## On Delegatability of Four Designated Verifier Signatures

#### Yong Li<sup>1</sup> Helger Lipmaa<sup>23</sup> Dingyi Pei<sup>1</sup>

<sup>1</sup>State Key Laboratory of Information Security Graduate School of Chinese Academy of Sciences

<sup>2</sup>Cybernetica AS, Estonia <sup>3</sup>Institute of Computer Science, University of Tartu, Estonia

ICICS 2005, 10, December 2005, Beijing



・ロト ・回 ・ ・ ヨ ・

Overview





2 Preliminaries

3 Delegation Attacks on Four DVS schemes

More Refined Delegation Attacks

5 Conclusion



Overview





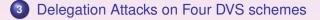


3 Delegation Attacks on Four DVS schemes

4 More Refined Delegation Attacks

5 Conclusion




・ロト ・四ト ・ヨト ・ヨト

Overview









4 More Refined Delegation Attacks

#### 5 Conclusion



<<p>・







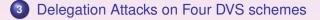




4 More Refined Delegation Attacks

#### 5 Conclusion




< 回 > < 回 > < 回 >











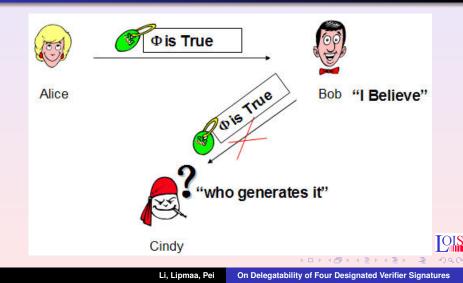


#### 5 Conclusion



#### **Designated Verifier Proof**

#### Goal: solve the conflict between authenticity and privacy


| First Proposed                                |
|-----------------------------------------------|
| <ul> <li>Designated Verifier Proof</li> </ul> |
| Jakobsson, Sako, and Impagliazzo [JSI96]      |
| Private Signature and Proof                   |
| Chaum [Cha96]                                 |



르

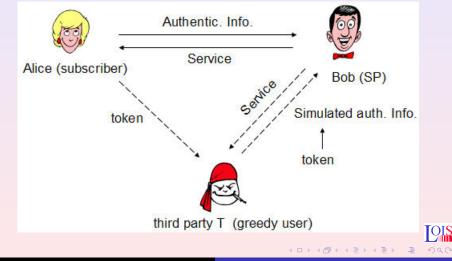
・ロ・・ (日・・ 日・・ 日・・

### Basic idea ( E-service Scenario)





- First attack on [JSI96] Guilin Wang , ePrint 2003/243
- Helger Lipmaa, Guilin Wang, Feng Bao [LWB05]




크

Li, Lipmaa, Pei On Delegatability of Four Designated Verifier Signatures

・ロ・・ (日・・ 日・・ 日・・

#### Delegatable & Non-delegatability



Li, Lipmaa, Pei On Delegatability of Four Designated Verifier Signatures

## Delegatable schemes ([LWB05] result)

- Saeednia-Kremer-Markowitch, ICISC 2003, [SKM03]
- Steinfeld-Bull-Wang-Pieprzyk, Asiacrypt 2003, [SBWP03]
- Steinfeld-Wang-Pieprzyk, PKC 2004, [SWP04]
- Laguillaumie-Vergnaud, SCN 2004, [LV04a]





Are there other DVS schemes and its variants also have delegatable weakness?



Li, Lipmaa, Pei On Delegatability of Four Designated Verifier Signatures

## **Bilinear pairing**

#### Definition

Let  $\mathbb{G}$  be a cyclic additive group generated by P, whose order is a prime q, and let  $\mathbb{H}$  be a cyclic multiplicative group of the same order q. A *bilinear pairing* is a map  $\langle \cdot, \cdot \rangle : \mathbb{G} \times \mathbb{G} \to \mathbb{H}$  with the following properties:

Bilinearity:  $\langle aP, bQ \rangle = \langle P, Q \rangle^{ab}$  for all  $P, Q \in \mathbb{G}$  and  $a, b \in \mathbb{Z}_q^*$ ; Non-degeneracy: There exist  $P, Q \in \mathbb{G}$  such that  $\langle P, Q \rangle \neq 1$ ; Computability: There is an efficient algorithm to compute  $\langle P, Q \rangle$  for all  $P, Q \in \mathbb{G}$ .



#### Formal Definition of n-DVS

#### Notions:

- S: signer
- $D_1, \ldots, D_n$ : *n* designated verifiers.
- $\mathsf{PK}_{\vec{D}}$ :  $(\mathsf{PK}_{D_1}, \ldots, \mathsf{PK}_{D_n})$ .
- $SK_{\vec{D}}$ :  $(SK_{D_1}, \ldots, SK_{D_n})$ .
- Simul\_{\mathsf{PK}\_{\mathcal{S}},\mathsf{PK}\_{\vec{D}},\mathsf{SK}\_{\vec{D}}}: (Simul\_{\mathsf{PK}\_{\mathcal{S}},\mathsf{PK}\_{\vec{D}},\mathsf{SK}\_{\mathcal{D}\_{1}}}, \ldots, Simul\_{\mathsf{PK}\_{\mathcal{S}},\mathsf{PK}\_{\vec{D}},\mathsf{SK}\_{\mathcal{D}\_{n}}})



## Formal Definition of n-DVS

- Setup is a probabilistic algorithm that outputs the public parameter *param*;
- KeyGen(*param*) is a probabilistic algorithm that takes the public parameters as an input and outputs a secret/public key-pair (SK, PK);
- Sign<sub>SK<sub>S</sub>,PK<sub>β</sub></sub>(*m*) takes as inputs signer's secret key, designated verifiers' public keys, a message *m* ∈ *M* and a possible random string, and outputs a signature *σ*;



・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

## Formal Definition of n-DVS (cont.)

- For *i* ∈ [1, *n*], Simul<sub>PK<sub>S</sub>,PK<sub>p</sub>,SK<sub>p</sub>(*m*) takes as inputs signer's public key, designated verifiers' public keys, secret key of one designated verifier, a message *m* ∈ *M* and a possible random string, and outputs a signature *σ*;
  </sub>
- Verify<sub>PK<sub>S</sub>,PK<sub>D</sub></sub>(m, σ) is a deterministic algorithm that takes as inputs a signing public key PK<sub>S</sub>, public keys of all designated verifiers D<sub>i</sub>, i ∈ [1, n], a message m ∈ M and a candidate signature σ, and returns accept or reject;



#### n-DVS variations

- strong n-DVS: verification algorithm also takes an SK<sub>D<sub>i</sub></sub>, i ∈ [1, n], as an input
- designated multi verifier signature scheme: verification can be performed only by the coalition of all *n* designated verifiers.
- universal DVS: conventional signature+ designation algorithm.
- ID-based DVS: ID info.  $\rightarrow$  public key.



#### Security requirements

- Unforgeability
- Non-transferability
- Non-delegatability



・ロ・・ (日・・ 日・・ 日・・

#### Other four DVS schemes

- Susilo-Zhang-Mu, ACISP 2004, [SZM04]
- 2 Ng-Susilo-Mu, SNDS 2005, [NSM05]
- Shang-Furikawa-Imai, ACNS 2005, [ZFI05]
- Laguillaumie-Vergnaud, ICICS 2004, [LV04b]



A B + A B +

## SZM04 scheme (ID-based strong DVS)

- Setup: master key  $s \in \mathbb{Z}_q$ ,  $P_{pub} \leftarrow sP$ .  $H_{\mathbb{G}} : \{0,1\}^* \rightarrow \mathbb{G}$ ,  $H_q : \{0,1\}^* \rightarrow \mathbb{Z}_q$ .  $params = (q, \mathbb{G}, \mathbb{H}, \langle \cdot, \cdot \rangle, P, P_{pub}, H_{\mathbb{G}}, H_q)$ .
- KeyGen(*param*):  $PK_S \leftarrow H_{\mathbb{G}}(ID_S)$  and  $PK_D \leftarrow H_{\mathbb{G}}(ID_D)$ . secret keys are  $SK_S \leftarrow s \cdot PK_S$  and  $SK_D \leftarrow s \cdot PK_D$ .
- Sign<sub>SK<sub>S</sub>,PK<sub>D</sub></sub>(*m*):  $k \leftarrow \mathbb{Z}_q$ ,  $t \leftarrow \mathbb{Z}_q^*$ , *S* computes  $c \leftarrow \langle \mathsf{PK}_D, P \rangle^k$ ,  $r \leftarrow H_q(m, c)$ ,  $T \leftarrow t^{-1}kP - r \cdot \mathsf{SK}_S$ . The signature is (T, r, t).
- Simul<sub>PK<sub>S</sub>,SK<sub>D</sub></sub>(*m*): *D* generates random  $R \in \mathbb{G}$  and  $a \in \mathbb{Z}_q^*$ , and computes  $c \leftarrow \langle R, \mathsf{PK}_D \rangle \cdot \langle \mathsf{PK}_S, \mathsf{SK}_D \rangle^a$ ,  $r \leftarrow H_q(m, c)$ ,  $t \leftarrow r^{-1}a \mod q$ ,  $T \leftarrow t^{-1}R$ . The simulated signature is (T, r, t).
- Verify<sub>PK<sub>S</sub>,SK<sub>D</sub></sub>( $m, \sigma$ ):  $H_q(m, (\langle T, \mathsf{PK}_D \rangle \cdot \langle \mathsf{PK}_S, \mathsf{SK}_D \rangle^r)^t) = r.$

## Attack on SZM04

<u>First attack</u>. *S* or *D* leaking  $(SK_S, PK_D)$  or  $(PK_S, SK_D)$ . <u>Second attack</u>. *S* discloses  $(k, k \cdot SK_S)$  to *T*, where  $k \leftarrow \mathbb{Z}_q^*$ . Given  $\tilde{m}$  and arbitrary designated verifier *D*, *T* chooses  $R \leftarrow \mathbb{G}$ ,  $a \leftarrow \mathbb{Z}_q^*$  and computes

$$\begin{split} \tilde{c} &\leftarrow \langle R, \mathsf{PK}_D \rangle \cdot \langle k \cdot \mathsf{SK}_S, \mathsf{PK}_D \rangle^{a(k^{-1}+1)}, \\ \tilde{r} &\leftarrow H_q(\tilde{m}, \tilde{c}), \\ \tilde{t} &\leftarrow \tilde{r}^{-1}a \mod q, \\ \tilde{T} &\leftarrow \tilde{t}^{-1}R + \tilde{r}k \cdot \mathsf{SK}_S. \end{split}$$

The simulated signature is  $(\tilde{T}, \tilde{r}, \tilde{t})$ . *D* can verify whether  $H_q(\tilde{m}, (\langle \tilde{T}, \mathsf{PK}_D \rangle \cdot \langle \mathsf{PK}_S, \mathsf{SK}_D \rangle^{\tilde{r}})^{\tilde{t}}) = \tilde{r}$ .

## NSM05 scheme (UDMVS)

- Setup:  $|\mathbb{G}| = |\mathbb{H}| = q$ ,  $\langle \cdot, \cdot \rangle : \mathbb{G} \times \mathbb{G} \to \mathbb{H}$ ,  $H_{\mathbb{G}} : \{0, 1\}^* \to \mathbb{G}$ .  $param = (q, \mathbb{G}, \mathbb{H}, \langle \cdot, \cdot \rangle, P, H_{\mathbb{G}})$ .
- KeyGen(*param*): SK  $\leftarrow \mathbb{Z}_q^*$ , PK  $\leftarrow$  SK  $\cdot P$ .
- Sign<sub>SK<sub>S</sub>,PK<sub> $\vec{D}$ </sub>(*m*):  $\hat{\sigma} \leftarrow SK_{S} \cdot H_{\mathbb{G}}(m), \sigma \leftarrow \langle \hat{\sigma}, \sum_{i=1}^{n} PK_{D_{i}} \rangle$ . Return  $\sigma$ .</sub>
- Verify<sub>PK<sub>S</sub>,PK<sub>p</sub>,SK<sub>p</sub>(m, σ): Each D<sub>i</sub> does the following: compute σ<sub>i</sub> ← SK<sub>Di</sub> · H<sub>G</sub>(m) and send it to other n − 1 verifiers.
  </sub>

After receiving all  $\tilde{\sigma}_j$ ,  $j \neq i$ , validate all  $\tilde{\sigma}_j$  by verifying that  $\langle P, \tilde{\sigma}_j \rangle = \langle \mathsf{PK}_j, \mathcal{H}_{\mathbb{G}}(m) \rangle$  for  $j \neq i, j \in [1, n]$ . Return reject if any of the verifications fails. Return accept if  $\sigma = \prod_{i=1}^{n} \langle \tilde{\sigma}_i, \mathsf{PK}_S \rangle$ , or reject otherwise.

#### Attack on NSM05 scheme

Denote  $P_{sum} := \sum_{i=1}^{n} \mathsf{PK}_{D_i}$ . If signer leaks  $\mathsf{SK}_S \cdot P_{sum}$  to *T*, then *T* can compute

$$\sigma \leftarrow \langle H_{\mathbb{G}}(\textbf{\textit{m}}), \mathsf{SK}_{\mathcal{S}} \cdot \textbf{\textit{P}}_{sum} \rangle = \langle \mathsf{SK}_{\mathcal{S}} \cdot H_{\mathbb{G}}(\textbf{\textit{m}}), \textbf{\textit{P}}_{sum} \rangle = \langle \hat{\sigma}, \textbf{\textit{P}}_{sum} \rangle \ .$$

After receiving  $(m, \sigma)$ , each verifier *i* computes  $\tilde{\sigma}_i \leftarrow SK_{D_i} \cdot H_{\mathbb{G}}(m)$ , and verifies that  $\langle P, \tilde{\sigma}_j \rangle = \langle PK_j, H_{\mathbb{G}}(m) \rangle$  for  $j \neq i, j \in [1, n]$ .

$$\begin{aligned} \sigma &= \langle H_{\mathbb{G}}(m), \mathsf{SK}_{S} \cdot P_{sum} \rangle = \langle \mathsf{SK}_{S} \cdot H_{\mathbb{G}}(m), P_{sum} \rangle = \langle \hat{\sigma}, P_{sum} \rangle \\ &= \prod_{i=1}^{n} \langle \hat{\sigma}, \mathsf{SK}_{D_{i}} \cdot P \rangle = \prod_{i=1}^{n} \langle \mathsf{SK}_{S} \cdot H_{\mathbb{G}}(m), \mathsf{SK}_{D_{i}} \cdot P \rangle \\ &= \prod_{i=1}^{n} \langle \mathsf{SK}_{D_{i}} \cdot H_{\mathbb{G}}(m), \mathsf{SK}_{S} \cdot P \rangle = \prod_{i=1}^{n} \langle \tilde{\sigma}_{i}, \mathsf{PK}_{S} \rangle . \end{aligned}$$

Li, Lipmaa, Pei On Delegatability of Four Designated Verifier Signatures

#### Attack on NSM05 scheme (cont.)

#### Notes.

- all verifiers can cooperate by leaking  $\sum SK_{D_i} \cdot PK_S = SK_S \cdot P_{sum}$ .
- "simple" UDMVS scheme based on UDVS [SBWP03] is delegatable.
- MDVS scheme in [NSM05] is delegatable.



## ZFI05 scheme (UDVS. simplified)

- Setup:  $|\mathbb{G}| = |\mathbb{H}| = q$ ,  $\langle \cdot, \cdot \rangle : \mathbb{G} \times \mathbb{H} \to \mathbb{H}$ , isomorphism  $\psi : \mathbb{H} \to \mathbb{G}$ . Here,  $\mathbb{G}$  is multiplicative. Random generator  $g_2 \in \mathbb{H}$ , compute  $g_1 = \psi(g_2) \in \mathbb{G}$ .  $param = (q, \mathbb{G}, \mathbb{H}, \langle \cdot, \cdot \rangle, \psi, g_1, g_2)$ .
- KeyGen(*param*):  $x, y \leftarrow \mathbb{Z}_q^*$ ,  $u \leftarrow g_2^x$ ,  $v \leftarrow g_2^y$ . PK  $\leftarrow (u, v)$ , SK  $\leftarrow (x, y)$ .
- Sign<sub>SK<sub>S</sub>,PK<sub>D</sub></sub>(*m*):  $r \leftarrow \mathbb{Z}_q^*$ . If  $x_S + r + y_S m \equiv 0 \mod q$ , restart. Compute  $\sigma' \leftarrow g_1^{1/(x_S + r + y_S m)} \in \mathbb{G}$ ,  $h \leftarrow g_2^r$ ,  $d \leftarrow \langle u_D, v_D^r \rangle \in \mathbb{H}$ . Return  $\sigma \leftarrow (\sigma', h, d)$ .

(日)

## ZFI05 scheme (cont.)

- Simul<sub>PK<sub>S</sub>,SK<sub>D</sub></sub>(*m*):  $s \in \mathbb{Z}_q^*$  and compute  $\sigma' \leftarrow g_2^s$ ,  $h \leftarrow g_2^{1/s} u_S^{-1} v_S^{-m}$  and  $d \leftarrow \langle g_1, h \rangle^{x_D y_D}$ . Return  $\sigma \leftarrow (\sigma', h, d)$ .
- Verify<sub>PK<sub>S</sub>,SK<sub>D</sub></sub>(σ', h, d): Output accept if
   ⟨g<sub>1</sub>, g<sub>2</sub>⟩ = ⟨σ', u<sub>S</sub> ⋅ h ⋅ v<sub>S</sub><sup>m</sup>⟩ and d = ⟨u<sub>D</sub>, h<sup>y<sub>D</sub></sup>⟩. Otherwise,
   output reject.



(日)
 (1)

#### Attack on ZFI05 scheme

Designated verifier can compute *d* as  $d \leftarrow \langle g_1^{x_D y_D}, h \rangle$  in simulation algorithm.

The scheme is delegatable by the verifier. (reveal  $g_1^{x_D y_D}$ )



・ロ・ ・ 四・ ・ 回・ ・ 日・

## LV04b scheme (MDVS, 2-DVS)

- Setup:  $param = (q, \mathbb{G}, \mathbb{H}, \langle \cdot, \cdot \rangle, P, H_{\mathbb{G}}).$
- KeyGen(*param*): SK  $\leftarrow \mathbb{Z}_q^*$ , PK  $\leftarrow$  SK  $\cdot P$ .
- Sign<sub>SK<sub>S</sub>,PK<sub>D1</sub>,PK<sub>D2</sub> (*m*): *m* ∈ {0,1}\*, *S* picks (*r*, ℓ) ∈ Z<sup>\*</sup><sub>q</sub> × Z<sup>\*</sup><sub>q</sub>, computes
  </sub>

$$egin{aligned} & u \leftarrow \langle \mathsf{PK}_{D_1}, \mathsf{PK}_{D_2} 
angle^{\mathsf{SK}_{\mathcal{S}}}, \ & \mathcal{Q}_1 \leftarrow \mathsf{SK}_{\mathcal{S}}^{-1}(\mathcal{H}_{\mathbb{G}}(m, u^\ell) - r(\mathsf{PK}_{D_1} + \mathsf{PK}_{D_2})), \ & \mathcal{Q}_2 \leftarrow r\mathcal{P} \end{aligned}$$

The signature is  $\sigma = (Q_1, Q_2, \ell)$ .

• Verify<sub>PK<sub>S</sub>,PK<sub>D</sub>,SK<sub>D<sub>i</sub></sub>(*m*, *Q*<sub>1</sub>, *Q*<sub>2</sub>,  $\ell$ ): *D<sub>i</sub>*(*i*  $\in$  {1,2}) computes  $u \leftarrow \langle \mathsf{PK}_{S}, \mathsf{PK}_{D_{3-i}} \rangle^{\mathsf{SK}_{D_{i}}}$ . Test whether  $\langle Q_{1}, \mathsf{PK}_{S} \rangle \cdot \langle Q_{2}, \mathsf{PK}_{D_{1}} + \mathsf{PK}_{D_{2}} \rangle \stackrel{?}{=} \langle H_{\mathbb{G}}(m, u^{\ell}), P \rangle.$ </sub>

#### Attack on LV04b scheme

Suppose  $D_1$  and  $D_2$  collude to leak  $SK_{D_1} + SK_{D_2}$  to T. Then T picks  $\tilde{r}, \tilde{\ell} \leftarrow \mathbb{Z}_q^*$ , computes

$$\begin{split} \tilde{M} &\leftarrow \mathcal{H}_{\mathbb{G}}(m, \tilde{\ell}), \\ \tilde{Q}_{1} &\leftarrow \tilde{r}\mathcal{P}, \\ \tilde{Q_{2}} &\leftarrow (\mathsf{SK}_{D_{1}} + \mathsf{SK}_{D_{2}})^{-1}(\tilde{M} - \tilde{r} \cdot \mathsf{PK}_{\mathcal{S}}). \end{split}$$

The simulated signature is  $\tilde{\sigma} \leftarrow (\tilde{Q}_1, \tilde{Q}_2, \tilde{\ell})$ .

・ロ・ ・ 四・ ・ 回・ ・ 日・

르

#### Attack on LV04b scheme (cont.)

Verification accepts since

$$\begin{split} \langle \tilde{Q}_{1},\mathsf{PK}_{\mathcal{S}} \rangle \cdot \langle \tilde{Q}_{2},\mathsf{PK}_{D_{1}} + \mathsf{PK}_{D_{2}} \rangle \\ &= \langle \tilde{r}P,\mathsf{PK}_{\mathcal{S}} \rangle \cdot \langle (\mathsf{SK}_{D_{1}} + \mathsf{SK}_{D_{2}})^{-1} (\tilde{M} - \tilde{r} \cdot \mathsf{PK}_{\mathcal{S}}), \mathsf{SK}_{D_{1}}P + \mathsf{SK}_{D_{2}} \cdot P \rangle \\ &= \langle \tilde{r}P,\mathsf{PK}_{\mathcal{S}} \rangle \cdot \langle (\mathsf{SK}_{D_{1}} + \mathsf{SK}_{D_{2}})^{-1} (\tilde{M} - \tilde{r} \cdot \mathsf{PK}_{\mathcal{S}}), P \rangle^{\mathsf{SK}_{D_{1}} + \mathsf{SK}_{D_{2}}} \\ &= \langle \tilde{r}P,\mathsf{PK}_{\mathcal{S}} \rangle \cdot \langle \tilde{M} - \tilde{r} \cdot \mathsf{PK}_{\mathcal{S}}, P \rangle \\ &= \langle \tilde{M}, P \rangle \cdot \langle \tilde{r} \cdot \mathsf{PK}_{\mathcal{S}}, P \rangle \cdot \langle -\tilde{r} \cdot \mathsf{PK}_{\mathcal{S}}, P \rangle \\ &= \langle \tilde{M}, P \rangle \ . \end{split}$$

<ロ> <同> <同> < 回> < 回> < □> < □> <

TOIS

-2

#### Attack on LV04b scheme (cont.)

#### Notes.

- The above attack can also be treated as two-party simulation algorithm if D<sub>1</sub> and D<sub>2</sub> execute it themselves.
- require that two parties D<sub>1</sub> and D<sub>2</sub> compute SK<sub>D1</sub> + SK<sub>D2</sub> together.
- third party can simulate the signature of any signer w.r.t. a fixed designated verifier or a fixed pair of designated verifiers. (LV04b, ZFI05 scheme)



## Attack I & II

# Either the signer or one of the designated verifiers can delegate the signing rights to a third party *T* without disclosing his or her secret key.



Li, Lipmaa, Pei On Delegatability of Four Designated Verifier Signatures

(a)

## Attack I & II

#### Attack I

Either the signer or one of the designated verifiers can delegate the signing rights to a third party T without disclosing his or her secret key.



(日)

## Attack I & II

#### Attack I

Either the signer or one of the designated verifiers can delegate the signing rights to a third party T without disclosing his or her secret key.



Li, Lipmaa, Pei On Delegatability of Four Designated Verifier Signatures

< < > < < > >

## Attack I & II

#### Attack I

Either the signer or one of the designated verifiers can delegate the signing rights to a third party T without disclosing his or her secret key.

One of the designated verifiers (or even only the coalition of all verifiers) can delegate the signing right to a third party without disclosing his or her secret key, while the signer cannot do it.



I I I I

< 口 > < 戶

## Attack I & II

#### Attack I

Either the signer or one of the designated verifiers can delegate the signing rights to a third party T without disclosing his or her secret key.

#### Attack II

One of the designated verifiers (or even only the coalition of all verifiers) can delegate the signing right to a third party without disclosing his or her secret key, while the signer cannot do it.



## Attack I & II

#### Attack I

Either the signer or one of the designated verifiers can delegate the signing rights to a third party T without disclosing his or her secret key.

#### Attack II

One of the designated verifiers (or even only the coalition of all verifiers) can delegate the signing right to a third party without disclosing his or her secret key, while the signer cannot do it.



(I)

#### Verifier-only delegatability

#### Definition

(informally) *n*-DVS scheme  $\Delta$  is *verifier-only* delegatability if it is delegatable but it cannot be delegated by the signer without leaking signer's secret key.





- Formal definition of n-DVS.
- Attacks on four DVS schemes. (all DVS schemes based on bilinear maps are delegatable.)
- More varied delegation attacks:
  - fixed signer w.r.t. fixed designated verifiers,
  - any signer w.r.t. fixed designated verifiers,
  - fixed signer w.r.t. any designated verifiers.
- New weaker notion of delegatability



A B + A B +

## Thank You! Q & A



Li, Lipmaa, Pei On Delegatability of Four Designated Verifier Signatures

<ロ> <同> <同> < 回> < 回> < □> < □> <