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Abstract. There are several new efficient approaches to decreasing trust
in the CRS creators for NIZK proofs in the CRS model. Recently, Groth
et al. (CRYPTO 2018) defined the notion of NIZK with updatable CRS
(updatable NIZK ) and described an updatable SNARK. We consider the
same problem in the case of QA-NIZKs. We also define an important new
property: we require that after updating the CRS, one should be able
to update a previously generated argument to a new argument that is
valid with the new CRS. We propose a general definitional framework for
key-and-argument-updatable QA-NIZKs. After that, we describe a key-
and-argument-updatable version of the most efficient known QA-NIZK
for linear subspaces by Kiltz and Wee. Importantly, for obtaining sound-
ness, it suffices to update a universal public key that just consists of a
matrix drawn from a KerMDH-hard distribution and thus can be shared
by any pairing-based application that relies on the same hardness assump-
tion. After specializing the universal public key to the concrete language
parameter, one can use the proposed key-and-argument updating algo-
rithms to continue updating to strengthen the soundness guarantee.

Keywords: BPK model, CRS model, QA-NIZK, subversion security,
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1 Introduction

SNARKs. Zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs, [15,24,35,36,19,43,25,27]) have become widely researched and de-
ployed, in particular because of their applicability in verifiable computation and
anonymous cryptocurrencies. However, due to a well-known impossibility re-
sult [20], the soundness of SNARKs can only be based on non-falsifiable as-
sumptions [42]. Moreover, a new security concern has arisen recently.

Most of the existing pairing-based zk-SNARKs are defined in the common ref-
erence string (CRS) model assuming the existence of a trusted third party TTP
that samples a CRS from the correct distribution and does not leak any trap-
doors. The existence of such a TTP is often a too strong assumption. Recently,
several efficient approaches have been proposed to decrease trust in the CRS
creation, like the use of multi-party CRS generation [7,9,10,2] and the notion
of subversion-resistant zero-knowledge (Sub-ZK) SNARKs [6,3,17]. A Sub-ZK
SNARK guarantees to the prover P the zero-knowledge property even if the CRS
was maliciously created, as long as P checks that a public algorithm Vcrs accepts
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the CRS. Existing Sub-ZK SNARKs use a non-falsifiable assumption to extract
from a Vcrs-accepted CRS its trapdoor td. Then, one simulates CRS by using td.
Since one cannot at the same time achieve subversion-soundness and Sub-ZK [6],
Sub-ZK SNARKs only achieve the usual (knowledge-)soundness property.

Groth et al. [26] defined CRS updating and showed how to implement it in
the case of SNARKs. The main idea behind it is that given a CRS based on
some trapdoor td, one can update the CRS to a new CRS crs′ based on some
trapdoor td′. Updating can be repeated many times, obtaining a sequence

crs0 → crs1 → crs2 → . . .→ crsn

of CRSs, updated by some parties P1, . . . ,Pn. The SNARK will be sound (and
the CRS will be correctly distributed) if at least one of the CRS updaters was
honest; this allows one to get soundness (if at least one updater was honest) and
zero-knowledge (without any assumption on the updaters). At some moment,
the prover will create an argument. The verifier only accepts when she trusts
some updater at the moment of argument creation. Groth et al. [26] constructed
an updatable SNARK with a quadratically-long universal CRS (valid for all
circuits of the given size) and linearly-long specialized CRS (constructed from the
universal CRS when a circuit is fixed and actually used to create an argument).
The subject of updatable SNARKs has become very popular, with many new
schemes proposed within two years [39,18,12,14,5].

As a drawback, since the argument itself is not updatable, the CRS updates
after an argument has been created cannot be taken to account; in particular,
it means that the verifier has to signal to the prover that she is ready to trust
the argument created at some moment (since the CRS at that moment has been
updated by a verifier-trusted party).

QA-NIZKs. Starting from the seminal work of Jutla and Roy [28], QA-
NIZKs has been a (quite different) alternative research direction as compared to
SNARKs with quite different applications and quite different underlying tech-
niques. Intuitively, in QA-NIZKs, the prover and the verifier have access to
an honestly generated language parameter lpar, and then prove a statement
with respect to a lpar-dependent language Llpar. Like SNARKs, QA-NIZKs offer
succinct arguments and super-efficient verification. On the positive side, con-
temporary QA-NIZKs are based on very standard assumptions like MDDH [16]
(e.g., DDH) and KerMDH [41] (e.g., CDH). On the negative side, efficient and
succinct QA-NIZKs are known only for a much smaller class of languages like
the language of linear subspaces [28,32,29,30,1,33] and some related languages,
including the language of quadratic relations [22] and shuffles [23]. [13] pro-
posed a non-succinct QA-NIZK for SSP; non-succinctness is expected due to
known impossibility results [20]. QA-NIZKs have applications in the construc-
tion of efficient cryptographic primitives (like KDM-CCA2-secure encryption,
IND-CCA2-secure IBE, and UC-secure commitments and linearly homomorphic
structure-preserving signatures) based on standard assumptions.
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Abdolmaleki et al. [4] recently studied subversion-resistant QA-NIZKs. They
showed that Sub-ZK in the CRS model is equal to the known notion of no-
auxiliary-string non-black-box zero knowledge in the significantly weaker Bare
Public Key (BPK) model. Like [4], we will thus use the notions of “Sub-ZK” and
“no-auxiliary-string non-black-box zero knowledge” interchangeably, but we will
usually explicitly mention the trust model (CRS, BPK, plain). Due to known im-
possibility results, this provides a simple proof that one has to use no-auxiliary-
string non-black-box NIZK to construct argument systems for non-trivial lan-
guages in the BPK model. Abdolmaleki et al. [4] also proposed an efficient Vcrs

algorithm for the most efficient known QA-NIZK Π ′as for linear subspaces by
Kiltz and Wee [30] and proved that the resulting construction achieves Sub-ZK
in the BPK model. In fact, they went one step further: they considered the case
when the language parameter lpar itself is subverted and showed how to achieve
soundness and Sub-ZK even in this case. More precisely, they defined separate
Sub-ZK (black-box Sub-ZK, given an honestly generated lpar) and persistent Sub-
ZK (non-black-box Sub-ZK, given a subverted lpar) properties, and showed that
these two properties are in fact incomparable.3

The proof methods of [4] are quite non-trivial. In particular, [4] proved the
Sub-ZK property under a new tautological KW-KE knowledge assumption, and
then showed that KW-KE is secure in the subversion generic bilinear group model
of [6,3] (named GBGM with hashing in [6]). Especially the latter proof is quite
complicated. Moreover, they proved so-called Sub-PAR soundness (soundness in
the case lpar is subverted, but the CRS is untrusted) under natural but little-
studied, non-falsifiable, interactive non-adaptive assumptions [21,34].

As in the case of SNARKs, it is natural to ask if efficient QA-NIZKs like Π ′as
can be updated. No published research has been done on this topic.

Our Contributions. We define updatable QA-NIZK by roughly following the
definitional guidelines of [26] for updatable SNARKs. However, we make two
significant changes to the model itself. The second change (the ability to update
also the argument) is especially important, allowing for new applications. No
succinct argument-updatable NIZKs, either SNARKs or QA-NIZKs, were known
before. Crucially, for updating Π ′as, it is sufficient to update a single public key
pk = [Ā]2, where [A]2 is a KerMDH-hard matrix, and [Ā]2 denotes its upmost
square submatrix. This means that one can share the same updatable universal
public key pk between any applications where the security of one party relies on
the (bare) public key, created by another party.

Firstly, since QA-NIZK security definitions differ from SNARKs (with lpar
having an important and distinct role), we redefine updatable versions of com-
pleteness, soundness, and (persistent) zero-knowledge. We add to them the natu-
ral requirement of hiding (an updated key and a fresh key are indistinguishable).
3 To show incomparability, [4] constructed a contrived persistent Sub-ZK argument
where the simulator first uses a knowledge assumption on the language parameter
to extract witness, and then uses this witness as input to the honest prover. Such
an argument is obviously not black-box Sub-ZK.
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We will follow the framework of [4] by relying on Sub-ZK QA-NIZK in the BPK
model. According to [4], the prover and the verifier of a QA-NIZK argument share
a (possibly malformed) generated language parameter lpar together with a (pos-
sibly malformed) verifier’s public key pk. We add the key-updating and update-
verification algorithms with the corresponding security requirements: key-update
completeness, key-update hiding, strong key-update hiding, key-update sound-
ness, and key-update (persistent) Sub-ZK.

Secondly, and more importantly, we add to the QA-NIZK the ability to up-
date the argument. That is, given a pk and an argument π constructed while
using pk, one can then update pk (to a new key pk′) and π to a new valid
argument π′ (corresponding to pk′). There are two different ways to update the
argument. First, the honest argument updater must know the witness (but no
secret information about the key update). Second, the argument-update sim-
ulator must know some secret key-update trapdoor (but he does not have to
know the witness). We require that these two different ways of updating are
indistinguishable; thus, updating does not leak information about the witness.

Argument-updating has various non-obvious implications. The key-updater
can, knowing the key-update trapdoor, simulate the argument-update; this
means that we will not get soundness unless at least one of the argument-creators
or argument-updaters does not collaborate with the corresponding key-creator
or key-updater. (See Section 4.) One can obtain different trust models by han-
dling the updating process differently. For example, the honest argument-updater
can have additional anonymity since it is not revealed which of the argument-
updaters knows the witness. On the other hand, if there exists at least one
update such that the corresponding key-updater and argument-updater do not
trust each other, we are guaranteed that one of the argument-updater actually
“knows” the witness and thus the statement is true.

We will give rigorous security definitions for key-and-argument-updatable
QA-NIZKs, requiring them to satisfy argument-update completeness, argument-
update hiding, strong argument-update hiding, argument-update soundness, and
argument-update (persistent) Sub-ZK. We use the terminology of convolution
semigroups while arguing about the hiding properties; since this terminology is
very natural, we argue that one should use it more widely in the context of up-
datable cryptographic protocols. We prove that argument-update soundness and
argument-update (persistent) Sub-ZK follow from simpler security requirements
and thus do not have to be proven anew in the case of each new QA-NIZK.

We implement the provided security definitions, by proposing an updatable
version Πupd

bpk of the Kiltz-Wee QA-NIZK Π ′as for linear subspace [30]. Our con-
struction uses crucially the fact that all operations (like the public key generation
and proving) in Π ′as consist of only linear operations. Hence, the new update-
related algorithms are relatively simple but still non-trivial. For example, we
update some elements of the public key additively and some elements multi-
plicatively.4 This is a major difference to (known to us) SNARKs, where one

4 Groth et al. [26] proved that in the case of multiplicative updating, each element of
pk must be a monomial in secret trapdoors. Since we update various elements of pk
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only does multiplicative updating. Interestingly, we update the argument π by
adding to it an (honestly created or simulated) argument when using the appro-
priately defined“difference” p̂k of the new and the old public key as a one-time
public key. This is why we can update arguments without the knowledge of ei-
ther the witness or the trapdoor of either pk or pk′; instead, it suffices to use
the trapdoor corresponding to the concrete update.

We prove that Πupd
bpk satisfies all defined security properties, and in par-

ticular, that (like the non-updatable Sub-ZK QA-NIZK of [4]) it is Sub-PAR
sound either under the KerMDHdl assumption [41,4] or the SKerMDHdl assump-
tion [22,4] (depending on the values of the system parameters) and argument-
update persistent Sub-ZK under the KW-KE assumption of [4]. If the language
parameter is trusted, then as in [4], a falsifiable assumption (either KerMDH
or SKerMDH) suffices for soundness. As in [4], one can even obtain Sub-PAR
knowledge-soundness.

The hiding properties rely on certain, well-defined, properties of the distri-
butions of the secret key K and Ā: namely, these distributions are assumed
to be (essentially) stable [31]. We hope that this observation motivates study
of other stable distributions for cryptographic purposes. In particular, stable
distributions seem to be natural in the setting of various updatable primitives.

Updatable Universal Public Key. The goal of updatability [26] is to protect
soundness in the case pk may be subverted since Sub-ZK can be obtained by
running the public algorithm Vpk [3]. In Π ′as, soundness is guaranteed by one
of the elements of pk (namely, [Ā]2, see Fig. 2) coming from a KerMDH-hard
distribution, and another element [C]2 being correctly computed from [Ā]2.
Since the latter can be verified by the public-key verification algorithm, it suffices
only to update [Ā]2. Then, [Ā]2 will be a “universal public key” [26] for all
possible language parameters in all applications that rely on the concrete (i.e.,
using the same distribution) KerMDH assumption.

The possibility to rely just on [Ā]2 is a major difference with known updatable
SNARKs where the universal key is quite complex, and each universal key of
length Θ(n) can only be used for circuits of size ≤ n.

Importantly, one is not restricted to QA-NIZK: any application that relies
on KerMDH and where it suffices to know [Ā]2 (instead of [A]2) can use the
same matrix [Ā]2. A standard example is the 1-Lin [8,16] distribution L1 =
{A = ( a1 ) : a←$Zp}. We emphasize that the possibility to rely just on [Ā]2 is
a major difference with updatable SNARKs [26,39] where the universal key is
quite complex and each universal key of length Ω(n) can only be used for circuits
of size ≤ n. See Section 7.

Some of the proofs are given in the full version [37].

either multiplicatively or additively, it is unclear whether this impossibility result
holds. We leave this is an interesting open question.
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2 Preliminaries

We denote the empty string by ε. Let PPT denote probabilistic polynomial-time
and let λ ∈ N be the security parameter. All adversaries will be stateful. For an
algorithm A, let range(A) be the range of A, i.e., the set of valid outputs of A,
let RNDλ(A) denote the random tape of A (for fixed λ), and let r←$RNDλ(A)
denote the uniformly random choice of the randomizer r from RNDλ(A). By
y ← A(x; r) we denote the fact that A, given an input x and a randomizer r,
outputs y. When we use this notation, then r represents the full random tape
of A. We denote by negl(λ) an arbitrary negligible function, and by poly(λ) an
arbitrary polynomial function. We write a ≈λ b if |a− b| = negl(λ).

Probability theory. Let µ and ν be probability measures on (Z, 2Z). The con-
volution [31, Def. 14.46] µ ∗ ν is defined as the probability measure on (Z, 2Z)
such that (µ ∗ ν)({n}) =

∑∞
m=−∞ µ({m})ν({n−m}). We define the nth convo-

lution power recursively by µ∗1 = µ and µ∗(n+1) = µ∗n ∗ µ. Let I ⊂ [0,∞) be a
semigroup. A family ν = (νt : t ∈ I) of probability distributions on Rd is called
a convolution semigroup [31, Def. 14.46] if νs+t = νs ∗ νt holds for all s, t ∈ I.
Let X1, X2, . . . be i.i.d random variables with distribution µ. The distribution µ
is called stable [31, Def. 16.20] with index α ∈ (0, 2] if X1 + . . .+Xn = n1/αXn

for all n ∈ N.

Bilinear pairings. A bilinear group generator Pgen(1λ) returns (p,G1,G2,GT ,
ê), where G1,G2,GT are three additive cyclic groups of prime order p, and
ê : G1 × G2 → GT is a non-degenerate efficiently computable bilinear pairing.
We require the bilinear pairing to be Type-3, i.e., we assume that there is no
efficient isomorphism between G1 and G2. We use the bracket notation of [16],
e.g., we write [a]ι to denote agι where a ∈ Zp and gι is a fixed generator of Gι.
We denote ê([a]1, [b]2) as [a]1 · [b]2. We use the bracket notation freely together
with matrix notation, e.g., AB = C iff [A]1 · [B]2 = [C]T .

Matrix Diffie-Hellman Assumptions. Kernel Matrix Diffie-Hellman As-
sumption (KerMDH) is a well-known assumption family formally introduced
in [41] and say, used in [30] to show the soundness of their QA-NIZK argument
system for linear subspaces. The KerMDH assumption states that for a matrix
A from some well-defined distribution, it is difficult to find a representation of
a vector that belongs to the kernel of A> provided that the matrix is given in
exponents only, i.e., as [A]ι.

For fixed p, denote by D`k a probability distribution over matrices in Z`×kp ,
where ` > k. We assume that D`k outputs matrices A where the upper k × k
submatrix Ā is always invertible. Let D̄`k that outputs Ā, where A is sampled
from D`k. When ` = k + 1, we denote Dk = D`k. In the full version [37],
we define five commonly used distributions. There, we also define assumptions,
needed by the constructions in [30,4], and thus, also by the current paper.
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Bare Public Key (BPK) Model. In the BPK model [11,40], parties have
access to a public file F , a polynomial-size collection of records (id,pkid), where
id is a string identifying a party (e.g., a verifier), and pkid is her (alleged) public
key. In a typical zero-knowledge protocol in the BPK model, a key-owning party
Pid works in two stages. In stage one (the key-generation stage), on input a
security parameter 1λ and randomizer r, Pid outputs a public key pkid and
stores the corresponding secret key skid. We assume the no-auxiliary-string BPK
model where from this it follows that Pid actually created pkid. After that, F
will include (id,pkid). In stage two, each party has access to F , while Pid has
possible access to skid (however, the latter will be not required by us). It is
commonly assumed that only the verifier of a NIZK argument system in the
BPK model has a public key [40].

No-Auxiliary-String Non-Black-Box (Sub-ZK) QA-NIZK in the BPK
Model. The original QA-NIZK security definitions, [28], were given in the CRS
model. The following description of QA-NIZKs in the BPK model is taken
from [4], and we refer to [4] for additional discussion. Since black-box and
even auxiliary-input non-black-box NIZK in the BPK model is impossible for
non-trivial languages, we will give an explicit definition of no-auxiliary-string
non-black-box NIZK. As explained in [4], no-auxiliary-string non-black-box zero
knowledge in the BPK model is the same as Sub-ZK [6] in the CRS model.

As in [6], we assume that the system parameters p are generated determinis-
tically from λ; in particular, the choice of p could not be subverted. A QA-NIZK
argument system enables one to prove membership in a language defined by a
relation Rlpar = {(x,w)}, which in turn is completely determined by a parameter
lpar sampled (in the honest case) from a distribution Dp. We will assume implic-
itly that lpar contains p and thus not include p as an argument to algorithms
that also input lpar; recall that we assumed that p cannot be subverted. A dis-
tribution Dp on Llpar is witness-sampleable [28] if there exists a PPT algorithm
D′p that samples (lpar, tdlpar) ∈ Rp such that lpar is distributed according to Dp.

The zero-knowledge simulator is usually required to be a single (non-black-
box) PPT algorithm that works for the whole collection of relations Rp =
{Rlpar}lpar∈im(Dp); i.e., one requires uniform simulation (see [28] for a discus-
sion). Following [3], we accompany the universal simulator with an adversary-
dependent extractor. We assume Sim also works in the case when one cannot
efficiently establish whether lpar ∈ im(Dp). Sim is not allowed to create new lpar
or pk but receive them as an input.

A tuple of PPT algorithms Π = (Pgen,Kbpk,Vpar,Vpk,P,V,Sim) is a no-
auxiliary-string non-black-box zero knowledge (Sub-ZK) QA-NIZK argument sys-
tem in the BPK model for a set of witness-relations Rp = {Rlpar}lpar∈Supp(Dp ),
if the following Items i, ii, iv and v hold. Π is a Sub-ZK QA-NIZK argument of
knowledge, if additionally Item iii holds. Here, Pgen is the parameter generation
algorithm, Kbpk is the public key generation algorithm, Vpar is the lpar-verification
algorithm, Vpk is the public-key verification algorithm, P is the prover, V is the
verifier, and Sim is the simulator. We abbreviate quasi-adaptive to QA.
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ExpzkZ,A(lpar)

r←$RNDλ(Z);
(pk, auxZ)← Z(lpar; r);
sk← ExtZ(lpar; r);
b←$ {0, 1};
b′ ← AOb(·,·)(lpar; pk, auxZ);
return Vpk(lpar; pk) = 1 ∧ b′ = b;

O0(x,w):
if (x,w) 6∈ Rlpar then return ⊥;
else return π ← P(lpar, pk; x,w); fi

O1(x,w):
if (x,w) 6∈ Rlpar then return ⊥;
else return πSim ← Sim(lpar, pk, sk; x); fi

Fig. 1. Experiment ExpzkZ,A(lpar)

(i) Perfect Completeness: for any λ, PPT A, given p ← Pgen(1λ),
lpar←$Dp, (pk, sk) ← Kbpk(lpar), (x,w) ← A(pk), π ← P(lpar,pk, x,w),
it holds that Vpar(lpar) = 1 and Vpk(lpar,pk) = 1 and ((x,w) 6∈ Rlpar ∨
V(lpar,pk, x, π) = 1).

(ii) Computational QA Sub-PAR Soundness: ∀ PPT A, given p ←
Pgen(1λ), lpar← A(p), (pk, sk)← Kbpk(lpar), and (x, π)← A(pk), the fol-
lowing holds with negligible probability: Vpar(lpar) = 1 ∧ V(lpar,pk, x, π) =
1 ∧ ¬(∃w : Rlpar(x,w) = 1)).

(iii) Computational QA Sub-PAR Knowledge-Soundness: for any PPT
A, there exist a PPT extractor ExtA, s.t. given p ← Pgen(1λ),
r←$RNDλ(A), lpar ← A(p; r), (pk, sk) ← Kbpk(lpar), (x, π) ← A(pk; r),
w ← ExtA(p,pk; r), the following holds with a negligible probability:
Vpar(lpar) = 1 ∧ V(lpar,pk, x, π) = 1 ∧ Rlpar(x,w) = 0.

(iv) Statistical Zero Knowledge: for any unbounded A, |εzk0 − εzk1 | ≈λ 0,
where εzkb is the probability that given p ← Pgen(1λ), lpar ← Dp,
(pk, sk)← Kbpk(lpar), it holds that AOb(·,·)(lpar,pk) = 1.
The oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ Rlpar, and otherwise it
returns P(lpar,pk, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈
Rlpar, and otherwise it returns Sim(lpar,pk, sk, x).

(v) Statistical Persistent Zero Knowledge: for any PPT subverter Z, there
exists a PPT extractor ExtZ, s.t. for any computationally unbounded ad-
versary A, |εzk0 − εzk1 | ≈λ 0, where εzkb is the probability that given p ←
Pgen(1λ), r←$RNDλ(Z), (lpar,pk, aux)← Z(p; r), sk← ExtZ(p; r), the fol-
lowing holds with a negligible probability: Vpar(lpar) = 1 ∧ Vpk(lpar,pk) =
1 ∧ AOb(·,·)(lpar,pk, aux) = 1.
The oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ Rlpar, and otherwise it
returns P(lpar,pk, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈
Rlpar, and otherwise it returns Sim(lpar,pk, sk, x).

Π is statistically no-auxiliary-string5 non-black-box zero knowledge (Sub-ZK) if
it is both statistically zero-knowledge and statistically persistent zero-knowledge.

5 Auxiliary-string non-black-box ZK means that definitions hold even if any aux ∈
{0, 1}poly(λ) is given as an additional input to A and Zpk (and ExtZ).
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isinvertible([Ā]2, pkVpk) // Ā = (aij)

Check pkVpk = [a∗11, a
∗
12]1 ∈ G1×2

1 ∧ [a∗11]1 · [1]2 = [1]1 · [a11]2 ∧
[a∗12]1 · [1]2 = [1]1 · [a12]2 ∧ [a∗11]1 · [a22]2 − [a∗12]1 · [a21]2 6= [0]T ;

Kbpk(lpar := [M ]1 ∈ Gn×m1 ): A←$Dk; K ←$Zn×kp ; [C]2 ← [KĀ]2 ∈ Gn×k2 ;
[P ]1 ← [M ]>1 K ∈ Gm×k1 ; if Dk is efficiently verifiable then pkVpk ← ε;
elseif Dk = U2 then pkVpk ← [a11, a12]1; fi ; pksnd ← [Ā,C]2; pkzk ← [P ]1;
pk← (pksnd, pkzk, pkVpk); sk←K; return (pk, sk);

P([M ]1,pk, [y]1,w): return [π]1 ← [P ]>1 w ∈ Gk1 ;
Sim([M ]1,pk, sk, [y]1): // sk is extracted by using a knowledge assumption;

return [π]1 ←K>[y]1 ∈ Gk1 ;
V([M ]1,pk, [y]1, [π]1) : check that [y]>1 [C]2 = [π]>1 [Ā]2; // ∈ G1×k

T

Vpk([M ]1,pk): Return 1 only if the following checks all succeed:
pk = (pksnd, pkzk, pkVpk) ∧ pksnd = [Ā,C]2 ∧ pkzk = [P ]1;

[P ]1 ∈ Gm×k1 ∧ [Ā]2 ∈ Gk×k2 ∧ [C]2 ∈ Gn×k2 ;

(∗) [M ]>1 [C]2 = [P ]1[Ā]2;
if Dk is efficiently verifiable then MATV([Ā]2);
else check isinvertible([Ā]2, pkVpk); fi

Fig. 2. Sub-ZK QA-NIZK Πbpk for [y]1 = [M ]1w in the BPK model, where either (1)
Dk is efficiently verifiable or (2) Dk = U2.

Kiltz-Wee QA-NIZK in the BPK model. Kiltz and Wee [30] described a
very efficient QA-NIZK Π ′as for linear subspaces. Abdolmaleki et al. [4] modified
Π ′as and proved that the resulting QA-NIZK Πbpk is Sub-ZK in the BPK model,
assuming a novel KW-KE knowledge assumption. In addition, [4] proved that the
KW-KE assumption holds under a hash-knowledge assumption (HAK, [38]). The
soundness of Π ′as holds in the BPK model under a suitable KerMDH assumption
for any k ≥ 1; one obtain optimal efficiency when k = 1.

The distribution Dk is efficiently verifiable, if there exists an algorithm
MATV([Ā]2) that outputs 1 if Ā is invertible (recall that we assume that the
matrix distribution is robust) and well-formed with respect to Dk and otherwise
outputs 0. We refer to [4] for the construction of MATV for common distribu-
tions. Fig. 2 describes the Sub-ZK QA-NIZK Πbpk from [4]. Here, as observed
in [4], the correctness of [P ]1 is needed to guarantee zero knowledge and [Ā,C]2
is needed to guarantee soundness [4]. Apart from restating Π ′as by using the
terminology of the BPK model, Πbpk differs from Π ′as only by having an addi-
tional entry pkVpk in the pk and by including the Vpk algorithm. For the sake of
completeness, we will next state the main security results of [4]. See [4] for the
definition of the KW-KE assumption.

Proposition 1 (Security of Πbpk, [4]). Let Πbpk be the QA-NIZK argument
system for linear subspaces from Fig. 2. The following statements hold in the
BPK model. Assume that Dp is such that Vpar is efficient. (i) Πbpk is per-
fectly complete and perfectly zero-knowledge. (ii) If (Dp, k,Dk)-KW-KEG1

holds
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relative to Pgen then Πbpk is statistically persistent zero-knowledge. (iii) As-
sume Dk is efficiently verifiable (resp., Dk = U2). If Dk-KerMDHdl (resp.,
Dk-SKerMDHdl) holds relative to Pgen then Πbpk is computationally quasi-
adaptively Sub-PAR sound.

3 Key-and-Argument-Updatable QA-NIZK: Definitions

Following [4], we will consider QA-NIZK in the BPK model and thus with a
public-key updating (and not CRS-updating like in [26]) algorithm. Also, we
allow updating of a previously created argument to one that corresponds to the
new public key pk, obtaining what we will call a key-and-argument-updatable
QA-NIZK. As in [26], the updatable pk and the corresponding secret key will
be “shared” by more than one party. Thus, executing multiple updates of pk by
independent parties means that the updated version of pk is not “created” solely
by a single verifier. To achieve soundness, it suffices that V (or an entity trusted
by her) was one of the parties involved in the creation or updating of pk. It
even suffices if, up to the currently last available updated argument, at least one
key-updater does not collaborate with the corresponding proof-updater.

This moves us out from designated-verifier arguments, typical for the BPK
model, to (somewhat-)transferable arguments. The CRS model corresponds to
the case where pk belongs to a universally trusted third party (TTP); updating
the public key of the TTP by another party decreases trust requirements in the
TTP. E.g., the pk can originally belong to the TTP, and then updated by two
interested verifiers.

New Algorithms. An (argument-)updatable Sub-ZK QA-NIZK has the fol-
lowing additional PPT algorithms on top of (Pgen,Kbpk,Vpk,P,V,Sim):
Kupd(lpar,pk): a randomized key updater algorithm that, given an old pk, gen-

erates a new updated public key pk′, and returns (pk′, ŝk) where ŝk is a
trapdoor corresponding to the pk-update.

VKupd(lpar,pk,pk′): a deterministic key-update verifier algorithm that, given
pk and pk′, verifies that pk′ is a correct update of pk.

Pupd(lpar,pk,pk′; x,w, π): a possibly randomized argument-updater algorithm
that, given (x,w) ∈ Rlpar, an argument π (made by using the old public
key pk), and the updated public key pk′, outputs an argument π′ that
corresponds to the updated public key pk′. Pupd must be executable without
the knowledge of either sk, sk′ (the secret key corresponding to pk′), or any
trapdoor ŝk about the update. Hence, Pupd can be used to update either a
prover-generated or a simulated argument, but only honestly, i.e., when the
prover knows the witness.

Simupd(lpar,”sk; x, π): a (randomized) argument-update simulator algorithm
that, given an argument π (made with an old public key pk) and a pk-
update trapdoor ŝk (corresponding to the update from π to π′), outputs
an argument π′ with an updated public key pk′. Simupd is executed with-
out the knowledge of either w, sk, or sk′ (the secret keys corresponding
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to pk and pk′, respectively). Thus, Simupd can be used to update either a
prover-generated or a simulated argument, but only when knowing the trap-
door ŝk of the key-update. Simupd can have more inputs (like pk); in our
constructions, we do not need them.

VPupd(lpar,pk,pk′; x, π, π′): a deterministic argument-update verifier algorithm
that verifies that π′ is a correct (updated either by Pupd or Simupd on correct
inputs) update of π when pk was updated to pk′.

We require that there exists an efficient algorithm Comb that, on input
(lpar; sk, ŝk) (where sk is the secret key corresponding to pk and ŝk is the
trapdoor of the update pk⇒ pk′), returns sk′ (the secret key corresponding to
pk′).

New Security Requirements. We introduce several new security require-
ments that accompany the new algorithms. They include requirements that guar-
antee that the standard definitions of completeness, (computational) soundness,
and (statistical) zero-knowledge also hold after the key or the key-and-argument
updates. We complete them with the various hiding requirements that guaran-
tee that an updated key (and argument) are indistinguishable from the freshly
generated key (and argument), assuming that either the pre-update key (and
argument) were honestly created or the update was honest. While hiding is a
natural security objective by itself, we will see that it allows us to get general re-
ductions between soundness (and key/argument-update soundness) and Sub-ZK
(and key/argument-update Sub-ZK).

We will consider two versions of argument-update soundness. Argument-
update soundness (I) holds when pk was created honestly, but the updater
is malicious, and argument-update soundness (II) holds when pk was created
maliciously, but the updater is honest. Argument-update soundness (I) (resp.,
(II)) is defined in the case when pk and π were created honestly (resp., up-
dated honestly) since it is impossible to get both subversion-soundness (which
corresponds to the case both the pk creator and the updater are malicious)
and zero-knowledge, [6]. We want to guarantee soundness even in the case when
only one of the key and argument updaters was honest, but various verification
algorithms accept the updates of other updaters.

In the case of key-update Sub-ZK, we are interested in the case when only the
public key has been updated, but the update could have been done maliciously.
Since the argument is not updated, we require that an argument and simulated
argument, given with the updated key (where both the old key and the key-
update verify), are indistinguishable.

Similarly, in the case of argument-update Sub-ZK, the key update does not
depend on the witness and may be done maliciously (possibly not by P). How-
ever, the argument is updated by P who uses the witness but does not have to
know the key-update trapdoor ŝk. This motivates the use of Kupd and Simupd in
the update process in Expau−pzkZ,A (lpar). Thus, key-update Sub-ZK and argument-
update Sub-ZK are different notions and have to be handled separately.
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We give all security notions for a single update; this results in simple re-
ductions between these notions, and simple security proofs of the QA-NIZK.
All notions can be composed over several updates, and the composed properties
can then be proved by using standard hybrid arguments. We will omit further
discussion, see [26] for more information. We divide the considerable number of
definitions into completeness, hiding, soundness, and zero-knowledge sections.

Completeness.
Key-update completeness: ∀λ, p ← Pgen(1λ), ∀lpar ∈ Dp, (pk, sk) ←

Kbpk(lpar), (pk′, ŝk) ← Kupd(lpar,pk): VKupd(lpar,pk,pk′) = 1. Moreover,
if VKupd(lpar,pk,pk′) = 1 then Vpk(lpar; pk) = 1 iff Vpk(lpar; pk′) = 1.

Argument-update completeness: ∀λ, p ← Pgen(1λ), ∀lpar ∈ Dp, (pk,
sk) ← Kbpk(lpar), ∀(x,w) ∈ Rlpar, π ← P(lpar,pk; x,w), (pk′, ŝk) ←
Kupd(lpar,pk), π′ ← Pupd(lpar,pk,pk′; x,w, π): VPupd(lpar,pk,pk′; x, π, π′) =
1. Moreover, if VKupd(lpar,pk,pk′) = 1 and VPupd(lpar,pk,pk′; x, π, π′) = 1
then V(lpar,pk; x, π) = 1 iff V(lpar,pk′; x, π′) = 1.

Simulator-update completeness: ∀λ, p← Pgen(1λ), ∀lpar ∈ Dp, (pk, sk)←
Kbpk(lpar), ∀(x,w) ∈ Rlpar, πSim ← Sim(lpar,pk, sk; x), (pk′, ŝk)← Kupd(lpar,
pk), π′ ← Simupd(lpar, ŝk; x, π): VPupd(lpar,pk,pk′; x, π, π′) = 1. More-
over, if VKupd(lpar,pk,pk′) = 1 and VPupd(lpar,pk,pk′; x, π, π′) = 1 then
V(lpar,pk; x, π) = 1 iff V(lpar,pk′; x, π′) = 1.

Hiding.
Key-update hiding: ∀λ, p ← Pgen(1λ), ∀lpar ∈ Dp: if (pk, sk) ← Kbpk(lpar)

and (pk′, ŝk)← Kupd(lpar,pk), then pk′ ≈λ Kbpk(lpar).
Strong key-update hiding: ∀λ, p ← Pgen(1λ), ∀lpar ∈ Dp, ∀(pk,pk′):

pk′ ≈λ Kbpk(lpar) holds if either
1. the old public key was honestly generated and the key-update verifies:

(pk, sk)← Kbpk(lpar) and VKupd(lpar,pk,pk′) = 1, or
2. the old public key verifies and the key-update was honest: Vpk(lpar,pk) =

1 and (pk′, ŝk)← Kupd(lpar,pk).
Argument-update hiding: ∀λ, p ← Pgen(1λ), ∀lpar ∈ Dp, (pk, sk) ← Kbpk

(lpar), (pk′, ŝk) ← Kupd(lpar,pk), π ← P(lpar,pk; x,w), πSim ← Sim(lpar,
pk, sk; x), π′ ← Pupd(lpar,pk,pk′; x,w, π), π′Sim ← Simupd(lpar, ŝk; x, π):
π′ ≈λ P(lpar,pk′; x,w) and π′Sim ≈λ Sim(lpar,pk′, sk′; x).

Strong argument-update hiding: ∀λ, p ← Pgen(1λ), ∀lpar ∈ Dp, ∀(x,w) ∈
Rlpar, ∀(pk,pk′; x, π, π′): pk′ ≈λ Kbpk(lpar), π′ ≈λ P(lpar,pk′; x,w), and
π′Sim ≈λ Sim(lpar,pk′, sk′; x) hold if either
(i) the old public key and argument were honestly gener-

ated and the updates verify: (pk, sk) ← Kbpk(lpar), π ←
P(lpar,pk; x,w), πSim ← Sim(lpar,pk, sk; x), VKupd(lpar,pk,
pk′) = 1, VPupd(lpar,pk,pk′; x, π, π′) = 1, and VPupd(lpar,pk,
pk′; x, πSim, π′Sim) = 1, or

(ii) the old public key and argument verify and the updates were hon-
estly generated: Vpk(lpar,pk) = 1, V(lpar,pk; x, π) = 1, V(lpar,pk; x,
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πSim) = 1, (pk′, ŝk) ← Kupd(lpar,pk), π′ ← Pupd(lpar,pk,pk′; x,w, π),
and π′Sim ← Simupd(lpar, ŝk; x, πSim).

Soundness. Here, we abbreviate quasi-adaptive to QA.
(Computational QA) Sub-PAR key-update soundness (I): for any

PPT A, Advsndku1A,Π (λ) ≈λ 0, where Advsndku1A,Π (λ) is the probability that given
p ← Pgen(1λ), lpar←$A(p); (pk, sk) ← Kbpk(lpar), (pk′, x, π′) ← A(pk),
the following holds: Vpar(lpar) = 1 ∧ VKupd(lpar,pk,pk′) =
1 ∧ V(lpar,pk′; x, π′) = 1 ∧ ¬(∃w : Rlpar(x,w) = 1).

(Computational QA) Sub-PAR key-update soundness (II): for any
PPT A, Advsndku2A,Π (λ) ≈λ 0, where Advsndku2A,Π (λ) is the probability that given
p ← Pgen(1λ), (lpar,pk)←$A(p), (pk′, ŝk) ← Kupd(lpar,pk), π′ ← A(pk′),
the following holds: Vpar(lpar) = 1 ∧ Vpk(lpar,pk) = 1 ∧ V(lpar,pk′; x, π′) =
1 ∧ ¬(∃w : Rlpar(x,w) = 1).

(Computational QA) Sub-PAR key-update soundness: iff both Sub-
PAR key-update soundness (I) and (II) hold.

(Computational QA) argument-update soundness (I): for any PPT A,
Advsndpu1A,Π (λ) ≈λ 0, where Advsndpu1A,Π (λ) is the probability that given
p ← Pgen(1λ); lpar←$A(p); (pk, sk) ← Kbpk(lpar), (pk′, x, π, π′) ←
A(pk), the following holds: Vpar(lpar) = 1 ∧ VKupd(lpar,pk,pk′) = 1 ∧
VPupd(lpar,pk,pk′; x, π, π′) = 1 ∧ V(lpar,pk; x, π) = 1 ∧ ¬(∃w : Rlpar(x,w) =
1).

(Computational QA) Sub-PAR argument-update soundness (II):
for any PPT A, Advsndpu2A,Π (λ) ≈λ 0, where Advsndpu2A,Π (λ) is the prob-
ability that given p ← Pgen(1λ), (lpar,pk, π)←$A(p), (pk′, ŝk)
← Kupd(lpar,pk), π′ ← Pupd(lpar,pk,pk′; x,w, π), the following holds:
Vpar(lpar) = 1∧Vpk(lpar,pk) = 1∧V(lpar,pk; x, π) = 1∧¬(∃w : Rlpar(x,w)).

(Computational QA) Sub-PAR argument-update soundness: iff both
Sub-PAR argument-update soundness (I) and Sub-PAR argument-update
soundness (II) hold.

Zero-Knowledge. Here, all experiments are described in Fig. 3.
(Statistical) key-update ZK: for any computationally unbounded A,
|Expku−zkZ,A (lpar)− 1/2| ≈λ 0.

(Statistical) argument-update ZK: for any computationally unbounded A,
|Expau−zkZ,A (lpar)− 1/2| ≈λ 0.

(Statistical) key-update persistent Sub-ZK: for any PPT subverter Z
there exists a PPT ExtZ, such that for any computationally unbounded A,
|Expku−pzkZ,A (lpar)− 1/2| ≈λ 0.

(Statistical) argument-update persistent Sub-ZK: for any PPT sub-
verter Z there exists a PPT ExtZ, such that for any computationally un-
bounded A, |Expau−pzkZ,A (lpar)− 1/2| ≈λ 0.
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Expku−zk
A (lpar)

p← Pgen(1λ); lpar← Dp;
(pk, sk)← Kbpk(lpar);
(pk′, “sk)← Kupd(lpar, pk);
sk′ ← Comb(lpar; sk, “sk);
b←$ {0, 1};
b′ ← AOk

b (·,·)(lpar; pk, pk′);
return VKupd(lpar, pk, pk

′) = 1∧
b′ = b;

Expku−pzk
Z,A (lpar)

p← Pgen(1λ); r←$RNDλ(Z);
(lpar, pk, pk′, auxZ)← Z(p; r);
(sk, “sk)← ExtZ(p; r);
sk′ ← Comb(lpar; sk, “sk);
b←$ {0, 1};
b′ ← AOk

b (·,·)(lpar; pk, pk′, auxZ);
return Vpar(lpar) = 1 ∧ Vpk(lpar; pk) = 1∧

VKupd(lpar, pk, pk
′) = 1 ∧ b′ = b;

Ok0(x,w):
if (x,w) 6∈ Rlpar then return ⊥;
else π′ ← P(lpar, pk′; x,w);

return π′; fi

Ok1(x,w):
if (x,w) 6∈ Rlpar then return ⊥;
else π′Sim ← Sim(lpar, pk′, sk′; x);

return π′Sim; fi

Oa0(x,w):
if (x,w) 6∈ Rlpar then return ⊥;
else π ← P(lpar, pk; x,w);
π′ ← Pupd(lpar, pk, pk

′; x,w, π);
return (π, π′); fi

Oa1(x,w):
if (x,w) 6∈ Rlpar then return ⊥;
else πSim ← Sim(lpar, pk, sk; x);
π′Sim ← Simupd(lpar, “sk; x, πSim);
return (πSim, π

′
Sim); fi

Fig. 3. Zero-knowledge experiments. Experiments Expku−zk
Z,A (lpar) and Expku−pzk

Z,A (lpar)

are described first. Experiments Expau−zk
Z,A (lpar) and Expau−pzk

Z,A (lpar) are like Expku−zk
Z,A (lpar)

and Expku−pzk
Z,A (lpar), except the adversary has access to oracle Oab instead of Okb .

Table 1. Relations between security requirements due to Lemmas 1 to 4

Requirement Follows from

Sub-PAR key-update soundness key-update complete, Sub-PAR sound, strong key-
update hiding

Sub-PAR argument-update
soundness

argument-update complete, Sub-PAR sound, strong
key-update hiding, strong argument-update hiding

(Persistent) key-update Sub-ZK key-update complete, (persistent) Sub-ZK
(Persistent) argument-update
Sub-ZK key-update complete, (persistent) Sub-ZK

Argument-updatable variants of ZK are stronger than key-updatable variants.
Our constructions satisfy the stronger definitions, but for the sake of complete-
ness, it is interesting to consider also the weaker notions.

We will now show that the key-update soundness, argument-update sound-
ness, key-update Sub-ZK, and argument-update Sub-ZK properties follow from
simpler security requirements. Hence, in the case of a concrete updatable QA-
NIZK, it will suffice to prove computational soundness, Sub-ZK, (key-update and
argument-update) completeness and strong (key-update and argument-update)
hiding. Dependency between security properties is summarized in Table 1.
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Lemma 1. Assume Π is a Sub-PAR sound and strongly key-update hiding non-
interactive argument system. (i) Π is Sub-PAR key-update sound (I). (ii) If Π
is additionally key-update complete, then Π is Sub-PAR key-update sound (II).

Proof. (i) By strong key-update hiding, pk′ comes from the correct distribution.
Thus, by Sub-PAR soundness, it is computationally hard to come up with an
acceptable argument π′ unless x belongs to the language.

(ii) From key-update completeness it follows that in the definition of Sub-
PAR key-update soundness (II), we can replace the condition Vpk(lpar,pk) = 1
with the condition Vpk(lpar,pk′) = 1. Because of the strong key-update hiding,
pk′ is indistinguishable from an honestly generated pk′. From Sub-PAR sound-
ness, we now obtain Sub-PAR key-update soundness (II). ut

Lemma 2. Assume Π is a Sub-PAR sound non-interactive argument system.
(i) Π is Sub-PAR argument-update sound (I). (ii) If Π is also argument-update
complete, strongly key-update hiding, and strongly argument-update hiding, then
Π is Sub-PAR argument-update sound (II).

Proof. (i) Let A be an adversary against Sub-PAR argument-update soundness
(I). We construct the following adversary B against Sub-PAR soundness. If A
returns lpar, B returns the same lpar. After the generation of pk, B(pk) obtains
(pk′; x, π, π′) ← A(pk) and returns (x, π). Clearly, if A is successful then V
accepts π with honestly chosen pk but x 6∈ Llpar. Thus, B is successful.

(ii) From argument-update completeness, it follows that in the definition
of Sub-PAR argument-update soundness (II), we can replace the condition
V(lpar,pk; x, π) = 1 with the condition V(lpar,pk′; x, π′) = 1. Because of the
strong key-update hiding, pk′ is indistinguishable from an honestly generated
pk′. Because of the strong argument-update hiding, π′ is indistinguishable from
an honestly generated argument given pk′. From Sub-PAR soundness, we get
Sub-PAR argument-update soundness. ut

Lemma 3. Assume Π is a key-update complete non-interactive argument sys-
tem. (i) if Π is zero-knowledge then Π is key-update zero-knowledge. (ii) if Π
is persistent Sub-ZK then Π is persistent key-update Sub-ZK.

Proof. (i) Consider a creation of (pk, π) (that returns sk) followed by a up-
date of (pk, π) to (pk′, π′) (that returns ŝk). Due to key-update complete-
ness, Vpk(lpar; pk′) = 1. Then, by the zero-knowledge property, for sk′ ←
Comb(lpar; sk, ŝk), Sim(lpar,pk′, sk′; x) ≈λ P(lpar,pk′; x,w).

(ii) Consider a possibly malicious creation of (pk, π) followed by a possibly
malicious update of (pk, π) to (pk′, π′), such that all verifications accept. Due
to key-update completeness, we have Vpk(lpar; pk′) = 1. Then, by the Sub-ZK
property, there exist an extractor ExtZ that extracts (sk, ŝk), such that for sk′ ←
Comb(lpar; sk, ŝk), Sim(lpar,pk′, sk′; x) ≈λ P(lpar,pk′; x,w). ut

Lemma 4. Assume that ŝk is efficiently computable from sk and sk′. Assume
Π is a key-update complete and simulator-update complete non-interactive ar-
gument system. (i) If Π is zero-knowledge then Π is persistent argument-update
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zero-knowledge. (ii) If Π is persistent Sub-ZK then Π is persistent argument-
update Sub-ZK.

Proof (Sketch.). (i) Consider an honest creation of (pk, π) (that also returns sk)
followed by an honest update of (pk, π) to (pk′, π′) (that also returns ŝk). By
zero-knowledge, π ← P(lpar,pk; x,w) and πSim ← Sim(lpar,pk, sk; x) are indis-
tinguishable. By the key-update completeness, Vpk(lpar; pk′) = 1 and thus, by
zero-knowledge, for sk′ ← Comb(sk, ŝk), π′ and π′′Sim ← Sim(lpar,pk′, sk′; x)
are indistinguishable. By the simulator-update completeness, π′′Sim ≈λ π′Sim,
where π′Sim ← Simupd(lpar, ŝk; x, πSim). Thus, the joint distributions (π, π′) and
(πSim, π

′
Sim) are indistinguishable.

(ii) Consider a possibly malicious creation of (pk, π) followed by a possi-
bly malicious update of (pk, π) to (pk′, π′), such that all verifications accept.
By persistent Sub-ZK, there exists an extractor ExtZ1 that extracts sk, such
that π ← P(lpar,pk; x,w) and πSim ← Sim(lpar,pk, sk; x) are indistinguish-
able. By the key-update completeness, Vpk(lpar; pk′) = 1 and thus, by persis-
tent Sub-ZK, there exists an extractor ExtZ2

that extracts sk′ such that π′ and
π′′Sim ← Sim(lpar,pk′, sk′; x) are indistinguishable. By the simulator-update com-
pleteness, π′′Sim ≈λ π′Sim, where π′Sim ← Simupd(lpar, ŝk; x, πSim). Thus, the joint
distributions (π, π′) and (πSim, π

′
Sim) are indistinguishable. ut

Handling Multiple Updates. All security notions given above are for a single
update, but they can be generalized for many updates, by using standard hybrid
arguments. We will omit further details and point to [26] for more discussion.

4 Updatable Kiltz-Wee QA-NIZK

Since the public key of Π ′as consists of (bracketed) matrices, one may hope to
construct a quite simple updating process where all pk elements are updated
additively. In such a case, an updater would create a “difference” public key p̂k
(by choosing the trapdoor privately) and update pk by adding p̂k component-
wise to it, pk′ ← pk + p̂k. However, this simple idea does not work since in the
case of additive updating (see Fig. 4 for notation), when we define Ā′ ← Ā+“A,
we need to compute

[C ′]2 = [K ′Ā′]2 = [(K + K̂)(Ā+ “A)]2 = [C]2 + [K]2“A+ K̂([Ā]2 + [“A]2) .

An arbitrary party cannot compute the last formula since [K]2 is not public.
To overcome this issue, we have chosen to update the square matrix Ā mul-
tiplicatively, that is, Ā′ ← Ā“A. On the other hand, we cannot update [K]2
multiplicatively since [K]2 is (usually) not a square matrix. Thus, we use dif-
ferent updating strategies for different elements of pk, updating some of them
additively, and some of them multiplicatively. This differs significantly from the
known updating procedures for SNARKs like [26] (and all subsequent works that
we are aware of), where all pk elements are updated multiplicatively. Finally, to
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Kbpk, P, Sim, V, Vpk: exactly as in Fig. 2.

Kupd([M ]1,pk): // Updates pk = ([P ]1, [Ā,C]2) to pk′ = ([P ′]1, [Ā
′,C′]2)“A←$ D̄k; [Ā′]2 ← [Ā]2“A; “K ←$Zn×kp ;

[“C]2 ← “K[Ā′]2; [C′]2 ← ([C]2“A+ [“C]2)/β;
[“P ]1 ← [M ]>1 “K; [P ′]1 ← ([P ]1 + [“P ]1)/β; // Implicitly, K′ = (K +“K)/β

pkupd ← ([“A]1, [“A,“C]2); pk′ ← ([P ′]1, [Ā
′,C′]2, pkupd); “sk← “K;

return (pk′, “sk);

VKupd([M ]1,pk,pk′): [“P ]1 ← [βP ′ − P ]1; p̂k← ([“P ]1, [Ā
′,“C]2);

if isinvertible([Ā]1, pkVpk) ∧ isinvertible([“A]1, pkVpk) ∧ [Ā′]1 ·[1]2 = [Ā]1 ·[“A]2

∧ [“A]1 · [1]2 = [1]1 · [“A]2 ∧
[1]1 · [C′]2 = ([C]2 · [“A]1 + [1]1 · [“C]2)/β ∧ Vpk([M ]1, p̂k) = 1

then return 1 else return 0 fi

Pupd([M ]1,pk; [y]1, [w]1, [π]1): [π̂]1 ← [“P ]>1 w; return [π′]1 ← ([π]1 + [π̂]1)/β;

Simupd([M ]1, ŝk; [y]1, [π]1): [π̂Sim]1 ← “K>[y]1; return [π′]1 ← ([π]1 +
[π̂Sim]1)/β;

VPupd([M ]1,pk,pk′; [y]1, [π]1, [π
′]1):

[“P ]1 ← [βP ′ − P ]1; p̂k← ([“P ]1, [Ā
′,“C]2); [π̂]1 ← [βπ′ − π]1;

if V([M ]1, p̂k; [y]1; [π̂]1) = 1 then return 1 else return 0 fi

Fig. 4. Variant Πupd
bpk of Kiltz-Wee QA-NIZK for [y]1 = [M ]1w in the Sub-ZK model.

Here, k ∈ {1, 2}, and α, β ≥ 1.

allow for a larger variety of distributions DK ofK, we introduce a scaling factor
β. That is, we update K to K ′ = (K+K̂)/β. (For example, with β = 2, strong
key-update and argument-updating hold even when DK = Lk.) We recommend
to usually take β = 2, but other choices of β may be appropriate. We leave it
as an interesting open question to similarly generalize the updating of Ā. We
depict an updatable version of Π ′as in Fig. 4.

Note that (i) Pupd updates a QA-NIZK argument [π]1 by adding to it a
honest argument [π̂]1 under the “difference” public key p̂k, given the witness w.
Thus, Pupd can be run by a party who knows w. (ii) Simupd updates the existing
QA-NIZK argument [π]1 by adding to it a simulation [π̂Sim]1 of the argument
given ŝk = K̂ (that is known to the key-updater) as the trapdoor. Thus, Simupd

can be run by the key-updater. Thus, to be sure that at least one update was
made by a party who knows the witness, one should make sure that at least one
key-updater will not collude with the argument-updater of the same round.

5 Security of Πupd
bpk

Lemma 5. Πupd
bpk is (i) key-update complete, (ii) argument-update complete, and

(iii) simulator-update complete.
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Proof. (i: Key-update completeness) We need to show that for (pk′, ŝk)←
Kupd(lpar,pk), VKupd(lpar,pk,pk′) = 1.

Really, pk′ is defined by Ā′ = Ā“A, C ′ = (C“A + K̂Ā′)/β, and P ′ =

(P + M>K̂)/β. Thus, the first two verification equations in VKupd hold by
the definition of Ā and “A (they are invertible), and the next three ones
hold trivially. Let p̃k ← ([P ]1, [Ā,C]2) and p̃k′ ← ([P ′]1, [Ā

′,C ′]2). We get
Vpk([M ]1, p̃k

′
) = 1 from

M>C ′ − P ′Ā′ =M>(C“A+ K̂Ā′)/β − (P +M>K̂)/β · Ā“A
=
((
M>C − PĀ

)“A+M>K̂
(
Ā′ − Ā“A)) /β = 0

since Vpk([M ]1, p̃k) = 1 (and thus M>C = PĀ) and Ā′ = Ā“A.
On the other hand, if VKupd([M ]1; pk,pk′) = 1 then

0 = M>“C − “PĀ′ =M>(βC ′ −C“A)− (βP ′ − P )Ā′

=β(M>C ′ − P ′Ā′)− (M>C − PĀ)“A
and thus, since “A is invertible, Vpk([M ]1; pk′) = 1 iff Vpk([M ]1; pk) = 1.

(ii: Argument-update completeness) Clearly, y>“C−π̂>Ā′ = y>K̂Ā′−
(“P>w)>Ā′ = (w>M>K̂−w>M>K̂)Ā′ = 0 and thus V([M ]1, p̂k; [y]1; [π̂]1) =

1. On the other hand, y>“C − π̂>Ā′ = y>(βC ′ − C“A) − (βπ′ − π)>Ā“A =

β
(
y>C ′ − π′>Ā′

)
−
(
y>C − π>Ā

)“A and thus if VPupd accepts then, since “A
is invertible, V([M ]1,pk′; [y]1, [π

′]1) = 1 iff V([M ]1,pk; [y]1, [π]1) = 1.
(iii: Simulator-update completeness) Clearly, y>“C − π̂>Ā′ = (y>K̂ −

(K̂
>
y)>) = 0 and thus V([M ]1, p̂k; [y]1; [π̂]1) = 1. The proof that if VPupd

accepts then V([M ]1,pk′; [y]1, [π
′]1) = 1 iff V([M ]1,pk; [y]1, [π]1) = 1 is the

same as in the case (ii). ut

Lemma 6 (Key-update hiding and argument-update hiding). Assume
that K, K̂ ∼ DK and Ā,“A ∼ DĀ, where DK and DĀ satisfy the following
conditions: for i.i.d random variables X1 and X2,
– if Xi ∼ DK for both i then X1 + X2 ∼ βDK . (Thus, D∗2K = βDK , where

D∗s is the sth convolution power of D. That is, DK is a stable distribution
with index 1/ log2 β.)

– if Xi ∼ DĀ for both i then X1 ·X2 ∼ DĀ.
Then, Πupd

bpk is (i) key-update hiding and (ii) (assuming perfect simulation)
argument-update hiding.

Proof. (i) Since pk is honestly created, C = KĀ and thus C ′ = (C“A +

K̂Ā′)/β = (KĀ“A+K̂Ā′)/β = (K+K̂)/β ·Ā′ = K ′Ā′. Similarly, P = M>K

and P ′ = (P +M>K̂)/β = M>(K + K̂)/β = M>K ′. Due to the assumption
on DĀ and DK , pk and pk′ come from the same distribution.
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(ii) We already know pk and pk′ come from the same distribu-
tion. Assume that [y]1 = [M ]1w. Due to the perfect simulation, π =

Sim([M ]1,pk; [y]1, [π]1) = K>y. Thus, π′ = (K>y + K̂
>
y)/β = K ′>y =

Sim([M ]1,pk′; [y]1, [π
′]1) = P([M ]1,pk′, [y]1,w). ut

Remark 1. In Lemma 6, we need a convolution semigroup consisting of a single
element. It is possible to generalize to the case of a general convolution semigroup
(i.e., allowing K̂ to come from a different distribution than K).

Theorem 1 (Strong key-update hiding and strong argument-update
hiding). Assume that K, K̂ ∼ DK and Ā,“A ∼ DĀ, where DK and DĀ

satisfy the following conditions: for i.i.d random variables X1 and X2,
– if Xi ∼ DK for at least one i then X1 +X2 ∼ βDK . (Thus, the convolution

of DK with any other distribution — over the support of DK — is βDK ,
or DK is belongs to a generalized ideal of a convolution semigroup.)

– if Xi ∼ DĀ for at least one i then X1 · X2 ∼ DĀ. (Thus, the log of DĀ

belongs to an ideal of a convolution semigroup.)
Then, Πupd

bpk is (i) strong key-update hiding and (ii) (assuming perfect simulation)
strong argument-update hiding.

Proof. We will prove (i) and (ii) together in two different cases: (1) when pk
(and the argument) was honestly created, and (2) when pk′ (and the argument)
was honestly updated.

(1: pk / π were honestly created and the updates verify) Since
pk is honestly created, C = KĀ and P = M>K. Since VKupd accepts, we
have Ā′ = Ā“A (thus, by the assumption on DĀ, Ā′ comes from the correct
distribution), C ′ = (C“A + “C)/β, and M>“C = “PĀ′ where “P = βP ′ − P .
Thus, C ′ = (C“A+ “C)/β = (KĀ“A+ “C)/β = (KĀ′ + “C)/β. Define implicitly
K ′ := C ′Ā′−1 = (KĀ′ + “C)/β · Ā′−1 = (K + “CĀ′−1)/β (note that Ā′ is
invertible). Thus, obviously,C ′ = K ′Ā′. On the other hand,M>K ′ = M>(K+“CĀ′−1)/β = (P +M>“CĀ′−1)/β = (P +“PĀ′Ā′−1)/β = (P +“P )/β = P ′ and
thus P ′ = M>K ′. To show that pk and pk′ come from the same distribution,
we now only need to show that K ′ = (K + “CĀ′−1)/β comes from the same
distribution as K. This holds assuming that DK is a generalized ideal of a
convolution semigroup.

Consider the argument [π′]1. We have, in addition to equations above, that
– since [π]1 is honestly created: π = P>w.
– since [π′]1 verifies: y>“C = π̂Ā.

Due to completeness, y>C = π>Ā. Thus,

β(y>C ′ − π′Ā′) =y>(C“A+ “C)− (π + π̂)Ā′

= (y>C − πĀ)︸ ︷︷ ︸
=0

“A+ (y>“C − π̂Ā′)︸ ︷︷ ︸
=0

and thus C ′ verifies. But then clearly, π′ = y>C ′Ā′−1 is the unique correct
argument for y ∈ ColSpace(M) when using the public key pk′.
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(2: pk verifies and the update was honestly done) We have the fol-
lowing equations:
– since pk verifies: M>C = PĀ,
– since pk′ was honestly updated: for correctly distributed “A and K̂, Ā′ =
Ā“A, “C = K̂Ā′, C ′ = (C“A+ “C)/β, “P = M>K̂, P ′ = (P + “P )/β.

Due to the assumption on DĀ, Ā′ comes from the correct distribution. Define
implicitly P := M>CĀ−1 (note that Ā is invertible) and K := CĀ−1. Then,
K ′ = (K + K̂)/β = (K + “CĀ′−1)/β = (C“A + “C)/β · Ā′−1 = C ′Ā′−1. Next,
K ′ = (K + K̂)/β has the same distribution as K̂ by the assumption on DK .
Because both K ′ and Ā′ have correct distributions, also C ′ = K ′Ā′ has correct
distribution.

Next, obviously P ′ = M>(CĀ−1 + K̂)/β = M>(K + βK ′ − K)/β =
M>K ′ has the correct distribution. This proves strong key-updating.

In the case of strong argument-updating, additionally, the following holds:
– the original argument verifies: y>C = π>Ā,
– [π]1 was updated honestly: π′ = (π + K̂

>
y)/β for honestly distributed

K̂ ∼ DK .
From this, we get that π = (y>CĀ−1)> = (y>K)> = K>y. Thus, π′ =

(π + K̂
>
y)/β = (K>y + K̂

>
y)/β = (K + K̂)>/β · y = K ′>y which is equal

to the simulated argument of y = Mw (when using the public key pk′) and by
perfect simulation, thus also to the real argument (when using pk′). ut

Example 1 (Of the required distributions). DK is the uniform distribution over
k× k matrices over Zp and DĀ is the uniform distribution over k× k invertible
matrices over Zp where as the sanity check, one checks that both matrices [Ā]1
and [“A]1 are invertible.6 As mentioned before, in the actual instantiation of Π ′as
(at least in the most efficient case k = 1) both DK and DĀ are equal to the
uniform distribution over Zp and thus satisfy the required properties. ut

Theorem 2. Let Dk be efficiently verifiable (resp., Dk = U2). If the Dk-
KerMDHdl (resp., Dk-SKerMDHdl) assumption holds relative to Pgen then Πupd

bpk

is (i) computationally quasi-adaptively Sub-PAR argument-update sound (I), and
(ii) assuming that the preconditions of Theorem 1 are fulfilled, also computation-
ally quasi-adaptively Sub-PAR argument-update sound (II) in the BPK model.

Proof. (i: Sub-PAR argument-update soundness (I)) follows from Propo-
sition 1 (Πbpk is computationally quasi-adaptively Sub-PAR sound under the
KerMDHdl / SKerMDHdl assumption) and Lemma 2 (any Sub-PAR sound ar-
gument system is also Sub-PAR argument-update sound (I)).

(ii: Sub-PAR argument-update soundness (II)) follows from Propo-
sition 1 (Πbpk is computationally quasi-adaptively Sub-PAR sound under
the KerMDHdl / SKerMDHdl assumption), Lemma 2 (any Sub-PAR sound,

6 Intuitively, we require the family ν of probability distributions to be an ideal of a
convolution semigroup: νs ∗ µ = νt, for some t, for any element µ of the semigroup.
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argument-update complete, strongly-key-update hiding, and strongly argument-
update hiding argument system is also Sub-PAR argument-update sound (II)),
Lemma 5 (Πupd

bpk is argument-update complete), and Theorem 1 (Πupd
bpk is strongly

key-update hiding and strongly argument-update hiding). ut
We emphasize that Sub-PAR argument-update soundness (II) follows only

when the update has been done by a honest prover (who knows the witness and
does not know the key-update secret key ŝk).

Interestingly, next, we rely on KW-KE that is a tautological knowledge as-
sumption for Πbpk, but not for Π

upd
bpk . This gives more credence to KW-KE as an

assumption that is of independent interest.

Lemma 7. Let Πupd
bpk be the updatable QA-NIZK argument system for linear

subspaces from Fig. 4. Assume that Dp is such that Vpar is efficient. (i) Πbpk is
key-update statistical zero-knowledge in the BPK model. (ii) If the (Dp, k,Dk)-
KW-KEG1 assumption holds relative to Pgen then Πbpk is key-update statistical
persistent Sub-ZK in the BPK model.

Lemma 8. Let Πupd
bpk be the updatable QA-NIZK argument system for linear

subspaces from Fig. 4. Assume that Dp is such that Vpar is efficient. (i) Πbpk

is argument-update statistical zero-knowledge in the BPK model. (ii) If the
(Dp, k,Dk)-KW-KEG1 assumption holds relative to Pgen then Πbpk is argument-
update statistical persistent Sub-ZK in the BPK model.

6 Discussion

Why updating M might be difficult. In certain applications, one might
also be interested in updating M (e.g., if [M ]1 is a public key of some trusted
third party). Assume [M ]1 is updated to [M ′]1 = [M ]1 + [”M ]1, then [βP ′]1 −
[P ]1 = [βM ′>K ′]1 − [M>Ki−1]1 = [βM ′>(Ki−1 + K̂)/β]1 − [M>Ki−1]1 =

[”M>
Ki−1]1 + [M ′>]1K̂ that can be computed assuming the updater knows

either (1) both”M and [Ki−1]1 or (2) Ki−1, or if all previous parties help him

to compute [”M>
Ki−1]1. Since neither possibility seems realistic (note that even

[Ki−1]1 is not public), one cannot probably update the language parameter.

7 Updatable Universal Public Key

Consider updatability in a more generic setting of pairing-based protocols, where
the language parameter may not exist at all. The goal of updatability is to
protect soundness in the case pk may be subverted, since Sub-ZK can be obtained
by running the public algorithm Vpk [3]. In Π ′as, soundness is guaranteed by
one of the elements of pk (namely, [Ā]2, see Fig. 2) coming from a KerMDH-
hard distribution7, and another element [C]2 being correctly computed from
7 Technically, A comes from a KerMDH-hard distribution, not Ā. However, in the
case of some distributions (like DLIN-related distributions), A has an extra constant
column compared to Ā. The knowledge of [A]2 and [Ā]2 is equivalent in such a case.
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[Ā]2. Since the latter can be verified by Vpk, to obtain soundness it suffices to
update [Ā]2. (The procedure of this is the same as creating [Ā′]2 by Kupd in
Fig. 4, and verifying this update consists of the first four verification equations
in VKupd.) Then, [Ā]2 will be a “universal public key” [26] for all possible language
parameters in all applications that trust the concrete KerMDH assumption.

Importantly, one is here not restricted to Π ′as or even QA-NIZK: any ap-
plication that relies on KerMDH-hardness of DĀ, where it suffices to know
[Ā]2 (instead of [A]2), and where DĀ satisfies the conditions of Theorem 1,
can use the same matrix [Ā]2. A standard example is the 1-Lin distribution
L1 = {A = ( a1 ) : a←$Zp}. After potentially many updates of [Ā]2, one can
create the whole public key pk corresponding to a concrete language parame-
ter. Thereafter, one can continue updating [Ā]2 together with all known public
keys and arguments that use (the same version of) [Ā]2 for soundness. Such
one-phase updating can be formalized like in [26], adding to it QA-NIZK and
argument-update specifics, and is out of the scope of the current paper.

We emphasize that the possibility to rely just on [Ā]2 is a major difference
with updatable SNARKs [26] where the universal key is quite complex and each
universal key of length Θ(n) can only be used for circuits of size ≤ n.

History Further Work. The first version of this paper was written a few days
after [26] was posted on eprint; and then eprinted as [37]. The current version
mainly differs by taking in the account the newer version of [4]. We leave the
definition and study of updatable Sub-PAR knowledge-sound QA-NIZKs as an
open question. We also leave the study of other applications that can make use
of the described universal public key updating method to the further work. We
conjecture that many other such applications will be found shortly.
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