
Designated Verifier Signature Schemes:
Attacks, New Security Notions and A New Construction

Helger Lipmaa1, Guilin Wang2, Feng Bao2

1 Cybernetica AS and University of Tartu, Estonia
2 Institute for Infocomm Research (I2R), Singapore

Abstract. We show that the signer can abuse the disavowal protocol in
the Jakobsson-Sako-Impagliazzo designated-verifier signature scheme. In addi-
tion, we identify a new security property—non-delegatability—that is essential
for designated-verifier signatures, and show that several previously proposed
designated-verifier schemes are delegatable. We give a rigorous formalisation
of the security for designated-verifier signature schemes, and propose a new
and efficient designated-verifier signature scheme that is provably unforgeable
under a tight reduction to the Decisional Diffie-Hellman problem in the non-
programmable random oracle model, and non-delegatable under a loose reduc-
tion in the programmable random oracle model. As a direct corollary, we also
get a new efficient conventional signature scheme that is provably unforgeable
under a tight reduction to the Decisional Diffie-Hellman problem in the non-
programmable random oracle plus common reference string model.
Keywords. Designated verifier signature scheme, non-delegatability, non-
programmable random oracle model, signature scheme.

1 Introduction

In 1996, Jakobsson, Sako and Impagliazzo introduced the concept of designated-verifier
signature (DVS) schemes [JSI96]. A DVS scheme makes it possible for a prover Signy
to convince a designated verifier Desmond that she has signed a statement so that
Desmond cannot transfer the signature to a third party Trevor. This is achieved since
Desmond himself can efficiently simulate signatures that are indistinguishable from
Signy’s signatures. Moreover, in a disavowable DVS scheme, Signy can prove to Trevor
that a simulated signature was not created by Desmond, while she can not disavow her
own signatures. This is possible only when Signy’s and Desmond’s signatures are com-
putationally but not perfectly indistinguishable.

We point out weaknesses in the designated-verifier signature schemes
of [JSI96,SKM03,SBWP03,SWP04,LV04]. Of these schemes, the JSI scheme
from [JSI96] is the only disavowable DVS scheme. However, we show that in the JSI
scheme, a malicious Signy can generate signatures exactly from the same distribution
as Desmond and thus the JSI scheme is perfectly non-transferable and thus also not dis-
avowable. Our attack against the DVS schemes from [SKM03,SBWP03,SWP04,LV04]
is not an attack according to the definitions of the designated verifier signatures in these
papers, although it is an attack according to the original informal definition of [JSI96]:
namely, we show that Signy can delegate her signing ability—with respect to a fixed



designated verifier Desmond—to a third party Trevor, without revealing her secret key
or making it possible for Trevor to sign with respect to other designated verifiers. This
delegation property, while desirable in some settings (e.g., proxy DVS schemes), is
extremely undesirable in many other settings and must therefore be considered as a
serious weakness of a DVS scheme.

By pointing out the described flaws in these designated verifier signature scheme,
we arrive to a stronger security notion for DVS that includes two novel requirements:
(a) most importantly,non-delegatability: there exists an efficient knowledge extractor
that can extract either Signy’s secret key or Desmond’s secret key, when given oracle
access to an adversary who can create valid signatures with a high probability (this
property is not shared by the DVS schemes from [SKM03,SBWP03,SWP04,LV04]),
and (b) secure disavowability: if the DVS scheme has a disavowal protocol, it must be
the case that Signy cannot disavow signatures, given by herself (this property is not
shared by the DVS scheme from [JSI96]).

Non-delegatability of a DVS means that a valid designated-verifier signature con-
stitutes a proof of knowledge of either Signy’s or Desmond’s secret key. Now, for con-
ventional signatures, ability to sign is conceptually equal to the knowledge of the secret
key. Therefore, a valid signature does not be a proof of knowledge. Now, as it is known
from [KW03], one can construct conventional signature schemes whose unforgeability
is proven by giving a tight reduction to an underlying cryptographic problem; this is
achieved by specially avoiding the use of proofs of knowledge. However, in the case of
a DVS scheme, we can also avoid proofs of knowledge in the proof of unforgeability,
but not in the proof of non-delegatability. Therefore, even if we have a proof that a DVS
scheme is unforgeable (w.r.t. any verifier), we cannot directly derive from that that this
scheme is also non-delegatable. Therefore, in some sense, a (non-delegatable) DVS is
a more “complex” notion than a conventional signature scheme.

It is not difficult to show that the DVS scheme from [JSI96] is secure—more
precisely, unforgeable, non-delegatable, computationally non-transferable and securely
disavowable—after a trivial fix of just adding some additional variables under the used
hash value, by following the usual proof of knowledge methodology. We do not present
these proofs in this paper: while it is straightforward to prove these results, the corre-
sponding proofs do not really give an insight to the just pointed out difference between
unforgeability and non-delegatability.

Instead, we propose a new DVS scheme,DVS-KW, based on the provably secure
signature scheme of Katz and Wang [KW03], where the signer presents a designated-
verifier proof that his public key is a Decisional Diffie-Hellman (DDH) tuple. We prove
that DVS-KW is unforgeable by providing a tight reduction to the underlying cryp-
tographic problem (DDH) in the non-programmable random oracle (NPRO) model.
The NPRO model is is known to be strictly weaker than the random oracle (RO)
model [Nie02] and thus the unforgeability ofDVS-KW in the NPRO model is interest-
ing by itself, especially since the unforgeability proof of the original Katz-Wang signa-
ture scheme relies heavily on the programmability of the random oracle. We also prove
non-delegatability ofDVS-KW, though this proof is in the programmable random ora-
cle model and has a larger security degradation due to the involved proof-of-knowledge
property. More precisely, we show that if some forger can create valid signatures with



probabilityε > κ whereκ is the knowledge error, then there exists a knowledge extrac-
tor that extracts one of the two secret keys in time, dominated by56/κ oracle queries
to the forger.

DVS-KW can be seen as a proof of concept, showing how to design DVS schemes
that have a tight reduction in the unforgeability proof and are still non-delegatable.
Moreover,DVS-KW is more efficient than the JSI scheme from [JSI96], andDVS-KW
does not allow the signer to disavow simulated signatures; the latter property makes
DVS-KW attractive in many applications. (Recall also that we broke the disavowability
of the JSI scheme.) At this moment, the most efficient secure disavowable designated-
verifier signature scheme seems to be the corrected JSI DVS scheme, while the most
efficient secure designated-verifier signature scheme seems to be theDVS-KW scheme.

We also show the existence of an efficient conventional signature scheme that is
unforgeable under a tight reduction to the Decisional Diffie-Hellman problem in the
NPRO+CRS (common reference string) model. In this model, all parties will addition-
ally have access to the common reference string that corresponds to Desmond’s public
key in DVS-KW. The importance of this result is that signature schemes, secure in
the plain model, are considerably slower than this scheme and/or are secure under in-
compatible and often less studied assumptions. Therefore, if one wants to avoid the
programmable random oracle model—where one can construct very efficient signature
schemes—one might want to use the new scheme.

2 Preliminaries

Let Gq be a finite, cyclic group of prime orderq in which the group operation is rep-
resented multiplicatively; furthermore, letg be a generator ofG. The most common
setting is as follows: letp, q be two large primes such thatq|(p − 1), thenGq a mul-
tiplicative subgroup ofZ∗

p of order q, andg a generator ofGq. Other settings (e.g.,
using elliptic curves) are possible. A distinguishing algorithmA is said to(τ, ε)-break
DDH (Decisional Diffie-Hellman) in groupGq if A runs in time at mostτ and further-
moreAdvddh

G (A) := |Pr[x, y, z ←r Zq : A(g, gx, gy, gz) = 1] − Pr[x, y ←r Zq :
A(g, gx, gy, gxy) = 1]| ≥ ε, where the probability is taken over the choice of random
variables and the coin tosses ofA. We say thatG is a(τ, ε)-DDH group if no algorithm
(τ, ε)-breaks DDH inG.

A designated-verifier signature scheme[JSI96] is a tuple of probabilistic algorithms
(Gen,Sign,Simul,Vrfy) over a message spaceM, such that: (a) The key-generation al-
gorithmGen outputs a public keypk and a secret keysk; (b) The signing algorithmSign
takes as input signer’s secret keyskS , designated verifier’s public keypkD and a mes-
sagem ∈M and returns signatureσ; (c) The simulation algorithmSimul takes as input
signer’s public keypkS , designated verifier’s secret keyskD and a messagem ∈ M
and returns signatureσ; (d) Verification algorithmVrfy takes as input signer’s public
key pkS , designated verifier’s public keypkD, a messagem ∈ M, and a signatureσ
and returnsaccept or reject. In some of the existing designated verifier schemes, the
verification algorithm must have access to the designated verifier’s secret keyskD. We
call such a designated-verifier signature schemeprivately verifiable. We make the stan-
dard correctness requirement: for all(skS , pkS) and(skD, pkD) output byGen and for



all m ∈ M we haveVrfypkS ,pkD
(SignskS ,pkD

(m)) = VrfypkS ,pkD
(SignskD,pkS

(m)) =
accept. We say that a signatureσ is valid if VrfypkS ,pkD

(σ) = accept.

3 Previous DVS Schemes and Their Security

Jakobsson-Sako-Impagliazzo Disavowable DVS Scheme [JSI96].Let p, q andGq

be as described in Sect. 2. Assume that Signy and Desmond have the Diffie-Hellman
key pairs(xS , yS = gxS mod p) and (xD, yD = gxD mod p), respectively. As-
sume thatHq is a random oracle mapping toZq. (Note: If m /∈ Zp thenm must be
hashed by using a full-domain hash, modelled by a random oracle. We will ignore this
issue throughout this paper.) InSignskS ,pkD

(m), Signy setss ← mxS mod p, selects
three random numbersw, t, r ←r Zq, and computesG ← gr mod p, M ← mr

mod p, h ← Hq(gwyt
D mod p,G,M) and z ← r + (h + w)xS mod q. Then,

Signy sends the signatureσ := (s, P ), whereP = (w, t, G,M, z), to the desig-
nated verifier, Desmond. InSimulskD,pkS

(m, s), by selecting three random numbers
z, α, β ←r Zq, Desmond createsP = (w, t, G,M, z), for any messagem and any
s ← Gq, as follows: (G, M) ← (gzy−β

S mod p, mzs−β mod p), h ← Hq(gα

mod p,G,M), w ← β−h mod q, t← (α−w)x−1
D mod q. He setsσ ← (s, P ). In

VrfypkS ,pkD
(m; s, w, t, G, M, z), the verifier computesh← Hq(gwyt

D mod p,G,M)

and checks whetherG = gzy
−(h+w)
S mod p andM = mzs−(h+w) mod p. The JSI

scheme can be made more communication-efficient by transferringh (instead ofG and
M ) to Desmond. Then the verifier must check thath = Hq(gwyt

D mod p, gz ·y−(h+w)
S

mod p, mz · s−(h+w) mod p). This version is security-wise equivalent to the original
scheme but somewhat more efficient.

Our Attack:First, a honest Signy generates valid signatures only fors = mxS while
Desmond can generate valid signatures for anys ∈ Z∗

p. That is, knowingxS , a honest
Signy generates valid designated-verifier proofP only for s = mxS , while knowing
xD, Desmond generates valid designated-verifier proofsP for any s ∈ Z∗

p. Thus it
suffices to have a disavowal where Signy proves in non-interactive zero-knowledge that
s 6= mxS . Next, we show that Signy can also compute valid signatures for anys̄ ∈ Z∗

p,
therefore, Signy can create signatures from the same distribution as Desmond and thus,
the JSI scheme is perfectly non-transferable. This means that there exists no disavowal
protocol for the JSI scheme at all.

Here is how Signy does it. Signy computes a signature(s̄;w, t, G, M̄, z) for a mes-
sagem, with s̄ 6= mxS , as follows. She selects four random numbersw, t, r, r̄ ←r Zq

and then setsc ← gwyt
D mod p, G ← gr mod p, M̄ ← mr̄ mod p, h ←

Hq(c,G, M̄), z ← r + (h + w)xS mod q and s̄ ← mxS · m(r−r̄)/(h+w) mod q

mod p. After that, Signy sends the message-signature pair(m, s̄) with σ̄ = (s̄, P =
(w, t, G, M̄, z)), to Desmond. Clearly,VrfypkS ,pkD

(m, σ̄) = accept so Desmond will
believe that̄s is Signy’s signature for messagem. In later disputes, however, Signy can
convince a third party (e.g., a judge) thats̄ was simulated by Desmond, by using a stan-
dard disavowal protocol to show thatlogg yS 6= logm s̄. This attack does not result in a
signature forgery, it just shows that the JSI scheme is not disavowable.



There are two intuitive countermeasures to avoid this attack. First, Signy provides
an additional proof of knowledge thatlogm M = logg G. However, this increases the
signature length. Second, includes (together withpkS andpkD) to the input of the hash
function. This turns out to be is sufficient, related discussion can be found in Sect. 6.

Saeednia-Kremer-Markowitch privately verifiable DVS Scheme [SKM03].Let p,
q andGq be as defined in Sect. 2. In the SKM scheme, Signy and Desmond have the
Diffie-Hellman key pairs(xS , yS = gxS mod p) and(xD, yD = gxD mod p), re-
spectively. Assume thatHq(·) is a random oracle mapping toZq. In SignskS ,V KD

(m),
Signy selects two random numbersk ←r Zq, t ←r Z∗

q , and then computes the signa-
tureσ = (h, d, t) by settingc ← yk

D mod p, h ← Hq(m, c) andd ← kt−1 − h · xS

mod q. In SimulskD,pkS
(m), Desmond picks two random numbersd̄←r Zq, r̄ ←r Z∗

q ,

and then computesσ = (h, d, t) as follows: forc← gd̄yr̄
S mod p, seth← Hq(m, c),

d← h · d̄ · r̄−1 mod q andt← r̄ · (xD · h)−1 mod q. In VrfypkS ,skD
(m;h, d, t), the

verifier accepts iffh = Hq(m, (gdyh
S)txD mod p).

Our attack:We show that the knowledge ofySD := gxS ·xD mod p is sufficient to
generate both a valid signature and to verify it, and therefore, this scheme is delegat-
able (both in the sense of signing and verifying). On the one hand, givenySD, one can
verify whether a message-signature pair(m,h, d, t) is valid for the designated verifier
Desmond by checking whetherh = Hq(m, (yd

Dyh
SD)t mod p). On the other hand,

given ySD, anybody can produce a valid designated-verifier signatureσ = (h, d, t)
for any messagem by selecting two random numbers̄d ←r Zq, r̄ ←r Z∗

q , and then

settingc ← yd̄
Dyr̄

SD mod p, h ← Hq(m, c), d ← h · d̄ · r̄−1 mod q andt ← r̄h−1

mod q. The resulting signatureσ = (h, d, t) is accepted by the verifier, since(gdyh
S)txD

mod p = (gh·d̄·r̄−1
yh

S)r̄·h−1xD = yd̄
Dyr̄

SD mod p = c. In particular, this means that
this scheme is perfectly non-transferable. (The authors of [SKM03] get the same result
by a complicated analysis of probability theory.) It might again seem that one can rem-
edy this situation by includingt under the hash. However, in the simulation, Desmond
needs to chooset after fixingh, and therefore this fix does not work.

Steinfeld-Wang-Pieprzyk DVS. Assume again thatp, q and Gq are as defined in
Sect. 2. At least the first privately-verifiable DVS scheme,SchUDVS1, from [SWP04] is
also delegatable. Recall that there, a designated-verifier signature of messagem is equal
to (r, u, K), for r ← Hq(m,u), and the verifier accepts only whenK = (u · yr

S)xD

mod p. But if Signy publishesySD ← yxS

D , anybody can produce valid signatures by
settingu ← gk mod p andK ← yk

D · yr
SD mod p for randomk ←r Zq. Thus, also

this scheme is delegatable.

Steinfeld-Bull-Wang-Pieprzyk and Laguillaumie-Vergnaud DVS. The SBWP
designated-verifier signature scheme from [SBWP03] is based on a group pair(G1,G2)
with bilinear pairing〈·, ·〉 from G2

1 , with ordG1 = q, to G2. (See [SBWP03] for more
details.) Letm be the message to be signed,HG1—a random oracle with outputs from
G1, and letg be a generator ofG1. Assume that Signy’s key-pair is(xS , yS = gxS )
and that Desmond’s key-pair is(xD, yD = gxD ) for randomly chosenxS , xD ← Zq.
Signy’s designated-verifier signature on a messagem is σ ← 〈HG1(m)xS , yD〉.
Desmond simulates the signature by settingσ ← 〈HG1(m)xD , yS〉. The signature



is verified by checking thatσ = 〈HG1(m)xD , yS〉. Again, if the value ofySD =
gxSxD mod q is compromised, any entity who gets to knowySD can also produce a
valid σ by computingσ ← 〈HG1(m), ySD〉. Therefore, this scheme is also delegatable.
The Laguillaumie-Vernaud [LV04] DVS scheme is delegatable for the same reason.

4 DVS Security Definitions

In the original paper [JSI96], a designated-verifier signature was required to convince
the designated verifier Desmond that the signer Signy has signed the message, in a way
that Desmond is able to simulate signature that is indistinguishable from the real signa-
tures, even by a verifier who has access to the designated verifier’s private key. A more
formal definition was given in say [SBWP03]. We will first repeat formal definitions
of unforgeability and non-transferability and then give a definition of the new notion,
non-delegatability.

A designated-verifier signature scheme must satisfy at least the next two condi-
tions: (a) Unforgeability: signatures are verifiable by the designated verifier Desmond
who rejects it when the signature was not signed by himself or Signy, and (b)
Non-transferability: given a message-signature pair(m,σ), that is accepted by the
designated-verifier, and without access to the secret key of the signer, it is computa-
tionally infeasible to determine whether the message was signed by the signer, or the
signature was simulated by the designated verifier.

In the following,Ω denotes the space from which the random oracleH is selected;
definition without a random oracle is analogous. Depending on the situation, we will
have eitherΩ = Ωnpro to be the set of all non-programmable random oracles [Nie02]
or Ω = Ωro to be the set of all random oracles with proper input and output domains.

Let ∆ = (Gen,Sign,Simul,Vrfy) be a designated-verifier signature scheme with
the message spaceM. We say that∆ is perfectly non-transferableif SignskS ,pkD

(m) =
SimulskD,pkS

(m) as distributions for every(pkS , skS) ← Gen, (pkD, skD) ← Gen,
Hq ← Ω andm ←M. Analogously, one can define statistically non-transferable and
computationally non-transferable schemes. An adversial forging algorithmF is said to
(τ, qh, qs, ε)-forge∆ if F runs in time at mostτ , makes at mostqh hash queries and in
total at mostqs signing and simulation queries, and furthermore

Advforge
∆ (F) := Pr

 (pkS , skS)← Gen; (pkD, skD)← Gen;H ← Ω;

(m,σ)← FSignskS,pkD
(·),SimulskD,pkS

(·),H(·)(pkS , pkD) :
σ 6∈ Σ(m) ∧ VrfypkS ,pkD

(m,σ) 6= reject

 ≥ ε ,

where Σ(m) is the set of signatures received either fromSignskS ,pkD
(m) or from

SimulskD,pkS
(m). A designated-verifier signature scheme is(τ, qh, qs, ε)-unforgeable

if no forger can(τ, qh, qs, ε)-forge it. In the case a DVS scheme is only computation-
ally non-transferable, it is important thatΣ(m) also includes signatures received from
SimulskD,pkS

(m). If a scheme is perfectly non-transferable then an access to theSimul
oracle will not help the forger.

Delegatability. The definition of unforgeability does not cover the case when the
signer, without disclosing her secret keyskS , delegates her signing rights (w.r.t. to



a concrete designated verifier Desmond) toF by disclosing some side information
ySD := fS(skS , pkD), that helps the latter to produce valid signatures. Analogously,
the designated verifier might delegate his signature simulating capability by disclos-
ing some—potentially different—side informationy′SD := fD(skD, pkS). This implies
that when Desmond sees a valid signatureσ that is not generated by himself, he can
only conclude thatσ is generated by somebody who knows eitherySD or y′SD. In some
scenarios, Signy may reveal or be forced to reveal the value ofySD to a third party
Trevor so that Trevor can generate valid Signy’s signatures for Desmond. Such a dele-
gation is essentially different from the situation where Signy reveals her secret keyxS

to Trevor, since knowledge ofySD allows Trevor to sign messages designated only to
Desmond, and not to anybody else. Therefore, Signy might be more willing to give out
the valueySD than her secret keyskS . This is not an issue in the case of conventional
signature schemes where non-delegatability follows from unforgeability.

We will next give a longer explanation why delegatability is bad. First of all, in the
original definition of designated-verifier proofs [JSI96], it was said that a proof of the
truth of some statementΦ is a designated-verifier proof if it is a proof that eitherΦ is
true or the signer knows Desmond’s secret key. This intuitive requirement is clearly not
satisfied by delegatable DVS schemes, where a signer proves that eitherΦ is true or she
knowsySD or she knowsy′SD.

Moreover, delegatability is undesirable in many applications of the designated-
verifier signature scheme. We will give two examples. First, in an hypothetical e-voting
protocol where voters sign messages by using a designated-verifier signature scheme
(with the tallier being the designated verifier Desmond), knowing that this information
can only be used to vote in this concrete election, a voter Signy could be motivated to
give a copy ofySD to the coercer for a moderate sum of money. On the other hand, since
Signy might useskS in many other applications, she might not be willing to sendskS

to the coercer for any imaginable “moderate” amount of money. Second, assume that
Signy is a subscriber to an e-library, maintained by Desmond, and that she identifies
herself by using a designated-verifier signature scheme so that Desmond could not sell
Signy’s access history to third parties. If the DVS scheme is delegatable, Signy could
however sendySD to a non-subscriber who could then also start enjoying Desmond’s
service. SinceySD is used only in this application, Signy could be happily willing to do
that. On the other hand, if the DVS were not delegatable, Signy would have to reveal
her secret key. Finally, it may happen that Signy and Desmond also participate in some
other protocols whereySD or y′SD is revealed legitimately and thus the attacker can
gain access to either of these values. Note also that a DVS scheme with delegatability
is somewhat similar to the proxy signatures, except that in the case of proxy signatures,
(a) the verifier can distinguish between messages, signed by Signy and a proxy, and (b)
the signatures are universally verifiable.

The preceding discussion motivates the next definition. It basically says that a non-
delegatable DVS scheme is a non-interactive system of proofs of knowledge of either
skS or skD. Here,Fm denotesF with m as its input, and oracle calls are counted
as one step. More precisely, letκ ∈ [0, 1] be the knowledge error. We say that∆ is
(τ, κ)-non-delegatableif there exists a black-box knowledge extractorK that, for every
algorithmF and for every valid signatureσ, satisfies the following condition: For every



(pkS , skS)← Gen, (pkD, skD)← Gen and messagem, if F produces a valid signature
on m with probability ε > κ then, on inputm and on access to the oracleFm, K
produces eitherskS or skD in expected time τ

ε−κ (without counting the time to make
the oracle queries). (Here,F ’s probability is taken over the choice of her random coins
and over the choice ofHq ← Ω.)

5 New DVS Scheme with Tight Reduction to DDH in NPRO

Let p, q and Gq be as defined in Sect. 2. Letg1, g2 ∈ Gq be two elements such
that nobody knows the mutual discrete logarithms ofg1 andg2. Following the ideas
from [KW03], in the nextDVS-KW DVS scheme, we let Signy to prove Desmond that
(g1, g2, y1S , y2S) is a Decisional Diffie-Hellman tuple, wherexi ←r Zq is i’s private
key andpki := (g1, g2, y1i, y2i) is i’s public key withy1i = gxi

1 andy2i = gxi
2 . This

proof is made designated-verifier by using the same trick as in the JSI scheme [JSI96],
and non-interactive by using a non-programmable random oracle [Nie02]Hq with out-
puts fromZq. In particular, the random oracleHq can be chosen at the same stage
as other system parameters,g1 and g2. This is an interesting result by itself since
in [KW03], Hq had to be aprogrammablerandom oracle for their security proof to
go through. The description of the fullDVS-KW scheme follows:

SignskS ,pkD
(m): Signy generates randomr, w, t ← Zq, and setsa1 ← gr

1 mod p,
a2 ← gr

2 mod p, c← gw
1 yt

1D mod p, h ← Hq(pkS , pkD, a1, a2, c, m) andz ←
r + (h + w)xS mod q. She outputs the signatureσ ← (w, t, h, z).

SimulskD,pkS
(m): By selecting three random numbersz, α, β ←r Zq, Desmond

createsσ = (w, t, h, z) for any messagem as follows: (a1, a2) ← (gz
1y−β

1S

mod p, gz
2y−β

2S mod p), h ← Hq(pkS , pkD, a1, a2, g
α
1 mod p,m), w ← β − h

mod q, t← (α− w)x−1
D mod q.

VrfypkS ,pkD
(m;w, t, h, z): The verifier checks whetherh = Hq(pkS , pkD, gz

1y
−(h+w)
1S

mod p, gz
2y

−(h+w)
2S mod p, gw

1 yt
1D mod p, m).

Security:First, clearly this scheme is correct and perfectly non-transferable. Second,
we can prove the next result that is a generalisation of a proof from [KW03]:

Theorem 1. Let G be a(τ ′, ε′)-DDH group with|G| = q such that exponentiation in
G takes timetexp. Then the above designated-verifier signature scheme is(τ, qh, qs, ε)-
unforgeable in the non-programmable random oracle model, whereτ ≤ τ ′ − (3.2qs +
5.6)texp andε ≥ ε′ + qsqhq−2 + q−1 + qhq−2.

Proof. Assume that we have an algorithmF , running in time at mostτ and making at
mostqh hash queries and in total at mostqs signing and simulation queries, which forges
a new message/signature or a new message/simulated signature pair with probability at
leastε. We useF to construct an algorithmA running in timeτ ′ which solves the DDH
problem with probabilityε′. The stated result follows.

Algorithm A is given as input a tuple(g1, g2, y1D, y2D); its goal is to determine
whether this represents a “random tuple” or a “DDH tuple”. To this end, it setspkD =



(g1, g2, y1D, y2D), sets Signy’s public keypkS to be equal to a random DDH tuple
pkS = (g1, g2, y1S = gxS

1 , y2S = gxS
2 ) for which she chooses the corresponding secret

key xS ← Zq, and runsF on input (pkS , pkD). Algorithm A simulates the signing
oracle and the random oracle forF as follows:

Hash queries. In response to a queryHq(pkS , pkD, a1, a2, c, m), algorithmA re-
sponds withh← Hq(pkS , pkD, a1, a2, c, m). Additionally, if this query was not made
before,A stores the tuple(pkS , pkD, a1, a2, c, m).

Signing and simulation queries. If F asks either for a signature or a simulation
on messagem, thenA attempts to signpkS . That is,A chooses randomr, w, t ← Zq,
setsa1 ← gr

1 mod p, a2 ← gr
2 mod p andc← gw

1 yt
1D mod p. If Hq had previously

been queried on inputHq(pkS , pkD, a1, a2, c, m) thenA aborts (with output0); oth-
erwise,A setsh ← Hq(pkS , pkD, a1, a2, c, m) and outputs the signature(w, t, h, z),
wherez ← r + (h + w)xS mod q.

At some point,F outputs its forgery(m̄, σ̄ = (w̄, t̄, h̄, z̄)), where we assume
that σ̄ was not previously the response to a querySignskS

(m̄) or SimulskD
(m̄). Set

ā1 ← gz̄
1y

−(h̄+w̄)
1S mod p, ā2 ← gz̄

2y
−(h̄+w̄)
2S mod p, c̄ ← gw̄

1 yt̄
1D mod p. Now, if

Hq(pkS , pkD, ā1, ā2, c̄, m̄) = h̄ (i.e.,Vrfypk(m̄, σ̄) = 1), thenA outputs1; otherwise,
A outputs0.

We now analyse the probability thatA outputs1. If (g1, g2, y1D, y2D) is a Diffie-
Hellman tuple, thenA provides a perfect simulation forF except for the possibility
of an abort. An abort can occur duringA’s simulation of any of the signing queries;
in the simulation of any particular signing query, it is not hard to see that the proba-
bility of abort is at mostqh/q2. Thus the overall probability thatA aborts is at most
qsqh/q2. This means thatA outputs a forgery (and henceA outputs1) with proba-
bility at leastε − qsqh/q2. On the other hand, if(g1, g2, y1D, y2D) is a random tu-
ple then with probability1 − q−1 it is not a Diffie-Hellman tuple. In this case, for
any queryHq(pkS , pkD, a1, a2, c, m) made byF there is at mostq possible values of
(w, t, z) such that the verification succeeds. Thus,F outputs a forgery (and henceA
outputs1) with probability at mostq−1 + qhq−2. Putting everything together, we see
thatAdvddh

G (A) ≥ ε−qsqhq−2−q−1−qhq−2 = ε′. The running time ofA includes the
running time ofF and is otherwise dominated by two exponentiations and one multi-
exponentiation that are performed for each query to the signing oracle plus those done
in generating Signy’s key and verifying the output ofF . Assuming as in [KW03] that a
two-exponent multi-exponentiation takes time1.2texp gives the result of the theorem.

ut

On NPRO versus RO model.The non-programmable random oracle model is known
to be strictly weaker than the random oracle model [Nie02]. This is not surprising look-
ing at the corresponding security proofs, e.g., at the security proof in [KW03] and at
the proof of Thm. 1. In the former, the adversary does not know the secret key, and
therefore is forced to program the random oracle to be able to answer successfully to
the signature queries. In the latter, the adversary knows Signy’s secret key, and knowing
this, can answer successfully to the signature and simulation queries without a need to
program the random oracle. A conceptual difference between the two models is that
proofs in the RO model work for the “best case” (showing that for every forger, there



exists a functionHq such that the signature scheme is unforgeable), while proofs in
the NPRO model work for the “average case” (showing that the signature scheme is
unforgeable for a randomly chosen functionHq ← Ωnpro, independent of the forger).
Given such arguments, we think that unforgeability in the NPRO model is an important
property ofDVS-KW.

Conventional signature scheme with tight reduction to DDH in the NPRO+CRS
model. FromDVS-KW, one can build a conventional signature scheme with the same
properties (tight reduction to the DDH problem in the non-programmable random oracle
model) if one additionally assumes the common reference string (CRS) model. More
precisely, in this case, the CRS is equal to a pair(y1D, y2D), drawn randomly from the
set{(gxD

1 , gxD
2 ) : xD ∈ Zq}. It is assumed that nobody will use the corresponding

secret key to simulate a DVS; in our case, this is easily achieved since CRS can be a
random DDH tuple. On the other hand, for the proof to go through,A is allowed to
generate the CRS herself. This scheme is about twice less efficient than the Katz-Wang
scheme, but its security does not rely on programmable random oracles. On the other
hand, this scheme is more efficient than the currently known signature schemes that are
unforgeable in the plain model, and/or has a more standard underlying assumption.

Non-delegatability of DVS-KW. Next, we will give a proof of the non-delegatability
of DVS-KW. Because of the structure of our proof, we expect that an arbitrary DVS
scheme would have a similar time bound in its security proof.

Theorem 2. Assume that for somem ∈ M, F can produce valid signatures in time
τ and with probabilityε. ThenDVS-KW is (56τ/ε, 1

q )-non-delegatable in the pro-
grammable random oracle model.

Proof. Assume thatε > κ = 1/q. We must show there exists a knowledge extractorK
that on inputσ and on black-box oracle access toF can produce eitherskS or skD in
expected timeτ ′ ≤ 56τ/ε and with probability1.

Let Fm be a forger with inputm. Consider two executions ofFm by K on the
same random input ofFm. In both cases,K executesFm step-by-step, except that
K returns different random values (h versush′) as the answer to the hash query
Hq(pkS , pkD, a1, a2, c, m). Since(a1, a2, c) are under the hash, their values must be
equal in both runs. If both signatures are valid, one must havez − (h + w)xS ≡
z′−(h′+w′)xS mod q andw+txD ≡ w′+t′xD mod q, where(w, t, h, z) is the first
signature and(w′, t′, h′, z′), h 6= h′, is the second signature. Now we have two cases. If
w 6≡ w′ mod q then one can findxD ← (w−w′)/(t′− t) mod q. If w ≡ w′ mod q
thenh+w 6≡ h′ +w′ mod q and thus one can findxS ← (z− z′)/(h−h′ +w−w′)
mod q. Now, assumeRewind is an algorithm that, given an oracle access toFm, in time
τR, for someτR, produces two different valid signatures(w, t, h, z) and(w′, t′, h′, z′)
on m, such thath 6= h′ but (a1, a2, c) = (a′1, a

′
2, c

′). Then one can compute eitherxS

or xD with probability1. Thus, given that algorithmRewind runs in expected time56/ε
(counting every access toFm as one step), we have proven the theorem.

Next, let us describe the algorithmRewind. We are given a forgerFm who returns
a signature(w, t, h, z) that may or may not be correct. We are given that the probability
of a correct answer taken overFm coins and the choice ofh is at leastε. We want to
find correct answers to two differenth-values for a given(a1, a2, c, m) as efficiently as



possible. The idea is to run the prover, and use rewinding to try to make him answer
two different challenges correctly. But to run him, we need to supply random coins.
Although we know that the average success probability isε, we do not know thatFm

is equally successful with any random input. To get a better view of this, letH be a
matrix with a row for each possible set of random coins forFm, and one column for
each possible challenge value. Write1 in an entry ifFm answers correctly with the
corresponding random choices and challenge, and0 otherwise. UsingFm as black-
box, we can probe any entry we want inH, and our goal can be rephrased to: find two
1’s in the same row. What we know is thatε equals the fraction of1-entries inH. Now,
Rewind uses an algorithm from [DF02] to find such1 entries in time56/ε. ut

6 On Disavowability

In a few proposed designated-verifier signature schemes [JSI96], given a pair(m,σ),
Signy and Desmond cannot prove to a third party, even when they join their forces,
which one of them generatedσ. In some other schemes—that we calldisavowable—
Signy can prove that (a) she signed messages that she really signed, and (b) she has
not signed signatures, simulated by Desmond. This is achieved by decomposing the
signatureσ of a messagem in two non-empty parts,s (“undeniable signature”) and
P (“designated-verifier proof”), where for every messagem and for every possibly
incorrects̄, the designated verifier can produce a simulated proofP̄ such that the dis-
tribution of (s̄, P̄ ) is computationally indistinguishable from the distribution of the real
signature(s, P ). Therefore, in this case,Simul takes an additional arguments̄, and
one requires also the existence of four additional protocols,Confirm, ConfirmVrfy,
Disavowal andDisavowalVrfy. To model our attack on the JSI scheme we must also
define “secure disavowability”. The idea behind such definition is to prove that if
VrfypkS ,pkD

(m, s) = accept and on input(m, s), an oracle machineF can, with high
probability, produce aδ such thatDisavowalVrfypkS ,pkD

(m;σ, δ) = success then there
exists a knowledge extractor that can useF to recoverskD.

The JSI scheme [JSI96] was claimed to be disavowable—although, as shown earlier
in this paper, it is not—while most of the subsequent DVS schemes provide perfect
non-transferability and thus are not disavowable. (If a DVS scheme is perfectly non-
transferable then there is no trapdoor information that Signy might use to prove that a
message was or was not signed by her. Thus, to make it able for Signy to disavow a
signature, a DVS scheme must be computationally but not perfectly non-transferable.)
However, even in [JSI96], disavowability was not seen as a feature of the DVS schemes
and disavowability was never formally defined; their scheme, being based on Chaum’s
undeniable signature, just happens to have this property.

Corrected JSI Scheme:JSI+. As mentioned before, the original JSI scheme, is secure
including pkS , pkD ands = mxS under the hash. Since we want this scheme to be
disavowable,SimulskD,pkS

also gets an additional inputs ∈ Zp. Clearly,JSI+ is com-
putationally but not perfectly non-transferable. Unforgeability, non-delegatability and
secure disavowability of this scheme can be proven by using standard cryptographic
tools, although most probably either in the RO model or with looser reductions. One
of the reasons is that sinceDVS-KW is perfectlynon-transferable, in its unforgeability



proofA could answer signing and simulation queries in the same manner. Therefore, it
was sufficient forA to know only one ofskS andskD to simulate both kind of queries
without using a programmable random oracle. It is not a priori clear how to achieve the
same in the case ofJSI+.

Further work and acknowledgments.We feel that this paper raises interesting ques-
tions about the relationship between different non-standard security models; it is an
interesting open question to study the necessity of these models in any concrete case.
We would like to thank anonymous referees for useful comments. The first author was
partially supported by the Estonian Science Foundation.

References

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. An Integer Commitment Scheme Based on
Groups with Hidden Order. In Yuliang Zheng, editor,Advances on Cryptology —
ASIACRYPT 2002, volume 2501 ofLecture Notes in Computer Science, pages 125–
142, Queenstown, New Zealand, December 1–5, 2002. Springer-Verlag.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated Verifier Proofs
and Their Applications. In Ueli Maurer, editor,Advances in Cryptology — EURO-
CRYPT ’96, volume 1070 ofLecture Notes in Computer Science, pages 143–154,
Saragossa, Spain, May 12–16, 1996. Springer-Verlag.

[KW03] Jonathan Katz and Nan Wang. Efficiency Improvements for Signature Schemes with
Tight Security Reductions. In10th ACM Conference on Computer and Communica-
tions Security, pages 155–164, Washington, D.C., USA, October 27–31, 2003. ACM
Press.

[LV04] Fabien Laguillaumie and Damien Vergnaud. Designated Verifier Signatures:
Anonymity and Efficient Construction from Any Bilinear Map. In Carlo Blundo
and Stelvio Cimato, editors,Security in Communication Networks, 4th International
Conference, SCN 2004, volume 3352 ofLecture Notes in Computer Science, pages
105–119, Amalfi, Italy, September 8–10, 2004. Springer Verlag.

[Nie02] Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In Moti Yung, editor,Advances in
Cryptology — CRYPTO 2002, 22nd Annual International Cryptology Conference,
volume 2442 ofLecture Notes in Computer Science, pages 111–126, Santa Barbara,
USA, August 18–22, 2002. Springer-Verlag.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal
Designated-Verifier Signatures. In Chi Sung Laih, editor,Advances on Cryptology —
ASIACRYPT 2003, volume 2894 ofLecture Notes in Computer Science, pages 523–
542, Taipei, Taiwan, November 30–December 4, 2003. Springer-Verlag.

[SKM03] Shahrokh Saeednia, Steve Kremer, and Olivier Markowitch. An Efficient Strong Des-
ignated Verifier Signature Scheme. In Jong In Lim and Dong Hoon Lee, editors,
Information Security and Cryptology - ICISC 2003, volume 2971 ofLecture Notes
in Computer Science, pages 40–54, Seoul, Korea, November 27–28, 2003. Springer-
Verlag.

[SWP04] Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk. Efficient Extension of Standard
Schnorr/RSA Signatures into Universal Designated-Verifier Signatures. In Feng Bao,
Robert H. Deng, and Jianying Zhou, editors,Public Key Cryptography 2004, volume
2947 ofLecture Notes in Computer Science, pages 86–100, Singapore, March 1–4,
2004. Springer-Verlag.


