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Abstract. We analyze an efficient parallelizable commitment scheme
that is statistically binding and computationally hiding under a variant
of the decisional Ring-LPN assumption, conjectured to be secure against
quantum computers. It works over medium-size binary finite fields, with
both commitment and verification being dominated by 38 finite field mul-
tiplications. Such efficiency is achieved due to a precise analysis (that
takes into account recent attacks against LPN) of underlying parame-
ters. We report an initial parallel implementation by using the standard
OpenCL library on three different platforms. On the AMD Radeon HD
7950 GPU, one can commit to 1024-bit messages in 1 bit per 104.7 cy-
cles. We consider the analysis (which results in concrete parameters that
subsequent work can try to falsify) together with the implementation the
two most important aspects of the current work.

Keywords: commitment schemes, GPU implementation, learning par-
ity with noise, postquantum

1 Introduction

A commitment scheme allows Alice to send a hidden value to Bob, so that she
can later open the commitment only to the original value (the binding property),
while before the opening the committed value stays hidden from Bob (the hid-
ing property). Being one of the most basic public-key primitives, commitment
schemes play an important role in the design of various cryptographic protocols.
E.g., to achieve security against malicious participants, a participant can first
commit to his inputs, and then present a zero-knowledge proof of correct behav-
ior on the committed data. To not hinder real-life use, apart from being secure,
a commitment scheme should also be highly efficient.

Probably the best known commitment scheme is the Pedersen scheme [15],
computationally binding under the discrete logarithm assumption. However, the
discrete logarithm assumption can be broken by using quantum computers.
It is desirable to design postquantum commitment schemes, i.e., commitment
schemes, secure against quantum computers. Such schemes can be used to de-
sign postquantum cryptographic protocols.

Moreover, one is interested in the design of lightweight postquantum commit-
ment schemes. Here, by lightweight we mean real efficiency on (readily) avail-
able laptop or desktop computers. Existing commitment schemes are usually
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not lightweight. For example, the Pedersen commitment scheme requires a com-
mitter to execute two exponentiations, and is thus not very efficient. Moreover,
to achieve reasonable efficiency, Pedersen commitment scheme has to be imple-
mented over well-chosen elliptic curves, by using far from mundane implementa-
tion techniques. (See, e.g., [7].) This makes implementation (and its verification)
itself a burdensome process.

Currently, more and more computationally intensive tasks are done by GPU-s
(graphics processors) that can solve many parallelizable computational problems
much faster than the CPU-s. Most of the conventional (public-key) cryptographic
primitives have not been designed with such architectures in mind. Thus, it is
becoming necessary to design cryptographic primitives that are fast on SIMD
(Single Instruction Multiple Data) architectures, implemented by modern GPU-
s. At the current moment, even relatively cheap laptops have GPU-s that offer
computational power vastly superior to the CPU-s. We expect this trend to
continue in the future. Given quick advances in technology, in a few years such
GPU-s will become available on tablets and smartphones.

Two most promising directions to achieve security against quantum comput-
ers seem to be (closely intertwined) lattice-based and code-based cryptography.
Based on lattices, it is known how to implement very many functionalities (in-
cluding, say, fully-homomorphic encryption), though often not efficiently enough
for practice. Using code-based cryptography, it is known how to implement a
somewhat smaller number of functionalities, but often very efficiently.

One of the most interesting code-based assumptions is learning parity with
noise (LPN, [2]). Based on LPN and its variants, it is known how to design
efficiently various symmetric primitives and protocols. Especially promising are
ring-based variants of such protocols, first considered in [10]. However, design
of similarly efficient public-key primitives is seriously lagging, and even recent
approaches, like public-key cryptosystems based on the decisional transposed
ring-LPN (TRLPN) assumption [8], are not yet sufficiently efficient.

We propose a new lightweight statistically binding and quantum-secure com-
putationally hiding commitment scheme. While the new commitment scheme
is a variant of some previous commitment schemes [11], we provide a much
more precise analysis of the security parameters than given in previous work. In
particular, we take into account recent attacks [9]. We also provide a partially
optimized implementation on contemporary GPU-s.

Let R = Z2[X]/(f(X)) be binary finite field, where f(X) is a degree-n
irreducible polynomial. We commit to m ∈ R, by using a randomizer (r, e) ∈ R2

and a public key (M ,R) ∈ R19×2. The commitment is equal to Mm⊕Rr⊕ e,
where the noise e comes from a capped Bernoulli distribution (see Sect. 2) with
parameter τ ≈ 0.128118. (See the analysis in Sect. 4.)

We show that the new commitment scheme is binding if and only if the
additive noise e is sufficiently small (in the sense of the `1-norm). This follows
from a generalization and a careful analysis of the Gilbert-Varshamov bound to
the finite field, where one of the steps in the generalization crucially depends on
the fact that R is a field. On the other hand, if the added noise is too small, then
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the decisional TRLPN problem of Damg̊ard and Park [8] becomes easy and thus
the commitment scheme is not hiding. (This follows from the existing attacks
against the LPN problem, see [9] and the references therein.) Hence, we have to
choose the underlying parameters carefully, so that the commitment scheme be
both binding and hiding yet efficient.

We recommend parameters (e.g., n = 1024 and τ = 0.128118, that offers 140-
bit security against known attacks, see Sect. 4) under which the new commitment
scheme is statistically binding and computationally hiding. The proposed value
of τ depends on several factors, including the loss of security due to the use of
capped Bernoulli lemma, the preciseness of the Gilbert-Varshamov bound, and
intricate details on the best known attacks against LPN [9].

Interestingly, the new commitment scheme is significantly more efficient than
the most efficient known public-key cryptosystems [8] based on the same assump-
tion. In the case of known public-key cryptosystems [8] the degree n (at least
10 000 bits1 compared to 1 024 bits at the same security level) of the polyno-
mial f is significantly higher than in our case. This can be compared to the
case of discrete logarithm-based schemes, where there is only minimal difference
in the efficiency between commitment schemes (e.g., Pedersen) and public-key
cryptosystems (e.g., Elgamal). We leave it as an open question whether there is
some intrinsic reason behind this.

The new commitment scheme is a ring-LPN based variant of previous LPN-
based commitment schemes [13,11]. However, using a different assumption (ring-
LPN) requires establishing concrete security parameters. As we will see in this
paper, the choice of parameters under which this scheme is both secure under
existing attacks yet efficient is far from being trivial. In comparison, [11] does
not analyze concrete parameters at all and thus can be seen as being rather
theoretical in its approach. Some of their choices (e.g., N = K where N and
K are the two main parameters of the LPN assumption) are applicable also in
our case but they would make the new scheme unnecessarily inefficient. Finally,
in the case where the best known attacks will be improved, one can use our
methodology to increase some of the parameters of the new commitment scheme.

Given our security analysis, both commitment and verification are dominated
by 38 binary finite field multiplications in a medium-size field, with n = 1024.
This can be compared to say Pedersen commitment, where one has to execute
exponentiations in an elliptic curve group defined over a smaller finite field group
(e.g., over Fp, with log2 p ≈ 256). Apart from the obvious efficiency benefits,
implementing of the new scheme from scratch is also much easier, partially since
one can avoid learning the intricacies of elliptic curves.

To emphasize both on the parallelizability and the conceptual simplicity of
the new commitment scheme, we finish the paper with a description of an initial,
very simple, implementation. This implementation is not of industrial strength,
but is mostly just provided to give a rough idea of achievable speed. More pre-
cisely, we implemented both a matrix-to-vector multiplication and a finite field

1 This estimate, given in [8], does not account for the recent attacks [9,4]. According
to [4], the key length of the public-key cryptosystem of [8] should be even larger.
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multiplication over the finite field F21024 . In addition, one can reuse extensive
literature on the fast implementations of finite field multiplications: while we
focused on the simplicity of the implementation, we are sure that up-to-date al-
gorithms achieve better efficiency. The timings, reported in Tbl. 1, should then
be multiplied by 38 (plus a small epsilon to account for finite field additions) to
obtain the timings of both commitment and verification.

Our implementation uses the OpenCL standard for parallel programming.
We tested this implementation on a rather mediocre2 NVIDIA Quadro 2000M
GPU (available in medium-class laptops), on a modern AMD Radeon HD 7950
GPU, and on the Intel i7-2860QM CPU, the results are summarized in Tbl. 1.

As shown in Sect. 5, since the HD 7950 implementation only utilizes 272 cores
out of 1792, one can implement on average 1792/272 ≈ 6.59 binary finite field
multiplications in parallel. Since one commitment requires 38 multiplications, in
average one can schedule 1792/272/38 ≈ 0.173 commitments of 1024-bit mes-
sages per execution. Thus, one can commit to 1 bit per 18,488.6/(0.173 ·1024) ≈
104.7 cycles on the AMD GPU. (See Tbl. 1 for the origin of the number 18,488.6.)
We emphasize that this is the peak throughput number, given full pipelines and
optimal scheduling and that at this moment, this is only an estimation. We pro-
vide an efficiency comparison with the Pedersen commitment scheme in Sect. 5.

2 Preliminaries

By default, all vectors are column vectors. For a ∈ Zn2 , let a[i] be its ith coordi-
nate. Thus, a = (a[1], . . . ,a[n]). For a vector a ∈ Zn2 , let ||a||1 =

∑
a[i] = ]{i :

a[i] 6= 0} be its Hamming weight. For a set A, a
r← A means that a is uniformly

picked from A, and for a randomized algorithm A, a
r← A means that a is uni-

formly picked by A. Let κ be the computational security parameter, and let λ
be the information-theoretical security parameter. In practice, one can assume
that κ = 128 and λ = 40. We give κ and λ as unary inputs (denoted by 1κ and
1λ) to some of the algorithms.

A commitment scheme enables a party to commit to a message, and open
it later to the same value. On the one hand, the commitment must hide the
message. On the other hand, the committer should not be able to open the com-
mitment to anything else but the original message. More formally, a commitment
scheme (in the public parameters model) is a tuple of three efficient algorithms,
gen, com and ver. The algorithm gen(1κ, 1λ) generates public parameters gk for
the commitment scheme. After that, the randomized algorithm comgk(m; ·) com-

mits to a message m by picking a uniformly random randomizer r
r← R (here, R

is a randomizer set specified by the commitment scheme and κ) and outputting
(y, z)← comgk(m; r). Here, y is the commitment to m, while z is the decommit-
ment value. It is usually required that one can efficiently reconstruct m from z.

2 This GPU is more than 35 times slower than the fastest GPU-s in the market, ac-
cording to https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison

(accessed in June 2015).

https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
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The verification algorithm ver verifies that z is the correct decommitment of y,
i.e., vergk(y, z) outputs either 1 or 0. It is required that vergk(comgk(m; r)) = 1
for all valid gk, m and r.

A commitment scheme is statistically binding if with probability 1 − κ−ω(1)

over the choice of gk, for any m1 6= m2, r1 and r2, if (yi, zi) = comgk(mi; ri)
then y1 6= y2. A commitment scheme is computationally hiding if, given y, it
is computationally difficult to infer any information about m. More precisely,
the commitment scheme (gen, com, ver) is computationally hiding, if for any non-
uniform probabilistic polynomial time stateful adversary A, the following value
is negligible in κ:∣∣∣∣∣Pr

[
gk← gen(1κ, 1λ), (m1,m2)← A(gk), α

r← {1, 2}, r r← R :

A(comgk(gk,mα; r)) = α

]
− 1

2

∣∣∣∣∣ .
An [N,K] code C over a finite alphabet Σ is a subset of ΣN . The elements of

C are the codewords of C. If |Σ| = q, C is called a q-ary code. Associated with
a code is an encoding map E that maps the message set ΣK to ΣN . The code
is then the image of the encoding map, and it is said to be of length N and rank
K. An [N,K] code is called linear if any linear combination of its codewords is
also a codeword. A generator matrix R of a linear [N,K] code is a N×K matrix
whose rows form a basis of the code. The (minimum) distance D of code C is
the minimal Hamming distance between two distinct codewords of C. An [N,K]
code with a minimal distance D is known as an [N,K,D] code. For arbitrary
linear code C, its minimum distance equals the minimum Hamming weight of a
nonzero codeword of C (see Proposition 2.1, [16]). According to the Singleton
bound, N −K + 1 ≥ D. According to the Gilbert-Varshamov bound, a random
[N,K] code has distance that matches the Singleton bound.

The code C has covering radius [6] dC when the distance between C and any
element of ΣN is not more than dC . An [N,K,D]dC covering code is a linear
code with parameters [N,K,D] and covering radius dC . Denote % = dC/N . The

best possible covering radius dC satisfies the sphere-covering bound
∑dC
i=0

(
N
i

)
≥

2N−K [6], or alternatively 2K ≥ 2N/|BN (dC)| ≥ 2(1−H2(%))N , where H2(p) =
−p log2 p− (1− p) log2(1− p), p ∈ [0, 1], is the binary entropy function.

For N ∈ N+, let χN be a distribution over ZN2 . Let K < N be another
positive integer. The decisional (χN , N,K)-LPN problem [2] is (t, ε)-hard if for
every distinguisher D of size t:∣∣∣∣ Pr

R,s,e
[D(R,Rs⊕ e) = 1]− Pr

R,r
[D(R, r) = 1]

∣∣∣∣ ≤ ε ,
where R

r← ZN×K2 , s
r← ZK2 , e

r← χN , and r
r← ZN2 . D also has access to the

description of χN .
In the standard definition of the decisional LPN problem, the error distribu-

tion χN is the Bernoulli distribution with a parameter 0 < τ < 1/2, i.e., every
bit e[i] is chosen independently and identically distributed with Pr[e[i] = 1] = τ .
In this case, we write χN = BerNτ . The decisional (BerNτ , N,K)-LPN problem is
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closely related to the long-standing open problem of efficiently decoding random
linear codes, and — assuming N = Θ(K) like in the current paper — is believed
to be hard even in the presence of quantum computers. Moreover, the search
(given Rs⊕ e, compute s) and the decision version of the LPN assumption are
known to be polynomially equivalent [12]. The first subexponential algorithm to
solve the (search) LPN was proposed in [3]. The most efficient currently known
attack is by Guo, Johansson, and Löndahl [9].3

Consider a coin that shows heads with probability τ and tails with probability
1 − τ . The Hoeffding inequality states that the probability that N coin tosses
yields heads at least (τ + ε)N times is at most 1− exp(−2ε2N). I.e., if a random
variable comes from the Bernoulli distribution with parameter τ , then by the
Hoeffding inequality it is larger than τ∗N with probability 2−λ, where

τ∗ := τ +

√
λ

2 log2 e ·N
. (1)

Thus, when working with the decisional LPN assumption, one can always assume

that ||e||1 ≤ τ∗N . Following [11], we denote by Ber
N

τ the corresponding capped

Bernoulli distribution, and by (Ber
N

τ , N,K)-LPN the resulting assumption. I.e.,

e
r← Ber

N

τ means that e is first chosen according to BerNτ . If ||e||1 > τ∗N ,
one resamples e again until its norm becomes not greater than τ∗N . Clearly,

(Ber
N

τ , N,K)-LPN is difficult iff (BerNτ , N,K)-LPN is difficult; see [11].

Heyse et alt. [10] proposed a ring variant of the decisional LPN assumption.
A variant of it, TRLPN, was defined by Damg̊ard and Park [8]. Consider the
ring R = Z2[X]/(f(X)), where f is some degree n irreducible polynomial over
Z2[X]. (See [10] for a treatment in the case f is reducible.) The elements of R
are thus degree-n polynomials over Z2[X], with their addition and multiplication

defined modulo f . Define ||m||1 :=
∑n−1
i=0 mi, and for a vector e ∈ Ra for some

a, let ||e||1 :=
∑a
i=1 ||ei||1 be its `1-norm.

For a polynomial ring R = Z2[X]/(f(X)), let BerRτ denote the distribution
over polynomials from R, where each of the coefficients of the polynomial is
drawn independently from Berτ . For N with n | N , the capped Bernoulli distri-

bution Ber
R,N/n

τ is defined in a natural way: one first chooses a
r← Ber

N

τ , and

then outputs e, where ei ←
∑n−1
j=0 a(i−1)n+j+1X

j for 1 ≤ i ≤ N/n.

Let N > K, and let ψ be a distribution on ZN×K2 . The decisional
(χN , N,K;ψ)-LPN problem [8] is defined exactly as the decisional (χN , N,K)-
LPN problem, except that R is drawn from ψ. Now, for a ring element
r =

∑n−1
i=0 riX

i ∈ R, let vec(r) be the natural isomorphic mapping of its coeffi-
cient vector to Zn2 , that is, vec(r)[i] = ri−1. For r ∈ R, we define mat(r) ∈ Zn×n2

to be the matrix for which mat(r)> · vec(r′) = vec(r · r′) for all r′ ∈ R. The ith
column vector of mat(r) is equal to vec(rXi−1), mat(r)(i) = vec(rXi−1).

3 In a recent eprint, [4] made the complexity analysis of [9] somewhat more precise.
However, since it is currently only an eprint, we will ignore its analysis.
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Let K = 2n and N > K be such that n | N . Let ΨR,N,K denote the distribu-
tion over ZN×K2 , whose samples consist of (N/n)×2 square matrices from Zn×n2 ,
where each square matrix is individually sampled as mat(r) for uniformly random

r
r← R. As in [8], we call the decisional (χN , N,K;ΨR,N,K)-LPN problem the

decisional transposed ring-LPN (TRLPN) problem. More precisely, in TRLPN,
the adversary has access to (f, τ,R,y), and has to guess whether y = Rx ⊕ e,
for random x and a small-weight e, or y is random.

The decisional TRLPN problem is motivated by the fact that if A = mat(a)
and b = vec(b), then A>b = mat(a)>vec(b) = vec(a·b) can be computed by using
a single ring multiplication, that depending on the choice of f can be computa-
tionally more efficient than a general matrix-vector product. More importantly,
instead of communicating 2N/n matrices A ∈ Zn×n2 as the public key, it suffices
to communicate 2N/n ring elements, and memory requirements of all relevant
algorithms will be reduced by a factor of n. See [10] for more motivation.

The difficulty of the TRLPN problem is positively correlated with the pa-
rameters n and τ . Since the efficiency mainly depends on n, one should choose
as small n as possible such that there still exists a τ > 0 so that the constructed
primitive or protocol is secure. For an efficient implementation, it is also desirable
that n is a power of 2.

For a ring R = Z2[X]/(f(X)), let tR× denote the computational complexity
of one ring multiplication (as a function of f and thus also of n).

3 Ring-LPN Based Commitment Scheme

In [11], the authors proposed an LPN-based commitment scheme. We follow a
route that is common both in coding theory (in the context of cyclic codes)
and cryptography (in the context of lattices but also LPN [10]), by embedding
vectors from Zn2 to the ring Z2[X]/(f(X)), where f is a well chosen (irreducible)
degree-n polynomial. This enables to replace matrices with ring elements, and
matrix-to-vector multiplications with ring multiplications. The most intricate
part of the construction is its choice of parameters, coupled by a precise analysis
of their correctness. The commitment scheme is given in Fig. 1.

We recall that the distribution ΨR,N,K is defined over N × K matrices. In
particular, the expected value of ||e||1 is equal to τ ·N , and thus by the Hoeffd-
ing inequality, ||e||1 ≤ D′ with a high probability. For efficiency purposes, one
should choose an irreducible f(X) with a minimal number of non-zero monomi-
als. Clearly, the commitment algorithm computes (M ,R) · (m, r)> ⊕ e.

Before stating Thm. 1 about the security of the commitment scheme, we first
establish some technical lemmas. The first lemma motivates the stated lower
bound β ≥ d2/(1− 2τ∗)e. Intuitively, we have an [N,K,D] code for K as in the
definition of the protocol, and D = 2τ∗N+1 as in Thm. 1. The Singleton bound
gives us the following lower bound on N . This result is also necessary since
there is a mutual dependency between τ∗ (given in Eq. (1)) and N (defined in
the commitment scheme). In an actual implementation, one should set N to be
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Public Parameters Generation gen(1κ, 1λ): generate TRLPN parameters n and
τ > 0. Let τ∗ be as in Eq. (1). Let K = 2n and N = βn for some integer
β ≥ d2/(1− 2τ∗)e. Define D′ := bτ∗ ·Ne. Choose a suitable degree-n irreducible
polynomial f , and let R := Z2[X]/(f(X)). Choose uniformly random M

r← RN/n

and R
r← RN/n. Output gk := (f, τ,M ,R).

Commitment comgk(m; ·, ·): If m 6∈ R, then reject. Choose random r
r← R and e

r←
Ber

R,N/n
τ . Output comgk(m; r, e) = (y, z)← (Mm⊕Rr⊕e, (m, r)) with y ∈ RN/n.

Verification vergk(y, z = (m, r)): reject if y 6∈ RN/n, m 6∈ R, or r 6∈ R. Otherwise,
compute e← y ⊕Mm⊕Rr, and accept iff ||e||1 ≤ D′.

Fig. 1. The commitment scheme

equal to the smallest multiplier of n greater or equal than the bound computed
in Lem. 1, and only then compute τ∗ from it according to Eq. (1).

Lemma 1. Consider τ < 1/2, τ∗ < 1/2 as in Eq. (1), K = 2n, and
D = 2τ∗N + 1. Then in any [N,K,D] code, N ≥ 2

1−2τ∗ · n = 2
1−2τ · n −

(
√

4n(1− 2τ)λ ln 2 + λ2 ln2 2− λ ln 2)/(1− 2τ)2. If n | N , then N ≥ 3n.

Proof. By the Singleton bound, N ≥ K + D − 1. Due to the choice of K and
D, this means that N ≥ 2n + 2τ∗N , and thus the minimum choice for N is
N = 2

1−2τ∗ · n. Combining this value of N with τ∗ as in Eq. (1), after solving a

quadratic equation (1−2τ)N
√

2 log2 e−2
√
λN−2n

√
2 log2 e = 0, and taking the

smaller of two solutions,
√
N = (

√
λ ln 2−

√
λ ln 2 + 4n(1− 2τ))/

(√
2(1− 2τ)

)
,

we get the first claim of the current lemma. The second claim (i.e., that if n | N
then N ≥ 3n) follows, since τ > 0. ut

One can take any value of N , n | N , that satisfies this lemma. To improve on
efficiency, we recommend to choose N to be first integer larger than K/(1−2τ∗)
that divides by n. In practice, since we have τ∗ ≤ 1/4, we can always take
N = 2K. However, when τ∗ ≤ 1/6, we only need N ≥ 3·2n

2 = 3n while K = 2n.
Thus, in a paradoxical manner, a smaller τ∗, and thus a smaller τ , may help to
improve the efficiency of this commitment scheme. However, as we will see later,
such a small value of N would collapse the security for other reasons.

We show next that this commitment scheme is binding if the following prob-
ability GVR (the Gilbert-Varshamov bound for finite fields; a variant of the well-
known Gilbert-Varshamov bound) is (say) 1− 2−λ.

Definition 1. Let f be a degree-n polynomial that is irreducible over Z2. As-
sume that R = Z2[X]/(f(X)) and 0 < D ≤ N−K+1. Let (R2)∗ denote R2\02,
where 0 ∈ R. Define

GVR(N,K,D) := min
x∈(R2)∗

Pr
A
r←R(N/n)×2

[||A · x||1 ≥ D] .

We bound GVR under the assumption that f is irreducible. The following lemma
basically states that a random linear code with a generator matrix, distributed
according to ΨR,N,K , meets the Singleton bound with a very high probability.
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Lemma 2. Let N = βn for an integer β ≥ 2, K = 2n, and D be as in the
commitment scheme of Sect. 3 such that D < N/3 + 2. Assume that 0 < D ≤
N −K + 1. Then

GVR(N,K,D) ≥ 1− 2−n(β−β(H2((D−2)/(βn))+2))+1 .

Proof. For some x ∈ (R2)∗, denote S := Pr
A
r←Rβ×2 [||A · x||1 ≤ D − 1]. Since

R is a field, every non-zero element of it is irreducible. (Here we need R to be
a field.) Thus, for any non-zero m ∈ R and any yi ∈ R, i ∈ {1, β}, j ∈ {1, 2},
Pr

Aij
r←R

[Aijm = yi] = Pr
Aij

r←R
[Aij = m−1yi] = 1

2n . Thus, since A is chosen

uniformly, x 6= 02 and the vector consisting of uniformly chosen coordinates is
uniformly chosen, then also y = Ax is uniformly random.

Now, we estimate S as the number of all y ∈ Rβ with ||y||1 ≤ D− 1 divided
by the ring size |Rβ |. For y ∈ Rβ , let y∗ ∈ ZN2 be its canonical representation
as a bit-vector, i.e., y∗in+j = yi[j]. Clearly, ||y||1 = ||y∗||1. Thus, we need to

find S, the number of all y∗ ∈ ZN2 with ||y∗||1 ≤ D − 1, which is equal to∑D−1
j=1 Sj , where Sj = |{y∗ : ||y∗||1 = j}| =

(
N
j

)
is the number of vectors from

ZN2 that have exactly j non-zero coefficients. In other words, S = BN (D−2)/2N ,
where BN (D − 2) is the size of the Hamming ball of radius D − 2. Then using
the following well-known bound for the sum of the first k binomial coefficients
for fixed t, 0 ≤ k ≤ t/2, Bt(k) =

∑k
i=0

(
t
i

)
≤
(
t
k

)
(1 + k/(t − 2k + 1)), since

D < N/2 + 2 (this follows from D < N/3 + 2 that we made) we obtain S =
BN (D − 2)/2N ≤ 1

2N
·
(
N
D−2

)
· (1 + (D − 2)/(N − 2D + 5)). Using the Stirling

approximation of the factorial, it is easy to see that for every 0 ≤ α ≤ 1 it
holds that limt→∞

1
t log2

(
t
αt

)
= H2(α) while log2

(
t
αt

)
≤ tH2(α), where H2(p) =

−p log2 p− (1−p) log2(1−p), p ∈ [0, 1], is the standard binary entropy function.
Thus

(
t
k

)
≤ 2tH2(k/t), and we obtain that

S ≤ 2N ·H2((D−2)/N)

2N
·
(

1 +
D − 2

N − 2D + 5

)
. (2)

Since by assumption D < N/3 + 2, we may replace 1 + D−2
N−D+5 with 2, thus

obtaining S ≤ 2N H2((D−2)/N)−N+1.
Now a union bound over all non-zero x implies that for all messages x, it holds

that PrA[||A · x||1 ≤ D − 1] ≤ 22n2N H2((D−2)/N)−N+1, and GVR(N,K,D) ≥
1− 2−N(1−H2((D−2)/N))+2n+1. ut

We comment that we made only three approximations: the first one to bound
the sum of binomial coefficients, the second one to bound a binomial by using its
Stirling approximation, and then bounding a fraction in Eq. (2) by 2. All three
approximations are very tight in their regions.

Theorem 1. Consider the ring R = Z2[X]/(f(X)) for an irreducible degree-n
polynomial f . Let D = 2D′+ 1, where D′ is as in the description of the commit-
ment scheme Γ of the current section. Γ is statistically binding with probability

GVR(N,K,D). If the decisional (Ber
R,N/n

τ , N,K;ΨR,N,K)-LPN problem (i.e., a
TRLPN problem) is (t, ε)-hard, then Γ is (t−Θ(tR×), 2ε)-computationally hiding.
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Proof. Statistical binding: assume that for (yj , zj) = comgk(mj ; rj , ej)
where j ∈ {1, 2}, y1 = y2. Thus, (M ,R) · (m1 ⊕ m2, r1 ⊕ r2)> = e1 ⊕ e2.
Since (m1, r1) 6= (m2, r2), with probability GVR(N,K,D), ||e1 ⊕ e2||1 ≥ D.
However, ||e1 ⊕ e2||1 ≤ ||e1||1 + ||e2||1 ≤ D′ +D′ < D. Contradiction with the
choice of N .

Computational hiding: Assume by contradiction that A = Ahiding is a
time tA adversary that can break the hiding property of the new commitment
scheme with probability 1/2 + εA for some εA > 0. We construct the following
adversary B = Blpn that breaks the decisional LPN assumption with the help of
A in related time, with probability 1/2 + εA/2. From this, the claim follows.

1. The challenger first generates the parameters (f, τ). She sets β
r← {1, 2}. If

β = 1, then she sets y ← Rr⊕ e for R
r← RN/n, r

r← R and e
r← Ber

R,N/n

τ .

Otherwise, she sets R
r← RN/n and y

r← RN/n. She sends (f, τ,R,y) to B.

2. B creates M
r← RN/n. He sends gk← (f, τ,M ,R) to A.

3. Given input gk, A sends to B a challenge pair (m1,m2).

4. B picks α
r← {1, 2}. He sends Mmα ⊕ y to A. A answers with α′.

5. If α = α′ (A guessed correctly), then B outputs β′ ← 1 (guesses that β = 1),
otherwise B outputs β′ ← 2 (guesses that β = 2).

Clearly, the computation of B is dominated by tA+N/n · tR× , where tR× denotes
the computational complexity of one ring multiplication. Here, N/n · tR× enters
from the computation of the vector-to-scalar-product M ·mα.

If β = 1, then Mmα ⊕ y = Mmα ⊕ Rr ⊕ e, which is a valid output of
comgk(mα; r, e), and by assumption on A, A can guess α from this with proba-
bility 1

2 + εA. If β = 2, then M ·mα ⊕ y is uniformly random (and thus does
not depend on α), and thus A can guess α from this with probability 1

2 . By a
standard argument, Pr[β′ = β] = Pr[β′ = β|β = 1] Pr[β = 1] + Pr[β′ = β|β =
2] Pr[β = 2] = Pr[β′ = 1|β = 1] · 1

2 + Pr[β′ = 2|β = 2] · 1
2 = Pr[α = α′|β =

1] · 1
2 + Pr[α 6= α′|β = 2] · 1

2 =
(

1
2 + εA

)
· 1

2 + 1
2 ·

1
2 = 1

2 + εA
2 . Thus, B breaks the

decisional LPN assumption with probability 1/2 + εA/2 in time that is domi-
nated by tA +N/n · tR× operations. ut

4 Recommended Parameter Choices

To achieve binding, we must assume that the parameters n and τ (and thus also
D) are chosen so that GVR(N,K,D) ≥ 1− 2−λ. On the other hand, to achieve
computational hiding, n and τ are such that the decisional TRLPN problem
is (κω(1), κ−ω(1))-hard. Since the complexity of the best known attacks [9,4] de-
pends intimately on the choice of several internal variables, we used the following
strategy. We computed for every β from 10 to 25 (where N = βn as before), the
value of D such that Lem. 2 returns an upper bound 2−λ ≤ 2−40. We then found,
for this D, the minimum value of β for which the attack of [9] has computational
complexity of at least 2130 bit operations; this fixes also the maximum value of
τ∗ = D/(2βn) and thus of τ .

We now give more details. The most efficient known attack against LPN was
recently published in [9]. This attack uses covering codes. Assume that we have
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an [n′′, `]dC covering code, for certain parameters n′′ and `. As in [9], assume that

dC is the smallest integer, such that
∑dC
i=0

(
n′′

i

)
> 2n

′′−`. The latter optimistic
estimate comes from the sphere-covering bound (i.e., assuming that there is a
perfect [n′′, `] code with covering radius dC). In reality, for most of the values
n′′ it is not known how to construct such codes; thus, in practice, the attack
from [9] has worse complexity than we estimate in what follows.

In bit operations, the computational complexity of the attack from [9] is
2fn,τ (q,a,t,b,w0,w1,`,n

′′), where

fn,τ (q, a, t, b, w0, w1, `, n
′′) := Tpre+

aqn+ (n+ 1)tq +m
∑w0

i=0

(
n′−n′′
i

)
i+ (n′′ − `)(2m+ 2`) + `2`

∑w0

i=0

(
n′−n′′
i

)
Pr(w0, n′ − n′′) · Pr(w1, n′′)

.

(3)

Here Tpre is the precomputation time of the Four Russian Matrix Inversion
algorithm [1], the rest is the complexity of five-step LPN solving algorithm using
covering codes [9]. Here (n, τ) are parameters of the LPN instance, q is the

number of queries, m = q − n− t2b, and q satisfies q − t2b > 1/(ε2t+1 · (ε′)2w1),
where ε = 1− 2τ , ε′ = 1− 2dC

n′′ . The lower bound for q is due to the fast Walsh-
Hadamard transform used in the solving phase of the algorithm from [9]. The
probability Pr(w, j) =

∑w
i=0(1−τ)j−iτ i

(
j
i

)
expresses the possibility of having at

most w errors in j positions, therefore the denominator of Eq. (3) is the success
probability in one iteration. See [9,4] for detailed explanation of the parameters.
The only value that directly depends on dC is ε′, and the latter only gives a
lower bound on q − t2b.

We note that [9,4] did not add the term Tpre to the computational complexity.

According to [1] (page 145), Tpre =
∑a−1
i=0 (3 · 2s − 4)(n− is− s) = − 1

2a(3 · 2s −
4)(as− 2n+ s) in the case of a n× n matrix, where s is a parameter such that
a = dn/se. Assuming a = n/s, Tpre ≈ 1.5 · 2n/a(a− 1)n, and thus for any given
n we can find numerically a value a that results in Tpre ≈ 2128.

In particular, in the most interesting case when n = 1024 (choosing n to be a
power of 2 makes it possible to use a number of optimizations), we are forced to
take β = 19, resulting in τ = 0.128118. In this case, the best parameters for the
attack from [9] that we found are (here we use the notation from [9]; see [9] for
a definition of each parameter) q ≈ 2104.9, a = 9, t = 6, b = 101, w0 = 2, c = 30,
` = 101, and n′′ = 390. With those parameters, the attack from [9] (when using
Eq. (3) for computational complexity) takes approximate time 2131.1. However,
the given complexity formula of this attack assumes the existence of a perfect
[390, 101] covering code. Since there is no such perfect code, the actual attack
will be presumably less efficient.

Since the number of multiplications the new commitment scheme uses is
2β, and each multiplications takes Θ(n2) bit-operations, we can estimate the
computational complexity by measuring the parameter 2βn2. We emphasize that
the actual computational complexity can only be measured by an optimized
implementation, see Sect. 5.
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5 Efficiency Issues And Implementation

Recall that the length of the public key is Θ(n) bits (with the recommended
parameters, N/n = 38 ring elements, and up to n bits to describe f .) The com-
mitment and the verification time are both dominated by 38tR× bit-operations. In
the case where R supports Fast Fourier Transform (e.g., when f(X) = Xn− 1),
then tR× = Θ(n log n). Then, both time complexities are Θ(n log n). In the
case f(X) is irreducible, one cannot implement the usual Fast Fourier Trans-
form. While Cyclotomic Fast Fourier Transform [17] has additive complexity
O(n2/(log n)log2(8/3)), we leave implementing that algorithm as a further work
and — for the sake of simplicity — concentrate instead on quadratic-time al-
gorithms. One reason for that is to emphasize that this commitment scheme is
extremely competitive even in the case of suboptimal implementations.

Importantly, the new commitment scheme is parallelizable. First, all 38 field
multiplications, needed in one commitment or verification, can be performed in
parallel. On top of it, every field multiplication can be parallelized by itself. In
particular, in the field multiplication a(X) = b(X)c(X) every coefficient ai can
be computed in parallel. Since all values ai are independent, this means that
parallelization of factor of n can be achieved. In practice, however it may be
faster to compute some w coefficients at once, where w is either the machine
word length or some other related constant.

Based on such considerations, we implemented a single finite field F21024 mul-
tiplication on several modern data-parallel computational architectures. More
precisely, we used the OpenCL environment that is an open standard for the
general-purpose computation for GPU-s. In addition to GPU-s, one can use
OpenCL to develop parallel implementations on modern multicore CPU-s.

We report implementation results on three different platforms. First,
NVIDIA’s rather old mobile GPU Quadro 2000M4. Second, on AMD’s gam-
ing GPU Radeon HD 7950, and third, on Intel’s Core i7-2860QM CPU. (See
Tbl. 1). We remark that the used CPU supports 256-bit integer operations via
AVX (Advanced Vector Extensions). According to information on Bitcoin min-
ing (see footnote 2), some of the cutting edge GPU-s perform 35 times faster
than the Quadro 2000M (not even talking about CPU-s).

In what follows, we describe a partial implementation of the LPN-based
commitment scheme and of the ring-LPN based commitment scheme.

LPN-Based Commitment Scheme. First, we implemented a partial version
of the ring-LPN based commitment scheme, by first precomputing (once) the ma-
trices mat(M i) and mat(Ri), and then implementing only the matrix-to-vector
multiplication. This means that the CPU has to store the whole matrix mat(x)
(n2/8 bytes, i.e., 128 KiB when n = 1024). (In the ring-based implementation,
described later, memory consumption will be obviously smaller.) Here, we used
L-bit (for a parameter L that depends on the concrete GPU/CPU) operations,

4 http://www.nvidia.com/content/PDF/product-comparison/

Product-Comparison-Quadro-mobile-series.pdf, accessed in June 2015

http://www.nvidia.com/content/PDF/product-comparison/Product-Comparison-Quadro-mobile-series.pdf
http://www.nvidia.com/content/PDF/product-comparison/Product-Comparison-Quadro-mobile-series.pdf
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this means that an L-bit entry-wise product can be implemented as a single
word-wide AND operation.

Moreover, we implemented both uncoalesced and coalesced field multiplica-
tion. In the coalesced implementation, we parallelized the work so that every
byte of y in the multiplication y = Ax is computed by a different GPU core.
This means that we utilize n/8 cores. (I.e., 128 cores, when n = 1024. If there are
less — say c — cores available, then every core has to execute n/(8c) threads.)
Since each core computes 8 coefficients of a(X), its computation is dominated
asymptotically by 8n/L (word-wide) AND and XOR operations, on top of which
one has to add 8 log2 L bit-operations that are required to compute Hamming
weight, together with some additional operations.

In the uncoalesced implementation, every core computes a single coefficient
of y. This is followed by a short epilogue where the outputs of eight consequent
cores are combined into one output byte. Here, we need n cores (i.e., given c
cores, every core has to execute n/c threads). Every core’s computation is dom-
inated asymptotically by n/L (word-wide) AND and XOR operations, followed
by log2 L bit-operations to compute Hamming weight. However, our uncoalesced
implementation requires 3 synchronized rounds to combine the results of conse-
quent cores into one output byte. Every such round has to start with a synchro-
nization (barrier in OpenCL). Since synchronization is somewhat costly (and
we also need more cores), in some of the cases an coalesced implementation (that
theoretically requires 8 times more computation) is actually faster.

To optimize the throughput, we had to include some hand optimizations.
First, we had to find out the optimal unroll count: if the loops are not unrolled
at all, then the computation time is dominated by the costly branch instruc-
tions. However, if there are too many unrolls, then due to the way OpenCL
operates, there is going to be a large usage of hardware registers, which makes
computation lower. The latter specifically affects the GPU-s of NVIDIA due to
the worse optimization by the compiler. To take this into account, in the case
of the Quadro 2000M, we also used the NVIDIA’s extension (via compiler flag
-cl-nv-maxrregcount) to OpenCL that allows to limit the number of used reg-
isters to some value reg. We again chose the value reg carefully so as to increase
the throughput. (No such extension exists for AMD’s GPU or Intel’s CPU.)

To summarize, in the case n = 1024 we obtain the results given in Tbl. 1.
We expect that a carefully parallelized implementation of the new commitment
scheme will be much faster on HD 7950 and other top-of-the-line GPU-s. More-
over, we used the OpenCL library for the compatibility with both NVIDIA’s and
AMD’s GPU-s (and with multicore CPU-s). If one is interested in the top perfor-
mance on the NVIDIA’s GPU-s only, one could use the CUDA library (or even
program in the PTX virtual assembly language). Due to the larger dependency
on the hardware, a well-optimized CUDA program is usually significantly faster
than an OpenCL program on the same hardware platform. The same comments
hold also for the implementation ring-LPN based commitment scheme that we
describe in the next subsubsection.
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Table 1. Some values about the used GPU-s and CPU-s as returned by the OpenCL’s
clGetDeviceInfo command, together with our implementation data

GPU 1 GPU 2 CPU 1

clGetDeviceInfo string Return value Return value Return value

DEVICE_NAME Tahiti Quadro 2000M Intel(R) Core(TM)
i7-2860QM CPU @ 2.50GHz

DEVICE_VENDOR Advanced Micro
Devices, Inc.

NVIDIA Corporation Intel(R) Corporation

DEVICE_VERSION OpenCL 1.2 AMD-APP
(1642.5)

OpenCL 1.1 CUDA OpenCL 1.2 (Build 57)

DRIVER_VERSION 1642.5 (VM) 347.52 5.0.0.57

DEVICE_MAX_COMPUTE_UNITS 28 4 8
DEVICE_MAX_CLOCK_FREQUENCY 960 1100 2500
DEVICE_GLOBAL_MEM_SIZE 3221225472 2147483648 2147352576
Cores 1792 192 8

Optimal parameters and timing (matrix-to-vector)

Implementation Uncoalesced Uncoalesced Coalesced
L ulong2 (128 bits) ulong (64 bits) ulong2 (128 bits)
max reg count N/A 180 N/A
unroll 4 5 11
mult per second (per core) 70 313.60 30 547.41 46 019.33
cycles per core 13 653.1 36 009.6 54 325.0
threads 128 128 1024
cycles x ]threads / ]cores 975.2 24006.4 6953600

Timing (finite field multiplication)

mult per second (per core) 51923.78 70861.68 35348.18
cycles per core 18488.640 15523.20 70725
Threads 272 272 272
cycles x ]threads / ]cores 2821.5 21991 2404650

Ring-LPN Based Commitment Scheme. We also implemented a binary
finite field F21024 multiplication. Here, we used a version of the Brauer’s expo-
nentiation algorithm (first used in the context of finite field multiplication by
Lopéz and Dahab [14]). That is, in the computation of a F21024 multiplication
c(X) = a(X)b(X), we first precompute a(X)b′(X) for all degree-(≤ W ) poly-
nomials b′(X). After that, we use a parallel variant of the school book multipli-
cation method, where each thread uses W -bit precomputed values to compute
an L-bit intermediate result in an (n/L)× (2n/L) matrix. (Note that there are
(n/L) · (n/L+ 1) threads, since the rest of the entries of this matrix are equal to
0.) We then sum up in parallel the entries in every column of the intermediate
matrix, obtaining a degree 2n polynomial c′(X), and then reduce c′(X) modulo
f(X). Since we chose f(X) with a small Hamming weight (namely, 5), the re-
duction step is almost negligible. In our implementation, L = 64 and W = 4;
those constants were chosen to minimize the execution time. This means that
the maximal number of threads is 272. Similar strategy was outlined in say [5],
but our implementation is independent.

Since the CPU has 8 cores and the HD 7950 GPU has 1792 cores, the 7950
GPU is approximately 850 times faster, see the last row of Tbl. 1. Thus, on the
HD 7950 GPU, one can implement 1792/272 ≈ 6.59 finite field multiplications
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in parallel. Since one commitment (and verification) requires 38 multiplications,
one can schedule on average 1792/(272 · 38) = 0.173 commitments of 1024-bit
numbers in parallel.

Interestingly, our implementation of the finite field multiplication on the HD
7950 GPU and the Intel CPU is somewhat slower than the matrix-to-vector
multiplication (in cycles per core), while on the Quadro 2000M the opposite is
true. The relative slow-down on the first two processing units is due to the fact
that in our implementation of matrix-to-vector multiplication, we use the ulong2
data type to perform 128-bit operations in parallel, while in our implementation
of finite field multiplications, we did only use the 64-bit ulong data type. The
implementation of finite-field implementations also uses more threads than the
the matrix-to-vector multiplication. This can mean that if the communication
and storage of the public key is not a bottleneck, one might actually want to
implement the (non-ring) LPN based commitment scheme.

Comparison with Pedersen Commitment. In the case of the simplest dis-
crete logarithm-based commitment scheme, the Pedersen commitment, the com-
mitter has (m, r) and then computes y = gmhr. The verifier just recomputes y,
given the same m and r. Assuming that one uses elliptic curves, the committer’s
and the verifier’s computation is dominated by two exponentiations.

Efficiency-wise, the main difference between the described commitment
scheme and the Pedersen scheme is that in the former, one has to execute a
small number of multiplications (over a medium-sized finite field) while in the
Pedersen scheme one has to execute a small number of exponentiations (in el-
liptic curves defined over a small finite field). Every exponentiation requires at
least κ finite field multiplications in a field of the size ≈ 22κ. Thus, Pedersen
with κ = 128 uses at least 128/38 ≈ 3.4 times more multiplications than the
new commitment scheme. Moreover, Pedersen has additional overhead due to
the use of much more complicated elliptic-curve group multiplications instead of
simpler finite-field multiplications. Finally, Pedersen is not as readily paralleliz-
able as the new commitment scheme, and it only allows to commit to 256-bit
strings instead of 1024-bit strings. For concrete numbers, we refer to say [7] for a
recent highly optimized implementation (that uses a 254-bit base field) of an el-
liptic curve exponentiation with ≥ 100 000 cycles. Thus in their implementation
of Pedersen, it takes at least 787 cycles to commit to a bit as compared with
≈ 104.7 cycles to implement the new commitment scheme on the AMD GPU.

Finally, recall that discrete logarithm is not secure against quantum comput-
ers, while LPN is assumed to be. Hence, the described commitment scheme is
not only more efficient, but also presumably more (quantum-)secure. Moreover,
recent attacks have indicated that discrete logarithm might not be as secure
against conventional (non-quantum) computers as thought up to now.
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