Invited talk
Adastral Park, UCL, London

Designated Verifier Signatures:
Attacks, New Definitions and Constructions

Helger Lipmaa
Cybernetica AS and University of Tartu, Estonia

Guilin Wang and Feng Bao
Institute for Infocomm Research, Singapore

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

1

Bibliographical remark

e Published in ICALP 2005

e Coauthors Guilin Wang and Feng Bao (I12R, Singapore)

e Paper available from our homepages (http://www.cs.ut.ee/"lipmaa)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

2

Outline

e Motivation for DVS

e Attacks on Some Previous Constructions

e New Security Notions

e Our Own Construction

e Conclusion

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

Outline

e Motivation for DVS

e Attacks on Some Previous Constructions

e New Security Notions

e Our Own Construction

e Conclusion

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

Motivation

I w4nt 2 read sOme bOOk.
But I h4ve 2 b a subscrlb3r!
Thls 1s ok, I c4n slgn my request
But 1 do not w4nt Sllck to show
the s1gnatur3 2 oth3rs!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

Motivation

I w4nt 2 read sOme bOOk.
But I h4ve 2 b a subscr1b3r!
Thls 1s ok, I c4n slgn my request
But 1 do not w4nt Sllck to show
the s1gnatur3 2 oth3rs!

My frlend Markus sald I can
us3 deslnated verlfler slgnatures!
S1nce Desmond can s1mulate such
slgnatures, the slgnatures are
non—transferable.

Hej! I am Markus.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

More applications?

e Service providing/Privacy-preserving data-mining:
* Desmond knows Signy is a loyal customer; Signy gets bonus

* Desmond can add information about Signy in the database and pro-
cess it later

* Desmond can’t prove to anybody else that the database is correct but
he trusts himself!

e E-voting: Signy is a voter, Desmond is a tallier. Desmond knows that
Signy voted but cannot prove it to anybody else.

e Etc etc etc

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

Thus spake Markus to Signy:

Public keyys = g™ Public keyyp = g*»
3 P i~
C:L\\._ 1

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

Thus spake Markus to Signy:

Signy does
Public keyys = g** e Public keyyp = g*»

Generates «— m®s R/ ‘
' F‘“Eﬁﬁwﬁ
/

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

Thus spake Markus to Signy:

Signy does
Public keyys = g** e Public keyyp = g*»
: Generates <« m®s !
7N r AWR. "
% Generate randomw, ¢, r < Z, RAWE f

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

10

Thus spake Markus to Signy:

Signy does
Public keyys = g** e Public keyyp = g*»

7 Generates «— m®s R/
7 r gAWR!
@ Generate randomw, ¢, r < Z, RAWE :

é:l\(Seth — H(g"y%, g",m")

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

11

Thus spake Markus to Signy:

Signy does
Public keyys = g*¢ / Public keyyp = g%
: Generates «— m®s /
7N AWR. "
ﬁ‘;‘ Generate randomw, t, r < Z, ' RAWR
é}“ : Seth «— H(gwy%, g",m") /
\r Setz —r+ (h+ w)xg

Signatures = (s; w, t, h, z)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

12

Thus spake Markus to Signy:

Signy does

Public keyys = g / Public keyyp = g*»
Generates «— m®s

Generate randomw, t, r «— Zj,
Seth «— H(g"y}p,g",m")
Setz —r+ (h+ w)xg

Signatures = (s; w, t, h, z)

Verify thath = H(g¥y), g*ys "™, m*s— ()
—_—

~"

ng(h+w)xs =g m#~ (hFwleg —mr

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

13

Thus spake Markus to Desmond:

Desmond does

Public keyys = g** e Public keyyp = g"»

Chooseany s

Generate random, o, 3 «+— Z,
Seth «— H(g°, gzygﬁ, m?s—P)
Setw +— B —h,t — (o — w)azBl

Signatures = (s; w, t, h, z)

erify thath = H (g%t g?ys T m7s—(htw)
fy (9“yp, 9°Yg)

~"

+t _ mzs—P
/ gw T gzysﬁ

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

14

Thus spake Markus to both:

e If Signy signs: s = m™s, thus (g, yg, m, s) is a DDH tuple

* (g,y5,m,s) = (g,9% g° g) for some a, b
e Signy proves in NIZK that (g, yg, m, s) is a DDH tuple

o If Desmond simulates: any s; since DL is hard, (g,yg,m,5) is not a DDH

tuple w.h.p. 1 — ﬁ%

* ¢ = g%yl for which Desmond knows the trapdoor z

x Desmond can simulate the proof by using the trapdoor for any s € Z,

e Signy can disavow, w.h.p. 1 — jj% by proving that s = m®*s

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

15

Thus spake Markus to both:

e To generate a valid o < (s; w,t, h, z) you must know either ¢ or x

e Thus Desmond knows that o was generated by Signy

* Since Desmond did not generate it himself

e Any third party doesn’'t know whether ¢ was generated by Signy or
Desmond

And Signy was very happy and Desmond coverted in snow.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

16

But Desmond met Guilin and Guilin spake to him:

Heh—heh!
No plobrem!
I wirr bleak that!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

17

But Desmond met Guilin and Guilin spake to him:

Public keyys = g™ Public keyyp = g*»

Generate random, t,r = 7 « Z !
= q r g_nﬁffm ‘

Seth — H(g"yp, 9", m")
Setz —r+ (h+ w)xg
Sets « m®s . mr—7)/(htw)

Signatures = (5; w, t, h, 2)

Signy can also do this! -
Verify thath = H (g¥y%, g°ys "™, m*(z)~"t))

gz—(h—i—w)xs =g" mz—(h—}-w)zs—(r—F) —mr

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

18

But Desmond met Guilin and Guilin spake to him:

e Verification succeeds, thus Desmond accepts it as Signy’s signature

e However, since s = m™*9, Signy can later disavow it!

And Desmond was not so happy anymore.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

19

Quick fix:

Signy does
Public keyys = ¢*s / Public keyyp = g

Generates «— m®s ;
AWR. "
Generate randomw, t, r < Z, RAWR

Seth < H(g"yp, 9", m", pks, pkp, 8)

Setz —r+ (h+w)xs —

Signatures = (s; w,t, h, z)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

20

Then, Signy met some other people

e Steinfeld, Bull, Wang and Pieprzyk said: use a bilinear pairing (-, -)

* (b%, d°) = (b, d)*° with natural hardness assumptions
e Signy signs m: s = (m*9,yp) = (m, g)*s*D
e Desmond simulates: 5 = (m*P,yg) = (m, g)*5*D
e Verification by Desmond: (m,yg"”) = s?

And Signy was happy again and kissed Pieprzyk.

J lite this job!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

21

However, Desmond met Guilin again

e Signy signs m: s = (m*S,yp) = (m, g)*s*D = (m, g*sTD)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

22

However, Desmond met Guilin again

e Signy signs m: s = (m*S,yp) = (m, g)*s*D = (m, g*sTD)

Guilin spake to Desmond:

e Signy can compute ygp = ¢g"S*D and publish it

e Then anybody can sign m as s = (m,ysp) = (m, g)*5*D

e Thus Signy can delegate her subscription to your library, without revealing
her public key

And Desmond wanted to cry.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

23

And so forth and so forth

e Signy and Desmond met many wise men who proposed better and better
designated verifier signature schemes.

e However, Guilin broke them all!

e Sad story, eh?

e Signy even thought about never reading a book again!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

24

What went wrong?

e 4 schemes broken in this paper

e 4 schemes broken in my paper with Yong Li and Dingyi Pei (ICICS 2005)

e [JSI1996]. disavowability claimed but does not exist

e [SBWP2003] and some other schemes were delegatable

* Exactly the same problem in 7 schemes!

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

25

What should we do?

= Propose a DVS scheme that is unforgeable
* Use as tight reductions as possible

* ...and as weak trust model as possible

= Eliminate disavowal or make it “secure”

e Non-delegatability was never considered before

= Define non-delegatability and propose a non-delegatable scheme

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

26

Unforgeability: Definition

Consider the next game:

e Choose random key pairs for Signy and Desmond

e Give the Forger both public keys, an oracle access to Signy’s signing al-
gorithm, Desmond’s simulation algorithm and the hash function

e Forger returns a message m and a signature o

Forger is successful if verification on (m, o) succeeds and he never asked a
sign/simul query on m that returned o

Scheme is (7, q1, gs, €)-unforgeable <= no (1, g3, qs)-forger has success
probability > ¢

Forger runs in time 7, does g, queries to hash function and ¢, queries to either signing or simulation algorithm
UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

27

Non-Transferability: Definition

e A scheme is perfectly non-transferable if signatures generated by Signy
and Desmond come from the same distribution.

* Perfectly non-transferable schemes cannot have disavowal protocols!
* As we showed, JSI is perfectly non-transferable!
e A scheme is computationally non-transferable if signatures generated

by Signy and Desmond come from distributions that are computationally
indistinguishable.

* Computationally non-transferable schemes may have a trapdoor that
can be used for constructing disavowal protocols

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

28

Non-Delegatability: Definition

Briefly: A DVS signature is a non-interactive proof of knowledge of either of
the secret keys.

Requirement: if Forger produces valid signatures with probability > « then
he knows either the secret key of Signy or the secret key of Desmond

We require there exists a knowledge extractor such that

e If a Forger produces a valid signature c on m w.p. € > &
then knowledge extractor, given m and oracle access to Forger on input
m, produces one of the two secret keys in time .

Then the scheme is (7, k)-non-delegatable.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

29

Unforgeability vs Non-Delegatabillity

e Unforgeability claims:
If (1) Both Signy and Desmond generate a fresh key pair and handle
public keys to Eve and (2) Eve can then ask Signy to sign a number of
messages
then Eve cannot sign a new message

e This is a somewhat limited model in the context of DVS since it disregards
the possibility that Signy voluntarily publishes some side information

e Non-delegatability claims:
If (1) after an arbitrary communication with Signy and Desmond, Eve can
sign new messages
then Eve knows one of the two secret keys

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

30

Outline

e Motivation for DVS

e Attacks on Some Previous Constructions

e New Security Notions

e Our Own Construction

e Conclusion

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

31

Underlying Idea of Our Scheme

e If Signy signs:
She proves that her public key (g1, 92,y15 = 91°, Y25 = g5) is a DDH
tuple.

e We again employ ¢ = gwytD (trapdoor commitment) for which Desmond
knows the trapdoor x), thus the proof is designated-verifier.

e Desmond simulates this proof by using the trapdoor information
e Signy cannot disavow since there is perfect non-transferability

(Merrily marrying Katz-Wang conventional signature scheme + JSI96 DVS)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

32

And Thus We Spake to Signy:

Signy does

Public ke = g7° = g5° .
Y(yrs = 917, v2s 92/ Public key(y1p = 971", y2p = g5)

Generate randomw, t,r «— Z, r— |
I. 3 » Uy g_ﬁlﬂ'ﬁ
_:. Seth H(kaa ka7 g’iuyip7g7]a_7 957 m) E&ﬁf"’f
e Setz —r+ (h+ w)xg -

Signatures = (w, t, h, 2)

I w z h z - h
Verify thath = H (pks, pkp, g1 yiDaglyls(’ +w),92925(* +w)7 m)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

33

And Thus We Spake to Desmond:

Desmond does
Public key(yus = 91° yos = 95°)

Generate random, o, 8 «— Z,

Setw +— B —h,t — (o — w)xl_)l

Public key(y1p = ¢7”, yap = g5°)

Signatures = (w, t, h, z)

: _ o
erify thath = H(ka, pkp, gi‘)yiD’ gi’ylé —I—w)’ ggyzsg -I—w), m)
Das ist ja Korrekt!
UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

34

Properties of The New Scheme

e Twice longer public keys than in JSI — makes it possible to get tight un-
forgeability reductions

* In non-programmable random oracle model

* As In Katz-Wang, unforgeability proof does not use proof of knowl-
edge/forking lemma

e Perfect non-transferability, thus no disavowal

* Orthogonal to the security requirements of an DVS scheme

e Non-delegatability: proven, but the reduction is not tight

* Proof of knowledge

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

35

Unforgeability

Theorem . Let G, #G = q be a (7, ’)-DDH group. The proposed scheme is
(7, q1, qs, €)-unforgeable in the non-programmable random oracle model with

T <7 —(3.2¢5 + 5.6)texp and e > e 4+ QSth_2 + q—l + qhq—Q_

Proof sketch: Adversary A has to solve DDH on input (g1, 92, Y1 D,Y2D)-
Set this to Desmond'’s public key, and set Signy’s public key to be equal to a
random DDH tuple (for which A knows the corresponding secret key). Give
A an oracle access to Forger. Answer all hash queries truthfully (but store
them). Answer all signing and simulation queries by following Signy’s algo-
rithm. (Possible since A knows Signy’s secret key.) A works in time and with
success probability, claimed above.

Note: This is a tight reduction. In practice it means that whenever you can
forge a signature—e.g., 2-39—, you can w.h.p. solve DDH in comparable
time.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

36

Unforgeability

Theorem . Let G, #G = q be a (7, ’)-DDH group. The proposed scheme is
(7, q1, qs, €)-unforgeable in the non-programmable random oracle model with

T < 7' —(3.4qs + 5.6)texp and € > ¢/ + qsqrg 2 + g1 + g2

Proof sketch: Adversary A has to solve DDH on input (g1, 92,915, Y25)-
Set this to Signy’s public key, and set Desmond’s public key to be equal to a
random DDH tuple (for which A knows the corresponding secret key). Give A
an oracle access to Forger. Answer all hash queries truthfully (but store them).
Answer all signing and simulation queries by following Desmond’s algorithm.
(Possible since A knows Desmond’s secret key.) A works in time and with
success probability, claimed above.

Note: Proof in proceedings is faulty. (Change the roles of S and D!)

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

37

Delegatability

Theorem. Let x > 1/q. Assume that for some message m, Forger can
produce signature in time 7’ and with probability e > . Then there exists a
knowledge extractor that on input a valid signature ¢ and on black-box oracle
access to Forger (with an internal state compatible with o) can produce one of
the two secret keys in expected time 7 < 567/ /.

Note: This is an imprecise reduction. For example, if Forger has advantage
230 then Knowledge Extractor works in time 23° . 7/, with probability 1.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

38

Conclusions

e And Desmond was happy since only valid subscribers were able to borrow
the books.

* And these subscribers could not delegate their subscriptions!

e And Signy was happy since Desmond could not prove that she borrowed
these books.

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

39

Any questions?

Note: version with corrected proof upcoming

UCL, London, 23.02.2006 Designated Verifier Signatures: Helger Lipmaa, Guilin Wang, Feng Bao

40

