
Invited talk
Adastral Park, UCL, London

Designated Verifier Signatures:
Attacks, New Definitions and Constructions

Helger Lipmaa
Cybernetica AS and University of Tartu, Estonia

Guilin Wang and Feng Bao
Institute for Infocomm Research, Singapore

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

1



Bibliographical remark

• Published in ICALP 2005

• Coauthors Guilin Wang and Feng Bao (I2R, Singapore)

• Paper available from our homepages (http://www.cs.ut.ee/˜lipmaa)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

2



Outline

• Motivation for DVS

• Attacks on Some Previous Constructions

• New Security Notions

• Our Own Construction

• Conclusion

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

3



Outline

• Motivation for DVS

• Attacks on Some Previous Constructions

• New Security Notions

• Our Own Construction

• Conclusion

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

4



Motivation

I w4nt 2 read s0me b00k.
But I h4ve 2 b a subscr1b3r!
Th1s 1s ok, I c4n s1gn my request
But 1 do not w4nt Sl1ck to show
the s1gnatur3 2 oth3rs!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

5



Motivation

I w4nt 2 read s0me b00k.
But I h4ve 2 b a subscr1b3r!
Th1s 1s ok, I c4n s1gn my request
But 1 do not w4nt Sl1ck to show
the s1gnatur3 2 oth3rs!

My fr1end Markus sa1d I can
us3 des1nated ver1f1er s1gnatures!

s1gnatures, the s1gnatures are
S1nce Desmond can s1mulate such

non−transferable.

Hej! I am Markus.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

6



More applications?

• Service providing/Privacy-preserving data-mining:

? Desmond knows Signy is a loyal customer; Signy gets bonus

? Desmond can add information about Signy in the database and pro-
cess it later

? Desmond can’t prove to anybody else that the database is correct but
he trusts himself!

• E-voting: Signy is a voter, Desmond is a tallier. Desmond knows that
Signy voted but cannot prove it to anybody else.

• Etc etc etc

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

7



Thus spake Markus to Signy:

Signy does
Public keyyS = gxS

Public keyyD = gxD

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

8



Thus spake Markus to Signy:

Public keyyS = gxS

Public keyyD = gxD

Signy does

Generates← mxS

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

9



Thus spake Markus to Signy:

Public keyyS = gxS

Public keyyD = gxD

Signy does

Generates← mxS

Generate randomw, t, r ← Zq

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

10



Thus spake Markus to Signy:

Signy does
Public keyyS = gxS

Public keyyD = gxD

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

11



Thus spake Markus to Signy:

Public keyyS = gxS

Public keyyD = gxD

Signy does

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr)

Setz ← r + (h + w)xS

Signatureσ = (s;w, t, h, z)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

12



Thus spake Markus to Signy:

Public keyyS = gxS

Public keyyD = gxD

Signy does

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr)

Setz ← r + (h + w)xS

Signatureσ = (s;w, t, h, z)

Verify thath = H(gwyt
D, gzy−(h+w)

S︸ ︷︷ ︸
gz−(h+w)xS=gr

, mzs−(h+w)︸ ︷︷ ︸
mz−(h+w)xS=mr

)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

13



Thus spake Markus to Desmond:

Desmond does
Public keyyS = gxS

Public keyyD = gxD

Chooseany s
Generate randomz, α, β ← Zq

Seth← H(gα, gzy−β
S , mzs−β)

Setw ← β − h, t← (α− w)x−1
D

Signatureσ = (s;w, t, h, z)

Verify thath = H(gwyt
D︸ ︷︷ ︸

gw+t·xD

, gzy−(h+w)
S︸ ︷︷ ︸
gzy−β

S

, mzs−(h+w)︸ ︷︷ ︸
mzs−β

)

Das ist ja Korrekt!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

14



Thus spake Markus to both:

• If Signy signs: s = mxS , thus (g, yS, m, s) is a DDH tuple

? (g, yS, m, s) = (g, ga, gb, gab) for some a, b

• Signy proves in NIZK that (g, yS, m, s) is a DDH tuple

• If Desmond simulates: any s; since DL is hard, (g, yS, m, s) is not a DDH
tuple w.h.p. 1− 1

]G

? c = gwyt
D for which Desmond knows the trapdoor xD

? Desmond can simulate the proof by using the trapdoor for any s ∈ Zp

• Signy can disavow, w.h.p. 1− 1
]G, by proving that s 6= mxS

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

15



Thus spake Markus to both:

• To generate a valid σ ← (s;w, t, h, z) you must know either xS or xD

• Thus Desmond knows that σ was generated by Signy

? Since Desmond did not generate it himself

• Any third party doesn’t know whether σ was generated by Signy or
Desmond

And Signy was very happy and Desmond coverted in snow.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

16



But Desmond met Guilin and Guilin spake to him:

Heh−heh!
No plobrem!
I wirr bleak that!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

17



But Desmond met Guilin and Guilin spake to him:

Public keyyS = gxS

Public keyyD = gxD

Generate randomw, t, r 6= r ← Zq

Seth← H(gwyt
D, gr, mr)

Setz ← r + (h + w)xS

Sets← mxS ·m(r−r)/(h+w)

Signatureσ = (s;w, t, h, z)

Signy can also do this!

Verify thath = H(gwyt
D, gzy−(h+w)

S︸ ︷︷ ︸
gz−(h+w)xS=gr

, mz(s)−(h+w)︸ ︷︷ ︸
mz−(h+w)xS−(r−r)=mr

)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

18



But Desmond met Guilin and Guilin spake to him:

• Verification succeeds, thus Desmond accepts it as Signy’s signature

• However, since s 6= mxS , Signy can later disavow it!

And Desmond was not so happy anymore.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

19



Quick fix:

Signy does
Public keyyS = gxS

Public keyyD = gxD

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr, pkS, pkD, s)

Setz ← r + (h + w)xS

Signatureσ = (s;w, t, h, z)

Verify thath = H(gwyt
D, gzy−(h+w)

S , mzs−(h+w), pkS, pkD, s)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

20



Then, Signy met some other people

• Steinfeld, Bull, Wang and Pieprzyk said: use a bilinear pairing 〈·, ·〉

? 〈ba, dc〉 = 〈b, d〉ac with natural hardness assumptions

• Signy signs m: s = 〈mxS , yD〉 = 〈m, g〉xSxD

• Desmond simulates: s = 〈mxD, yS〉 = 〈m, g〉xSxD

• Verification by Desmond: 〈m, y
xD
S 〉 = s?

And Signy was happy again and kissed Pieprzyk.

I like this job!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

21



However, Desmond met Guilin again

• Signy signs m: s = 〈mxS , yD〉 = 〈m, g〉xSxD = 〈m, gxSxD〉

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

22



However, Desmond met Guilin again

• Signy signs m: s = 〈mxS , yD〉 = 〈m, g〉xSxD = 〈m, gxSxD〉

Guilin spake to Desmond:

• Signy can compute ySD := gxSxD and publish it

• Then anybody can sign m as s = 〈m, ySD〉 = 〈m, g〉xSxD

• Thus Signy can delegate her subscription to your library, without revealing
her public key

And Desmond wanted to cry.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

23



And so forth and so forth

• Signy and Desmond met many wise men who proposed better and better
designated verifier signature schemes.

• However, Guilin broke them all!

• Sad story, eh?

• Signy even thought about never reading a book again!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

24



What went wrong?

• 4 schemes broken in this paper

• 4 schemes broken in my paper with Yong Li and Dingyi Pei (ICICS 2005)

• [JSI1996]: disavowability claimed but does not exist

• [SBWP2003] and some other schemes were delegatable

? Exactly the same problem in 7 schemes!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

25



What should we do?

⇒ Propose a DVS scheme that is unforgeable

? Use as tight reductions as possible

? . . . and as weak trust model as possible

⇒ Eliminate disavowal or make it “secure”

• Non-delegatability was never considered before

⇒ Define non-delegatability and propose a non-delegatable scheme

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

26



Unforgeability: Definition

Consider the next game:

• Choose random key pairs for Signy and Desmond

• Give the Forger both public keys, an oracle access to Signy’s signing al-
gorithm, Desmond’s simulation algorithm and the hash function

• Forger returns a message m and a signature σ

Forger is successful if verification on (m, σ) succeeds and he never asked a
sign/simul query on m that returned σ

Scheme is (τ, qh, qs, ε)-unforgeable ⇐⇒ no (τ, qh, qs)-forger has success
probability > ε

Forger runs in time τ , does qh queries to hash function and qs queries to either signing or simulation algorithm

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

27



Non-Transferability: Definition

• A scheme is perfectly non-transferable if signatures generated by Signy
and Desmond come from the same distribution.

? Perfectly non-transferable schemes cannot have disavowal protocols!

? As we showed, JSI is perfectly non-transferable!

• A scheme is computationally non-transferable if signatures generated
by Signy and Desmond come from distributions that are computationally
indistinguishable.

? Computationally non-transferable schemes may have a trapdoor that
can be used for constructing disavowal protocols

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

28



Non-Delegatability: Definition

Briefly: A DVS signature is a non-interactive proof of knowledge of either of
the secret keys.

Requirement: if Forger produces valid signatures with probability > κ then
he knows either the secret key of Signy or the secret key of Desmond

We require there exists a knowledge extractor such that

• If a Forger produces a valid signature σ on m w.p. ε > κ

then knowledge extractor, given m and oracle access to Forger on input
m, produces one of the two secret keys in time τ

ε−κ.

Then the scheme is (τ, κ)-non-delegatable.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

29



Unforgeability vs Non-Delegatability

• Unforgeability claims:
If (1) Both Signy and Desmond generate a fresh key pair and handle
public keys to Eve and (2) Eve can then ask Signy to sign a number of
messages
then Eve cannot sign a new message

• This is a somewhat limited model in the context of DVS since it disregards
the possibility that Signy voluntarily publishes some side information

• Non-delegatability claims:
If (1) after an arbitrary communication with Signy and Desmond, Eve can
sign new messages
then Eve knows one of the two secret keys

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

30



Outline

• Motivation for DVS

• Attacks on Some Previous Constructions

• New Security Notions

• Our Own Construction

• Conclusion

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

31



Underlying Idea of Our Scheme

• If Signy signs:
She proves that her public key (g1, g2, y1S = g

xS
1 , y2S = g

xS
2 ) is a DDH

tuple.

• We again employ c = gwyt
D (trapdoor commitment) for which Desmond

knows the trapdoor xD, thus the proof is designated-verifier.

• Desmond simulates this proof by using the trapdoor information

• Signy cannot disavow since there is perfect non-transferability

(Merrily marrying Katz-Wang conventional signature scheme + JSI96 DVS)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

32



And Thus We Spake to Signy:

Signy does
Public key(y1S = gxS

1 , y2S = gxS

2 )
Public key(y1D = gxD

1 , y2D = gxD

2 )
Generate randomw, t, r ← Zq

Seth← H(pkS, pkD, gw
1 yt

1D, gr
1, g

r
2, m)

Setz ← r + (h + w)xS

Signatureσ = (w, t, h, z)

Verify thath = H(pkS, pkD, gw
1 yt

1D, gz
1y
−(h+w)
1S , gz

2y
−(h+w)
2S , m)

Das ist ja Korrekt!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

33



And Thus We Spake to Desmond:

Desmond does
Public key(y1S = gxS

1 , y2S = gxS

2 )
Public key(y1D = gxD

1 , y2D = gxD

2 )
Generate randomz, α, β ← Zq

Seth← H(pkS, pkD, gα
1 , gz

1y
−β
1S , gz

2y
−β
2S , m)

Setw ← β − h, t← (α− w)x−1
D

Signatureσ = (w, t, h, z)

Verify thath = H(pkS, pkD, gw
1 yt

1D, gz
1y
−(h+w)
1S , gz

2y
−(h+w)
2S , m)

Das ist ja Korrekt!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

34



Properties of The New Scheme

• Twice longer public keys than in JSI — makes it possible to get tight un-
forgeability reductions

? In non-programmable random oracle model

? As in Katz-Wang, unforgeability proof does not use proof of knowl-
edge/forking lemma

• Perfect non-transferability, thus no disavowal

? Orthogonal to the security requirements of an DVS scheme

• Non-delegatability: proven, but the reduction is not tight

? Proof of knowledge

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

35



Unforgeability

Theorem . Let G, ]G = q be a (τ ′, ε′)-DDH group. The proposed scheme is
(τ, qh, qs, ε)-unforgeable in the non-programmable random oracle model with
τ ≤ τ ′ − (3.2qs + 5.6)texp and ε ≥ ε′+ qsqhq−2 + q−1 + qhq−2.

Proof sketch: Adversary A has to solve DDH on input (g1, g2, y1D, y2D).
Set this to Desmond’s public key, and set Signy’s public key to be equal to a
random DDH tuple (for which A knows the corresponding secret key). Give
A an oracle access to Forger. Answer all hash queries truthfully (but store
them). Answer all signing and simulation queries by following Signy’s algo-
rithm. (Possible since A knows Signy’s secret key.) A works in time and with
success probability, claimed above.

Note: This is a tight reduction. In practice it means that whenever you can
forge a signature—e.g., 2−80—, you can w.h.p. solve DDH in comparable
time.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

36



Unforgeability

Theorem . Let G, ]G = q be a (τ ′, ε′)-DDH group. The proposed scheme is
(τ, qh, qs, ε)-unforgeable in the non-programmable random oracle model with
τ ≤ τ ′ − (3.4qs + 5.6)texp and ε ≥ ε′+ qsqhq−2 + q−1 + qhq−2.

Proof sketch: Adversary A has to solve DDH on input (g1, g2, y1S, y2S).
Set this to Signy’s public key, and set Desmond’s public key to be equal to a
random DDH tuple (for which A knows the corresponding secret key). Give A

an oracle access to Forger. Answer all hash queries truthfully (but store them).
Answer all signing and simulation queries by following Desmond’s algorithm.
(Possible since A knows Desmond’s secret key.) A works in time and with
success probability, claimed above.

Note: Proof in proceedings is faulty. (Change the roles of S and D!)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

37



Delegatability

Theorem . Let κ ≥ 1/q. Assume that for some message m, Forger can
produce signature in time τ ′ and with probability ε ≥ κ. Then there exists a
knowledge extractor that on input a valid signature σ and on black-box oracle
access to Forger (with an internal state compatible with σ) can produce one of
the two secret keys in expected time τ ≤ 56τ ′/κ.

Note: This is an imprecise reduction. For example, if Forger has advantage
2−30 then Knowledge Extractor works in time 236 · τ ′, with probability 1.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

38



Conclusions

• And Desmond was happy since only valid subscribers were able to borrow
the books.

? And these subscribers could not delegate their subscriptions!

• And Signy was happy since Desmond could not prove that she borrowed
these books.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

39



Any questions?

Note: version with corrected proof upcoming

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

40


