Estonian Theory Days, Koke, Estonia

Designated Verifier Signatures: Attacks, New Definitions and Constructions

Helger Lipmaa

Helsinki University of Technology, Finland

Guilin Wang and Feng Bao

Institute of Infocomm Research, Singapore

Koke, ETD 2005, Estonia, 26.01.2005

Outline

- Motivation for DVS
- Attacks on Some Previous Constructions
- New Security Notions
- Our Own Construction
- Conclusion

Outline

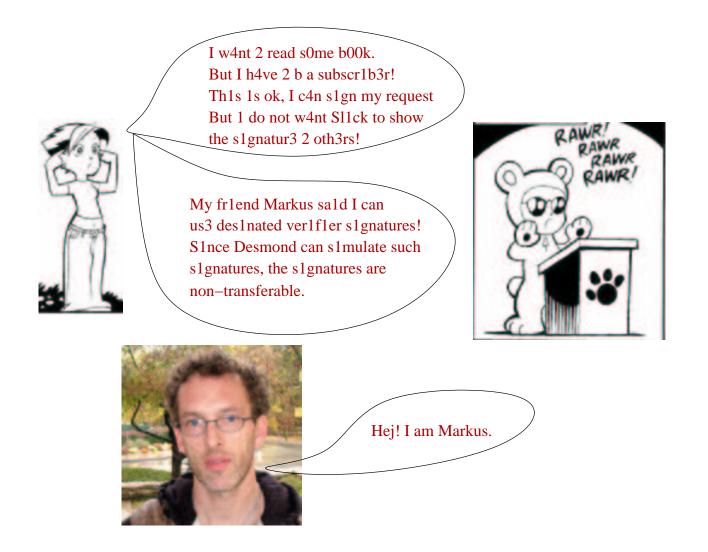
- Motivation for DVS
- Attacks on Some Previous Constructions
- New Security Notions
- Our Own Construction
- Conclusion

Motivation

I w4nt 2 read s0me b00k. But I h4ve 2 b a subscr1b3r! Th1s 1s ok, I c4n s1gn my request But 1 do not w4nt S11ck to show the s1gnatur3 2 oth3rs!

Koke, ETD 2005, Estonia, 26.01.2005

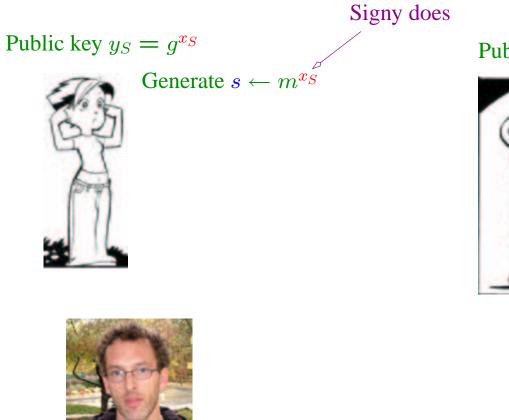
Motivation

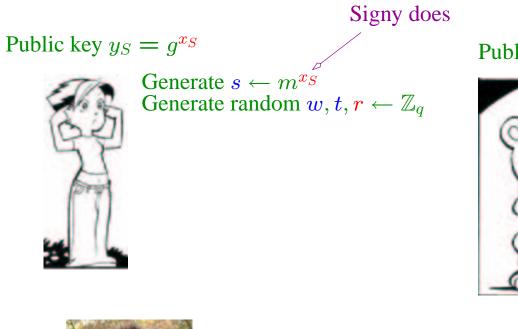


More applications?

- E-voting: Signy is a voter, Desmond is a tallier. Desmond gets to know voter is Signy but cannot prove it to anybody else.
- Also related to privacy-preserving data-mining:
 - * Desmond knows Signy is a loyal customer; Signy gets bonus
 - ★ Desmond can add information about Signy in the database and process it later
 - Desmond can't prove to anybody else that the database is correct but he trusts himself!
- Etc etc etc

Public key $y_S = g^{x_S}$

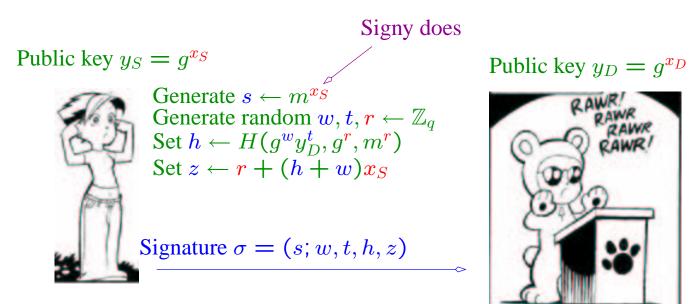


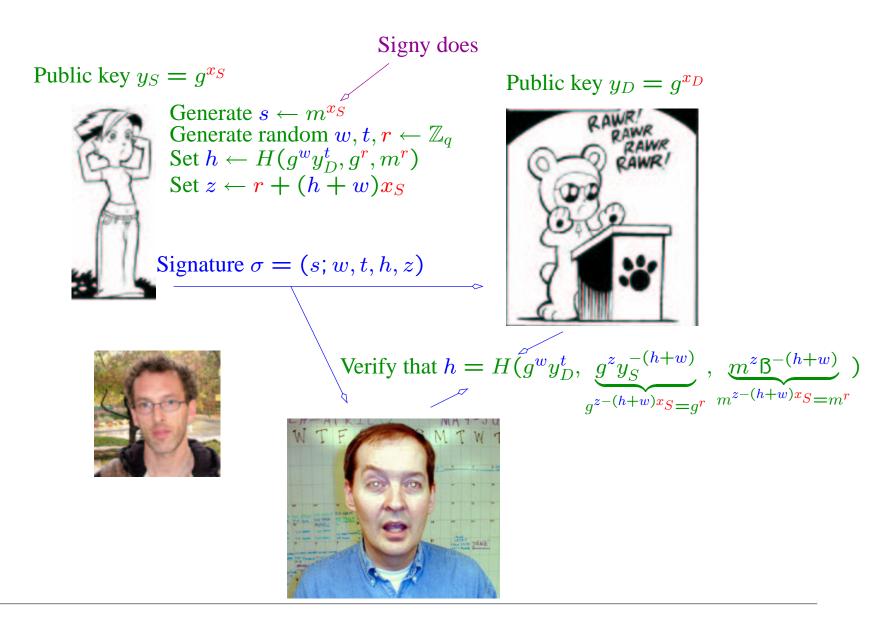


Public key $y_S = g^{x_S}$

Generate $s \leftarrow m^{x_{S}}$ Generate random $w, t, r \leftarrow \mathbb{Z}_{q}$ Set $h \leftarrow H(g^{w}y_{D}^{t}, g^{r}, m^{r})$

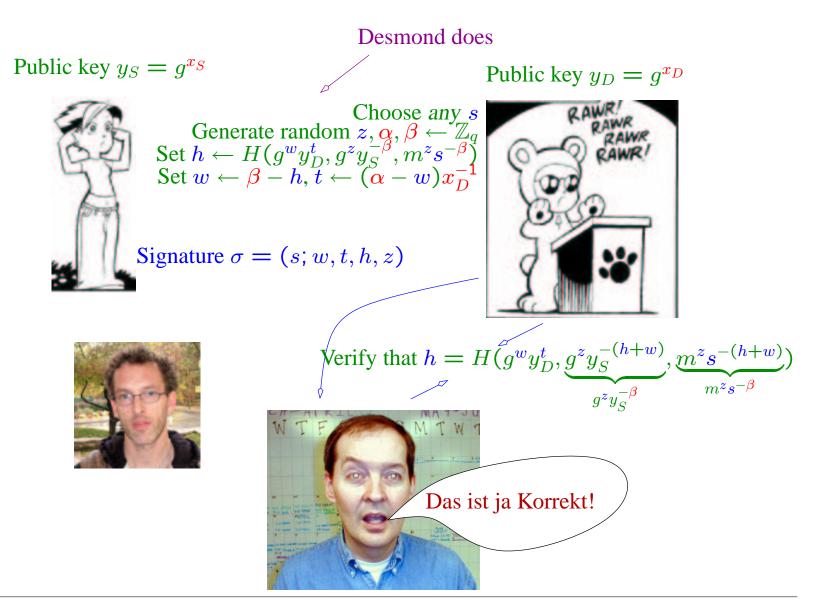
Signy does





Designated Verifier Signatures, Helger Lipmaa

Thus spake Markus to Desmond:



Thus spake Markus to both:

• If Signy signs: $s = m^{x_S}$, thus (g, y_S, m, s) is a DDH tuple.

*
$$(g, y_S, m, s) = (g, g^a, g^b, g^{ab})$$
 for some a, b

- Signy proves in NIZK that (g, y_S, m, s) is a DDH tuple.
- If Desmond simulates: \overline{s} is chosen randomly, thus $(g, y_S, m, \overline{s})$ is not a DDH tuple with very high probability, $1 \frac{1}{q}$

* $c = g^w y_D^t$ for which Desmond knows the trapdoor x_D

- * Desmond "simulates" proof by using the trapdoor for any $\overline{s} \in \mathbb{Z}_p$
- Signy can disavow, w.h.p. $1 \frac{1}{q}$, by proving that $\overline{s} \neq m^{x_s}$

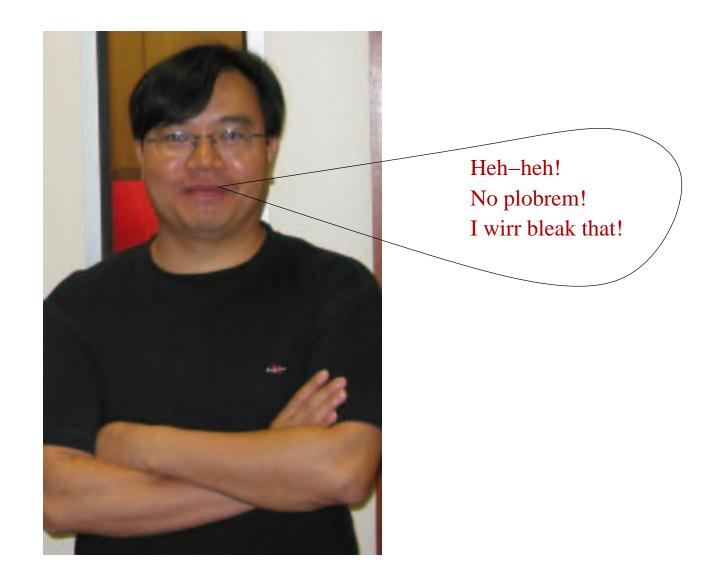
Koke, ETD 2005, Estonia, 26.01.2005

Thus spake Markus to both:

- To generate a valid $\sigma \leftarrow (s; w, t, h, z)$ you must know either x_S or x_D
- Thus Desmond knows σ was generated by Signy
 - * Since Desmond did not generate it himself
- \bullet Any third party doesn't know whether σ was generated by Signy or Desmond

And Signy was very happy and Desmond coverted in snow.

But Desmond met Guilin and Guilin spake to him:



Koke, ETD 2005, Estonia, 26.01.2005

But Desmond met Guilin and Guilin spake to him:

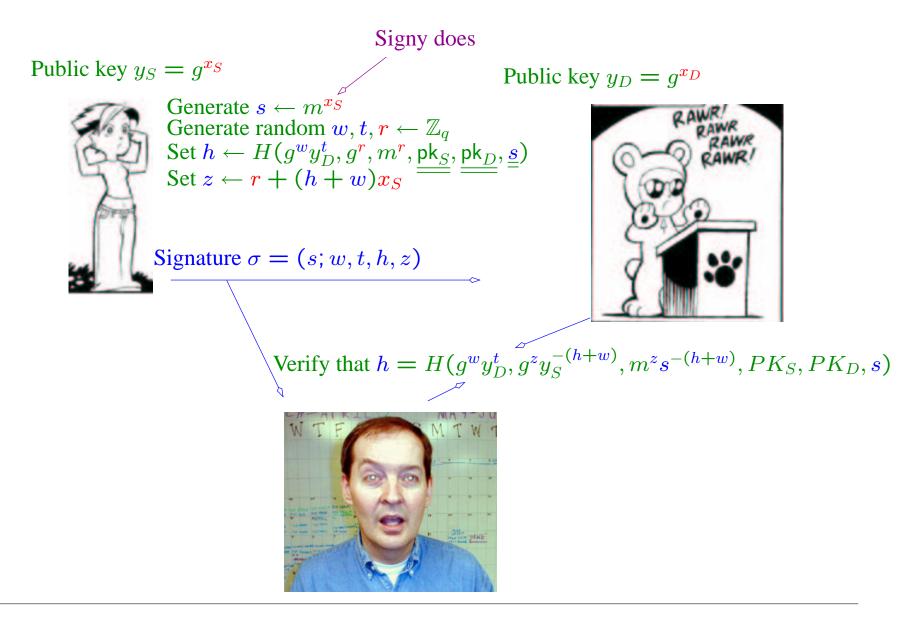
Public key $y_S = q^{x_S}$ Public key $y_D = g^{x_D}$ Generate random $w, t, r \neq \overline{r} \leftarrow \mathbb{Z}_q$ Set $h \leftarrow H(g^w y_D^t, g^r, m^{\overline{r}})$ Set $z \leftarrow r + (h + w)x_S$ Set $\overline{s} \leftarrow m^{x_S} \cdot m^{(r-\overline{r})/(h+w)}$ Signature $\sigma = (\overline{s}; w, t, h, z)$ Signy can also do this! Verify that $h = H(g^w y_D^t, \underbrace{g^z y_S^{-(h+w)}}_{g^{z-(r-\overline{r})}=g^r}, \underbrace{m^{z}(\overline{s})^{-(h+w)}}_{m^{z-(h+w)}x_S^{-(r-\overline{r})}=m^{\overline{r}}})$

But Desmond met Guilin and Guilin spake to him:

- Verification succeeds, thus Desmond accepts it as Signy's signature
- However, since $\overline{s} \neq m^{x_S}$, Signy can later disavow it!

And Desmond was not so happy anymore.

Quick fix:



Then, Signy met some other people

• Steinfeld, Bull, Wang and Pieprzyk said: use a bilinear pairing $\langle\cdot,\cdot\rangle$

 $\star \ \langle b^a, d^c \rangle = \langle b, d \rangle^{ac}$

- Signy signs m: $s = \langle m^{x_S}, y_D \rangle = \langle m, g \rangle^{x_S x_D}$
- Desmond simulates: $\overline{s} = \langle m^{x_D}, y_S \rangle = \langle m, g \rangle^{x_S x_D}$
- Here, Signy cannot disavow since $s = \overline{s}$

And Signy was happy again and kissed Pieprzyk.

Koke, ETD 2005, Estonia, 26.01.2005

However, Desmond met Guilin again

Guilin spake to Desmond:

- Signy can compute $y_{SD} := g^{x_S x_D}$ and publish it
- Then anybody can sign m as ${\color{black}s}=\langle m,y_{SD}\rangle=\langle m,g\rangle^{x_Sx_D}$
- Thus Signy can delegate her subscription to your library, without revealing her public key

And Desmond wanted to cry.

And so forth and so forth

- Signy and Desmond met many wise men who proposed better and better designated verifier signature schemes.
- However, Guilin broke them all!
- Sad story, eh?
- Signy even thought about never reading a book again!

What went wrong?

- [JSI1996]: disavowability claimed but does not exist
- [SBWP2003] and some other schemes were delegatable
- \Rightarrow propose a modification that is *unforgeable*
 - $\star\,$ Use as tight reductions as possible
 - \star ... and as weak trust model as possible
- \Rightarrow Eliminate disavowal or make it "secure"
 - Non-delegatability was never considered before
- \Rightarrow Define non-delegatability and propose a non-delegatable scheme

Consider the next game:

- Choose random key pairs for Signy and Desmond
- Give the Forger both public keys, an oracle access to Signy's signing algorithm, Desmond's simulation algorithm and the hash function
- Forger returns a message m and a signature σ

Forger is *successful* if verification on (m, σ) succeeds and he never asked a sign/simul query on m that returned σ

Scheme is $(\tau, q_h, q_s, \varepsilon)$ -unforgeable \iff no (τ, q_h, q_s) -forger has success probability $> \varepsilon$

Forger runs in time τ , does q_h queries to hash function and q_s queries to either signing or simulation algorithmKoke, ETD 2005, Estonia, 26.01.2005Designated Verifier Signatures, Helger Lipmaa

Non-Transferability

- A scheme is *perfectly* non-transferable if signatures generated by Signy and Desmond come from the same distribution.
 - * Perfectly non-transferable schemes *cannot* have disavowal protocols!
 - * As we showed, JSI is perfectly non-transferable!
- A scheme is *computationally* non-transferable if signatures generated by Signy and Desmond come from distributions that are computationally indistinguishable.
 - Computationally non-transferable schemes may have a trapdoor that can be used for constructing disavowal protocols

Non-Delegatability

Requirement: if Forger produces valid signatures with probability $> \kappa$ then he knows either the secret key of Signy or the secret key of Desmond

We require there exists a knowledge extractor such that

If a Forger produces a valid signature σ on m w.p. ε > κ
then knowledge extractor, given (m, σ) and oracle access to Forger on the memory state that results in producing (m, σ), produces one of the two secret keys in time ^τ/_{ε-κ}.

Then the scheme is (τ, κ) -non-delegatable.

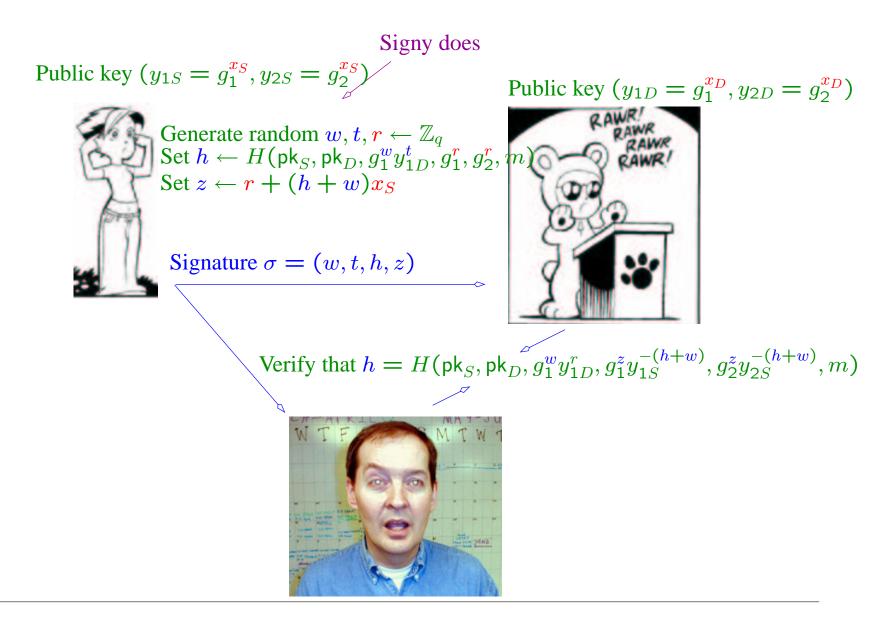
Outline

- Motivation for DVS
- Attacks on Some Previous Constructions
- New Security Notions
- Our Own Construction
- Conclusion

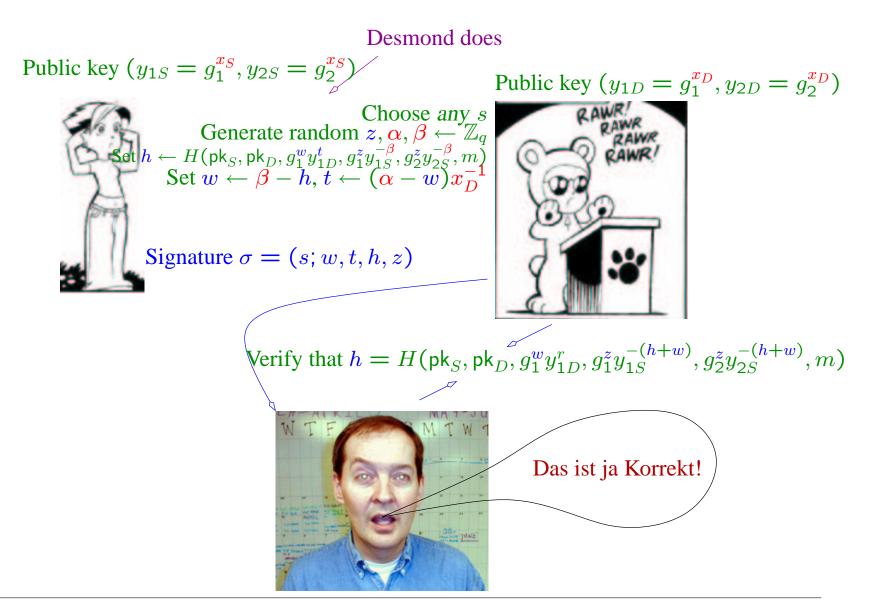
Underlying Idea of Our Scheme

- If Signy signs: she proves that her public key $(g_1, g_2, y_{1S} = g_1^{x_S}, y_{2S} = g_2^{x_S})$ is a DDH tuple.
- We again employ $c = g^w y_D^t$ (trapdoor commitment) for which Desmond knows the trapdoor x_D , thus the proof is designated-verifier.
- Desmond simulates this proof by using the trapdoor information
- Signy cannot disavow since there is perfect non-transferability

And Thus We Spake to Signy:



And Thus We Spake to Desmond:



Properties of The New Scheme

- Twice longer public keys than in JSI enables to get tight unforgeability reductions
 - * In non-programmable random oracle model
- No disavowal
 - * Orthogonal to the security requirements of an DVS scheme
- Non-delegatability: proven, but the reduction is not tight

Unforgeability

Theorem. Let G, |G| = q be a (τ', ε) -time DDH group. The proposed scheme is $(\tau, q_h, q_s, \varepsilon)$ -unforgeable in the non-programmable random oracle model with $\tau \leq \tau' - (3.2q_s + 5.6)t_{\text{exp}}$ and $\varepsilon \geq \varepsilon' + q_s q_h q^{-2} + q^{-1} + q_h q^{-2}$.

Proof sketch: Adversary *A* has to solve DDH on input $(g_1, g_2, y_{1D}, y_{2D})$. Set this to Desmond's public key, and set Signy's public key to be equal to a random DDH tuple (for which *A* knows the corresponding secret key). Give *A* an oracle access to Forger. Answer all hash queries truthfully (but store them). Answer all signing and simulation queries by following Signy's algorithm. (Possible since *A* knows Signy's secret key.) It comes out that *A* works in time and with success probability, claimed above.

Note: This is a tight reduction. In practical setting it means that whenever you can forge a signature—e.g., 2^{-80} —, you can almost always solve DDH and in comparable time.

Koke, ETD 2005, Estonia, 26.01.2005

Non-programmable random oracle model

RO model	NPRO model
Environment doesn't have access to the RO.	Environment has access to the RO.
In the Katz-Wang signature scheme: adversary does not know signer's secret key, and thus cannot create valid signa- tures without defining a H that just satisfies the verification equation	In our scheme: adversary has access to Signy's secret key, and can thus create valid signatures with- out redefining <i>H</i>
Best case proof : shows that for every adversary, there exists a function H such that the result holds	Average case proof: shows that the result holds for a randomly chosen function H
But H depends on Forger's actions and thus cannot be instantiated in some sense!	H can be chosen in advance

New Conventional Signature Scheme

- Take the new DVS scheme with assumption that Desmond is a trusted third party, and his public key is a common reference string (CRS).
- That is, Signy signs *m* by
 - * Choosing random $w, t, r \leftarrow_R \mathbb{Z}_q$
 - * Setting $h \leftarrow H(\mathsf{pk}_S, g_1^w y_{1S}^t, g_1^r, g_2^r, m)$
 - * Setting $z \leftarrow r + (h + w)x_S$ and outputting $\sigma = (w, t, h, z)$
- New signature scheme with tight security reduction to DDH problem in NPRO+CRS model

Koke, ETD 2005, Estonia, 26.01.2005

Delegatability

Theorem. Let $\kappa \geq 1/q$. Assume that for some message m, Forger can produce signature in time τ' and with probability $\varepsilon \geq \kappa$. Then there exists a knowledge extractor that on input a valid signature σ and on black-box oracle access to Forger (with an internal state compatible with σ) can produce one of the two secret keys in expected time $\tau \leq 56\tau'/\kappa$.

Note: This is an imprecise reduction. For example, if Forger has advantage 2^{-30} then Knowledge Extractor works in time $2^{36} \cdot \tau'$, with probability 1.

Conclusions

- And Desmond was happy since only valid subscribers were able to borrow the books.
 - * And these subscribers could not delegate their subscriptions!
- And Signy was happy since Desmond could not prove that she borrowed these books.

Any questions?

Caveat: This presentation is based on a draft version of the paper!

Koke, ETD 2005, Estonia, 26.01.2005