. Hwang, F.K.M.: The Mathematical Theory of Nonblocking Switching Networks,
Series on Applied Mathematics, vol. 15. World Scientific Publishing Co Pte Ltd, 2
edn. (Oct 1, 2004)

19. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
169–189. Springer, Heidelberg

20. Lipmaa, H.: Succinct Non-Interactive Zero Knowledge Arguments from Span Pro-
grams and Linear Error-Correcting Codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013 (1). LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg

21. Lipmaa, H.: Almost Optimal Short Adaptive Non-Interactive Zero Knowledge.
Tech. Rep. 2014/396, International Association for Cryptologic Research (2014),
available at http://eprint.iacr.org/2014/396

22. Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive
Zero-Knowledge Shuffle Argument. In: Visconti, I., Prisco, R.D. (eds.) SCN 2012.
LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg

23. Nassimi, D., Sahni, S.: Parallel Algorithms to Set Up the Benes Permutation Net-
work. IEEE Trans. Computers 31(2), 148–154 (1982)

24. Opferman, D.C., Tsao-Wu, N.T.: On a Class of Rearrangeable Switching Networks.
Part I: Control Algorithm. Bell System Technical Journal 50(5), 1579–1600 (May–
June 1971)

25. Pippenger, N.: On the Evaluation of Powers and Monomials. SIAM J. Comput.
9(2), 230–250 (1980)

26. Pratt, V.R., Stockmeyer, L.J.: A Characterization of the Power of Vector Machines.
Journal of Computer and System Sciences 12(2), 198–221 (1976)

27. Straus, E.G.: Addition Chains of Vectors. American Mathematical Monthly 70,
806–808 (1964)

28. Waksman, A.: A Permutation Network. Journal of the ACM 15(1), 159–163 (Jan
1968)

A On Groth’s Use of Clos networks

One can implement a permutation argument by constructing an efficient rear-
rangeable interconnection network for that permutation, and then showing in
zero knowledge that both the crossbars and the wiring steps of the network are
followed correctly. In particular, Groth [16] used an (m,m)-Clos network for
m ≈

√
n, combined with permutation arguments (for permutations from Sm) to

show the correctness of crossbars, and with so called dispersion arguments [16]
to show the correctness of the wirings. Since Groth’s dispersion argument is
significantly more efficient than Groth’s permutation argument (or the permu-
tation argument that we will construct in this paper), we will only count the
cost induced by the Sm-permutation arguments.

http://eprint.iacr.org/2014/396

18 Helger Lipmaa

Assume that we use some multistage interconnection network that uses,
w.l.o.g.3, crossbars Xmm for some m | n, has n/m crossbars per stage, and
k stages. To implement a single crossbar (i.e., permutation from Sm) by using
Groth’s permutation argument, we need a CRS of size Θ(m2), prover’s computa-
tion Θ(m2), verifier’s computation Θ(m), and communication Θ(1). Thus, when
we implement all k stages of the network (and kn/m crosspoints), the prover’s
computation grows to Θ(k · nm · m

2) = Θ(kmn), the verifier’s computation to
Θ(k · nm ·m) = Θ(kn), and the communication to Θ(kn/m). On the other hand,
the CRS length stays at Θ(m2).

For example, if one uses the Clos network with m =
√
n as in [16], then

the CRS/the communication/the prover’s computation/the verifier’s computa-
tion become Θ(n)/Θ(n1.5)/Θ(n)/Θ(

√
n). In the case of the Beneš network, with

m = 2 and k = log2 n, the corresponding complexities will be Θ(1), Θ(n log n),
Θ(n log n), and Θ(n log n). (Thus, it has the same computational and communi-
cation complexity as — interactive — shuffle by Abe [1,2], which is also based
on the Beneš network.) The new method (as described below) provides a sig-
nificant optimization over Groth’s way of using interconnection networks in a
permutation argument.

B Committed Shuffle Argument

B.1 Brief Idea

In a shuffle argument, the prover proves that two vectors of ciphertexts en-
crypt the same (unordered) multiset of plaintexts. Until now, only two efficient
NIZK shuffle arguments have been published [17,22]. The argument of [17] is
based on the Groth-Sahai proofs. The more efficient shuffle argument of [22]
first uses two new basic arguments (zero argument and 1-sparsity argument),
related to the techniques [16,19], to show that two commitments commit to the
same (unordered) multiset of plaintexts. We call it the committed shuffle argu-
ment. After that, they use another argument to show that the same elements
that were committed to were also encrypted by a ciphertext vector. We call it
the commitment-ciphertext consistency argument. In [22], both arguments take
linear computation and linear communication.

By using Beneš networks as in the case of the permutation argument, we
implement the committed shuffle argument by using quasilinear CRS, prover’s
computation Θ(r−13 (n) log r−13 (n) · log n), logarithmic verifier’s computation, and
logarithmic communication. The main additional technical challenge here, com-
pared to the permutation argument, is that one has to prove in zero knowledge
that the committed masks are correctly formed. We show that the latter can be
done efficiently. The new committed shuffle argument is, up to our knowledge,

3 One can use crossbars of different size, but the complexity is dominated by the largest
crossbar in use. Moreover, all interesting multistage interconnection networks contain
crossbars of the same size.

Efficient NIZK Arguments via Parallel Verification of Benes Networks 19

the first committed shuffle argument that requires only polylogarithmic commu-
nication. On the other hand, it requires larger prover’s computation than the
shuffle arguments of [17,22]. Alternatively, by using Groth’s balancing technique,
one can achieve sublinear CRS and communication at the same time.

On top of this, we can use the commitment-ciphertext consistency argument
of [22]. The resulting shuffle argument will have smaller communication and
verifier’s computation than the shuffle argument from [22], but at the same time
it will have higher prover’s computation. We note that Beneš networks have
been used before to construct shuffle arguments but with significantly larger
communication Θ(n log n), see for example [1,2].

B.2 Construction

The main difference with the permutation argument is that in the committed
shuffle argument, the permutation should stay unknown to the verifier. We can
still use Beneš networks, but in this case the masks mc,r

i+1 and mc,`
i+1 are not

public, but they are committed to. The prover has to show that both masks
belong to the set of allowed masks. The rest of the argument is pretty much the
same as the permutation argument.

More precisely, to show that mc,r
i+1 and mc,`

i+1 are both valid, the prover

proves that mc,r
i+1 and mc,`

i+1 satisfy Eq. (1). This can be done by showing that

(here, ∗ denotes an arbitrary value) (i) mc,`
j+1 = (∗, 0, ∗, 0, . . . , ∗, 0) by using

restriction argument [16], (ii) mc,r
j+1 = (0, ∗, 0, ∗, . . . , 0, ∗) by using restriction

argument [16], (iii) mc,`
j+1 is Boolean by using a product argument [16,19,12],

(iv) mr,`
j+1 = lsft1(mc,`

j+1) by using shift argument [12]. Thus, one has to do
2 restriction, 1 product and 1 shift argument. One can construct similar mask
correctness arguments for any value of j. The committed shuffle argument itself
takes Θ(log n) group elements, as in the case of the permutation argument.
Moreover, here the verifier does not have to execute the Θ(n log n)-time routing
algorithm, and thus the verifier’s computation is dominated by Θ(log n) pairings.

Related Work. Abe and Hoshino [1,2] proposed a shuffle, where the underlying
permutation is implemented by a Beneš network. Since there the correctness of
every crossbar is verified individually, the resulting shuffle consists of Θ(n log n)
smaller zero-knowledge proofs and is thus less efficient than the new argument.

	Efficient NIZK Arguments via Parallel Verification of Benes Networks

