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Abstract. We show that the signer can abuse the disavowal protocol in
the Jakobsson-Sako-Impagliazzo designated-verifier signature scheme. In addi-
tion, we identify a new security property—non-delegatability—that is essential
for designated-verifier signatures, and show that several previously proposed
designated-verifier schemes are delegatable. We give a rigorous formalisation
of the security for designated-verifier signature schemes, and propose a new
and efficient designated-verifier signature scheme that is provably unforgeable
under a tight reduction to the Decisional Diffie-Hellman problem in the non-
programmable random oracle model, and non-delegatable under a loose reduc-
tion in the programmable random oracle model. As a direct corollary, we also
get a new efficient conventional signature scheme that is provably unforgeable
under a tight reduction to the Decisional Diffie-Hellman problem in the non-
programmable random oracle plus common reference string model.
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1 Introduction

In 1996, Jakobsson, Sako and Impagliazzo introduced the concept of designated-verifier
signature (DVS) schemes [JS196]. A DVS scheme makes it possible for a prover Signy
to convince a designated verifier Desmond that she has signed a statement so that
Desmond cannot transfer the signature to a third party Trevor. This is achieved since
Desmond himself can efficiently simulate signatures that are indistinguishable from
Signy’s signatures. Moreover, in a disavowable DVS scheme, Signy can prove to Trevor
that a simulated signature was not created by Desmond, while she can not disavow her
own signatures. This is possible only when Signy’s and Desmond’s signatures are com-
putationally but not perfectly indistinguishable.

We point out weaknesses in the designated-verifier signature schemes
of [JSI96,SKM03,SBWP03,SWP04,LV04]. Of these schemes, the JSI scheme
from [JSI96] is the only disavowable DVS scheme. However, we show that in the JSI
scheme, a malicious Signy can generate signatures exactly from the same distribution
as Desmond and thus the JSI scheme is perfectly non-transferable and thus also not dis-
avowable. Our attack against the DVS schemes from [SKM03,SBWP03,SWP04,LV04]
is not an attack according to the definitions of the designated verifier signatures in these
papers, although it is an attack according to the original informal definition of [JSI96]:
namely, we show that Signy can delegate her signing ability—with respect to a fixed



designated verifier Desmond—to a third party Trevor, without revealing her secret key
or making it possible for Trevor to sign with respect to other designated verifiers. This
delegation property, while desirable in some settings (e.g., proxy DVS schemes), is
extremely undesirable in many other settings and must therefore be considered as a
serious weakness of a DVS scheme.

By pointing out the described flaws in these designated verifier signature scheme,
we arrive to a stronger security notion for DVS that includes two novel requirements:
(a) most importantlynon-delegatabilitythere exists an efficient knowledge extractor
that can extract either Signy’s secret key or Desmond’s secret key, when given oracle
access to an adversary who can create valid signatures with a high probability (this
property is not shared by the DVS schemes from [SKM03,SBWP03,SWP04,LV04]),
and (b) secure disavowability: if the DVS scheme has a disavowal protocol, it must be
the case that Signy cannot disavow signatures, given by herself (this property is not
shared by the DVS scheme from [JS196]).

Non-delegatability of a DVS means that a valid designated-verifier signature con-
stitutes a proof of knowledge of either Signy’s or Desmond’s secret key. Now, for con-
ventional signatures, ability to sign is conceptually equal to the knowledge of the secret
key. Therefore, a valid signature does not be a proof of knowledge. Now, as it is known
from [KWO03], one can construct conventional signature schemes whose unforgeability
is proven by giving a tight reduction to an underlying cryptographic problem; this is
achieved by specially avoiding the use of proofs of knowledge. However, in the case of
a DVS scheme, we can also avoid proofs of knowledge in the proof of unforgeability,
but not in the proof of non-delegatability. Therefore, even if we have a proof that a DVS
scheme is unforgeable (w.r.t. any verifier), we cannot directly derive from that that this
scheme is also non-delegatable. Therefore, in some sense, a (non-delegatable) DVS is
a more “complex” notion than a conventional signature scheme.

It is not difficult to show that the DVS scheme from [JSI96] is secure—more
precisely, unforgeable, non-delegatable, computationally non-transferable and securely
disavowable—after a trivial fix of just adding some additional variables under the used
hash value, by following the usual proof of knowledge methodology. We do not present
these proofs in this paper: while it is straightforward to prove these results, the corre-
sponding proofs do not really give an insight to the just pointed out difference between
unforgeability and non-delegatability.

Instead, we propose a new DVS schem¥&S-KW, based on the provably secure
signature scheme of Katz and Wang [KWO03], where the signer presents a designated-
verifier proof that his public key is a Decisional Diffie-Hellman (DDH) tuple. We prove
that DVS-KW is unforgeable by providing a tight reduction to the underlying cryp-
tographic problem (DDH) in the non-programmable random oracle (NPRO) model.
The NPRO model is is known to be strictly weaker than the random oracle (RO)
model [Nie02] and thus the unforgeability B/S-KW in the NPRO model is interest-
ing by itself, especially since the unforgeability proof of the original Katz-Wang signa-
ture scheme relies heavily on the programmability of the random oracle. We also prove
non-delegatability oDVS-KW, though this proof is in the programmable random ora-
cle model and has a larger security degradation due to the involved proof-of-knowledge
property. More precisely, we show that if some forger can create valid signatures with



probabilitye > x wherex is the knowledge error, then there exists a knowledge extrac-
tor that extracts one of the two secret keys in time, dominate8biPy oracle queries
to the forger.

DVS-KW can be seen as a proof of concept, showing how to design DVS schemes
that have a tight reduction in the unforgeability proof and are still non-delegatable.
Moreover,DVS-KW is more efficient than the JSI scheme from [JSI96], BM$-KW
does not allow the signer to disavow simulated signatures; the latter property makes
DVS-KW attractive in many applications. (Recall also that we broke the disavowability
of the JSI scheme.) At this moment, the most efficient secure disavowable designated-
verifier signature scheme seems to be the corrected JSI DVS scheme, while the most
efficient secure designated-verifier signature scheme seems toD¥$HE\W scheme.

We also show the existence of an efficient conventional signature scheme that is
unforgeable under a tight reduction to the Decisional Diffie-Hellman problem in the
NPRO+CRS (common reference string) model. In this model, all parties will addition-
ally have access to the common reference string that corresponds to Desmond’s public
key in DVS-KW. The importance of this result is that signature schemes, secure in
the plain model, are considerably slower than this scheme and/or are secure under in-
compatible and often less studied assumptions. Therefore, if one wants to avoid the
programmable random oracle model—where one can construct very efficient signature
schemes—one might want to use the new scheme.

2 Preliminaries

Let G, be a finite, cyclic group of prime orderin which the group operation is rep-
resented multiplicatively; furthermore, letbe a generator off. The most common
setting is as follows: lep, ¢ be two large primes such thaf(p — 1), thenG, a mul-
tiplicative subgroup ofZ; of orderg, andg a generator ofj,. Other settings (e.g.,
using elliptic curves) are possible. A distinguishing algoritdns said to(r, £)-break
DDH (Decisional Diffie-Hellman) in groug, if A runs in time at most and further-
more Advy'"(A) := | Prlz,y, 2z < Zq : A9, 9%, ¢%,9°) = 1] — Prlz,y < Zq :
A(g,9%,g¥,9"Y) = 1]| > &, where the probability is taken over the choice of random
variables and the coin tosses.4f We say that is a(r, £)-DDH group if no algorithm
(1,¢)-breaks DDH inG.

A designated-verifier signature sched&196] is a tuple of probabilistic algorithms
(Gen, Sign, Simul, Vrfy) over a message spagdd, such that: (a) The key-generation al-
gorithmGen outputs a public kepk and a secret kesk; (b) The signing algorithnSign
takes as input signer’s secret kg, designated verifier's public kgyk, and a mes-
sagem € M and returns signature (c) The simulation algorithrSimul takes as input
signer’s public keypkg, designated verifier's secret kelyp, and a messages € M
and returns signature; (d) Verification algorithmVrfy takes as input signer’s public
key pkg, designated verifier's public keyk,, a message: € M, and a signature
and returnsaccept or reject. In some of the existing designated verifier schemes, the
verification algorithm must have access to the designated verifier's secret keWe
call such a designated-verifier signature schemeately verifiable We make the stan-
dard correctness requirement: for @ks, pkg) and(skp, pk;) output byGen and for



a” m € M we haveVrfyka,ka (Signsks7ka (m)) = Vrfypk&ka (Signskp,pks (m)) =
accept. We say that a signatuteis valid if Vrfy,, .. (o) = accept.

3 Previous DVS Schemes and Their Security

Jakobsson-Sako-Impagliazzo Disavowable DVS Scheme [JSI9&Et p, ¢ and G,

be as described in Sect. 2. Assume that Signy and Desmond have the Diffie-Hellman
key pairs(zg,ys = ¢*S mod p) and (xp,yp = ¢*» mod p), respectively. As-
sume thatH, is a random oracle mapping &,. (Note: If m ¢ Z, thenm must be
hashed by using a full-domain hash, modelled by a random oracle. We will ignore this
issue throughout this paper.) ﬂ'“gnsks,ka (m), Signy sets «— m®S mod p, selects
three random numbers,t,r «—, Z,, and compute$€s «— ¢" mod p, M «— m"

mod p, h — H,(9"y% mod p,G,M) andz «— r + (h + w)zs mod ¢. Then,
Signy sends the signatuee := (s, P), whereP = (w,t,G, M, z), to the desig-
nated verifier, Desmond. I8imulg,, o (m, s), by selecting three random numbers
z,o, 3 «— Zq, Desmond create® = (w,t,G, M, z), for any messager and any

s « G, as follows: (G, M) (gzygﬂ mod p,m*s™® mod p), h «— H,(g®

mod p,G, M), w «+— f—h mod ¢,t — (a— w)xz)l mod ¢. He setsr — (s, P). In
VY ok ok, (1 8, W, 1, G, M, 2), the verifier computes «— Hy(g"yp, mod p, G, M)

and checks whethe® = g7y ") mod p andM = m=s~(*+*) mod p. The JSI
scheme can be made more communication-efficient by transférifimgtead ofG and
M) to Desmond. Then the verifier must check that H,(g“y%, mod p, g* -y;(“”)

mod p,m* - s~("+%) mod p). This version is security-wise equivalent to the original

scheme but somewhat more efficient.

Our Attack: First, a honest Signy generates valid signatures only fer m*s while
Desmond can generate valid signatures for amyZ,. That is, knowingrs, a honest
Signy generates valid designated-verifier prébbnly for s = m®s, while knowing
zp, Desmond generates valid designated-verifier prdofor any s € Z;. Thus it
suffices to have a disavowal where Signy proves in non-interactive zero-knowledge that
s # m®s. Next, we show that Signy can also compute valid signatures fog an¥;,
therefore, Signy can create signatures from the same distribution as Desmond and thus,
the JSI scheme is perfectly non-transferable. This means that there exists no disavowal
protocol for the JSI scheme at all.

Here is how Signy does it. Signy computes a signatssre, t, G, M, z) for a mes-
sagem, with 5 # m®s, as follows. She selects four random numbers, r, 7 «—, Z,
and then setg «— ¢“y,, modp, G « ¢" modp, M < m" modp, h «
Hy(c,G,M), 2 « 7+ (h + w)zs mod g ands « m®s . m(r—7)/(htw) modgq
mod p. After that, Signy sends the message-signature (pais) with & = (5, P =
(w,t,G, M, z)), to Desmond. Clearlyrfy, . ok, (m, &) = accept so Desmond will
believe that is Signy’s signature for message In later disputes, however, Signy can
convince a third party (e.g., a judge) tawvas simulated by Desmond, by using a stan-
dard disavowal protocol to show thiak, ys # log,, 5. This attack does not resultin a
signature forgery, it just shows that the JSI scheme is not disavowable.



There are two intuitive countermeasures to avoid this attack. First, Signy provides
an additional proof of knowledge thatg,, M = log, G. However, this increases the
signature length. Second, inclugl@ogether withpk 4 andpk ;) to the input of the hash
function. This turns out to be is sufficient, related discussion can be found in Sect. 6.

Saeednia-Kremer-Markowitch privately verifiable DVS Scheme [SKMO03].Let p,

g andg, be as defined in Sect. 2. In the SKM scheme, Signy and Desmond have the
Diffie-Hellman key pairs(zs,ys = ¢*5 mod p) and(zp,yp = ¢*° mod p), re-
spectively. Assume that,(-) is a random oracle mapping ;. In Sign, _ v, (M),

Signy selects two random numbérs—, Z,, t <, Z;, and then computes the signa-
tureo = (h,d,t) by settingc < y% mod p, h «+ H,(m,c) andd « kt~! —h-xg

mod ¢. In Simulg, ok, (m), Desmond picks two random numbetrs—, Ly, Ty Ly,

and then computes = (h, d, t) as follows: forc < g%y% mod p, seth «— H,(m,c),

d+« h-d-7~' mod gandt « 7 (xp-h)~' mod q.In VYo, skp (M5 1, d, 1), the
verifier accepts ifl. = H,(m, (¢%y2)**» mod p).

Our attack: We show that the knowledge @fp := ¢S P mod p is sufficient to
generate both a valid signature and to verify it, and therefore, this scheme is delegat-
able (both in the sense of signing and verifying). On the one hand, giygnone can

verify whether a message-signature gair, h, d, t) is valid for the designated verifier
Desmond by checking whethér = H,(m, (y4y%,)! mod p). On the other hand,
given ysp, anybody can produce a valid designated-verifier signatuee (h,d,t)

for any message: by selecting two random numbeds«—, Z,, ¥ <, Zy, and then
settinge « y4y%, mod p, h «— Hy(m,c),d « h-d-7~1 mod q andt « 7#h~!

mod g¢. The resulting signature = (h, d, t) is accepted by the verifier, sin¢gy®)t*r

mod p = (g4 yhyrh T ep — ydyr mod p = . In particular, this means that

this scheme is perfectly non-transferable. (The authors of [SKMO03] get the same result
by a complicated analysis of probability theory.) It might again seem that one can rem-
edy this situation by including under the hash. However, in the simulation, Desmond
needs to chooskafter fixing h, and therefore this fix does not work.

Steinfeld-Wang-Pieprzyk DVS. Assume again thap, ¢ and G, are as defined in
Sect. 2. At least the first privately-verifiable DVS scheBw#hUDVS,, from [SWPO04] is
also delegatable. Recall that there, a designated-verifier signature of messaggual

to (r,u, K), for r — Hg(m,u), and the verifier accepts only whéfi = (u - y5)*?
mod p. But if Signy publisheysp < y7;’, anybody can produce valid signatures by
settingu « ¢g* mod p andK « y% - y%, mod p for randomk «—, Z,. Thus, also
this scheme is delegatable.

Steinfeld-Bull-Wang-Pieprzyk and Laguillaumie-Vergnaud DVS. The SBWP
designated-verifier signature scheme from [SBWPO03] is based on a gro{gpais)
with bilinear pairing(, -) from G2, with ord G1 = ¢, to G». (See [SBWP03] for more
details.) Letm be the message to be signéfl;, —a random oracle with outputs from
Gi1, and letg be a generator of;. Assume that Signy’s key-pair (&gs,ys = g*°)
and that Desmond’s key-pair {$p,yp = g®”) for randomly chosen g, xp «— Z,.
Signy’s designated-verifier signature on a messagés ¢ «— (Hg, (m)®s, yp).
Desmond simulates the signature by setting— (Hg, (m)*?,ys). The signature



is verified by checking thatr = (Hg, (m)*?,ys). Again, if the value ofysp =
g*s®r mod d js compromised, any entity who gets to kngwp can also produce a
valid o by computingr «— (Hg, (m),ysp). Therefore, this scheme is also delegatable.
The Laguillaumie-Vernaud [LV04] DVS scheme is delegatable for the same reason.

4 DVS Security Definitions

In the original paper [JSI96], a designated-verifier signature was required to convince
the designated verifier Desmond that the signer Signy has signed the message, in a way
that Desmond is able to simulate signature that is indistinguishable from the real sigha-
tures, even by a verifier who has access to the designated verifier’s private key. A more
formal definition was given in say [SBWPO03]. We will first repeat formal definitions

of unforgeability and non-transferability and then give a definition of the new notion,
non-delegatability.

A designated-verifier signature scheme must satisfy at least the next two condi-
tions: (a) Unforgeability: signatures are verifiable by the designated verifier Desmond
who rejects it when the signature was not signed by himself or Signy, and (b)
Non-transferability: given a message-signature pair o), that is accepted by the
designated-verifier, and without access to the secret key of the signer, it is computa-
tionally infeasible to determine whether the message was signed by the signer, or the
signature was simulated by the designated verifier.

In the following, {2 denotes the space from which the random orétlis selected;
definition without a random oracle is analogous. Depending on the situation, we will
have either? = (2, to be the set of all non-programmable random oracles [Nie02]
or 2 = 2, to be the set of all random oracles with proper input and output domains.

Let A = (Gen,Sign, Simul, Vrfy) be a designated-verifier signature scheme with
the message spagel. We say that\ is perfectly non-transferablé Sign; ., (m) =
Simulg,, pkg (m) as distributions for everypkg,sks) < Gen, (pkp,skp) « Gen,

H, — 2 andm — M. Analogously, one can define statistically non-transferable and
computationally non-transferable schemes. An adversial forging algoftiersaid to

(1, qn, gs, €)-forge A if F runs in time at most, makes at mosj, hash queries and in
total at mosty, signing and simulation queries, and furthermore

(pkg,sks) < Gen; (pkp,skp) « Gen; H «— §2;
AdVSTE(F) = Pr | (m, o) e F58%s.np OSmlsi oks O HO) (e oty | >
o & X(m) A VY ok e bk (m, o) # reject

where X'(m) is the set of signatures received either frGign, .. (m) or from
Simulg,, pks (m). A designated-verifier signature schemeisgy,, gs, €)-unforgeable

if no forger can(r, qn, g5, ¢)-forge it. In the case a DVS scheme is only computation-
ally non-transferable, it is important that(m) also includes signatures received from
Simulgk,, ok (m). If @ scheme is perfectly non-transferable then an access Girthe
oracle will not help the forger.

Delegatability. The definition of unforgeability does not cover the case when the
signer, without disclosing her secret kelys, delegates her signing rights (w.r.t. to



a concrete designated verifier Desmond)Ady disclosing some side information
ysp = fs(sks, pkp), that helps the latter to produce valid signatures. Analogously,
the designated verifier might delegate his signature simulating capability by disclos-
ing some—potentially different—side informatiofy, := fp(skp, pkg). This implies

that when Desmond sees a valid signatarénat is not generated by himself, he can
only conclude that is generated by somebody who knows eithes or y5 . In some
scenarios, Signy may reveal or be forced to reveal the valug gfto a third party
Trevor so that Trevor can generate valid Signy’s signatures for Desmond. Such a dele-
gation is essentially different from the situation where Signy reveals her secregkey

to Trevor, since knowledge afsp allows Trevor to sigh messages designated only to
Desmond, and not to anybody else. Therefore, Signy might be more willing to give out
the valueysp than her secret kesks. This is not an issue in the case of conventional
signature schemes where non-delegatability follows from unforgeability.

We will next give a longer explanation why delegatability is bad. First of all, in the
original definition of designated-verifier proofs [JS196], it was said that a proof of the
truth of some statemedt is a designated-verifier proof if it is a proof that eitheis
true or the signer knows Desmond’s secret key. This intuitive requirement is clearly not
satisfied by delegatable DVS schemes, where a signer proves thateigttene or she
knowsysp or she knowsyg .

Moreover, delegatability is undesirable in many applications of the designated-
verifier signature scheme. We will give two examples. First, in an hypothetical e-voting
protocol where voters sign messages by using a designated-verifier signature scheme
(with the tallier being the designated verifier Desmond), knowing that this information
can only be used to vote in this concrete election, a voter Signy could be motivated to
give a copy ofysp to the coercer for a moderate sum of money. On the other hand, since
Signy might useks in many other applications, she might not be willing to sekg
to the coercer for any imaginable “moderate” amount of money. Second, assume that
Signy is a subscriber to an e-library, maintained by Desmond, and that she identifies
herself by using a designated-verifier signature scheme so that Desmond could not sell
Signy’s access history to third parties. If the DVS scheme is delegatable, Signy could
however send;sp to a non-subscriber who could then also start enjoying Desmond’s
service. Sincesp is used only in this application, Signy could be happily willing to do
that. On the other hand, if the DVS were not delegatable, Signy would have to reveal
her secret key. Finally, it may happen that Signy and Desmond also participate in some
other protocols wherggsp or s, is revealed legitimately and thus the attacker can
gain access to either of these values. Note also that a DVS scheme with delegatability
is somewhat similar to the proxy signatures, except that in the case of proxy signatures,
(a) the verifier can distinguish between messages, signed by Signy and a proxy, and (b)
the signatures are universally verifiable.

The preceding discussion motivates the next definition. It basically says that a non-
delegatable DVS scheme is a non-interactive system of proofs of knowledge of either
skg or skp. Here, F,,, denotes* with m as its input, and oracle calls are counted
as one step. More precisely, lete [0, 1] be the knowledge error. We say thAtis
(7, k)-non-delegatablé there exists a black-box knowledge extractothat, for every
algorithm and for every valid signature, satisfies the following condition: For every



(pkg,sks) < Gen, (pkp,skp) < Gen and message., if F produces a valid signature
on m with probabilitye > x then, on inputn and on access to the orackg,, K
produces eithesks or skp in expected time-~— (without counting the time to make
the oracle queries). (Her&;'s probability is taken over the choice of her random coins
and over the choice dff; < {2.)

5 New DVS Scheme with Tight Reduction to DDH in NPRO

Let p, ¢ and G, be as defined in Sect. 2. Lei,g» € G, be two elements such
that nobody knows the mutual discrete logarithmsgypfand g,. Following the ideas
from [KWO03], in the nextDVS-KW DVS scheme, we let Signy to prove Desmond that
(91,92, Y15, y25) is a Decisional Diffie-Hellman tuple, wherg —, Z, is i’s private
key andpk; := (g1, 92, Y1i, y2i) IS i's public key withy;; = ¢7* andys; = g5°. This
proof is made designated-verifier by using the same trick as in the JSI scheme [JSI96],
and non-interactive by using a non-programmable random oracle [Nig¢p@}ith out-
puts fromZ,. In particular, the random oracld, can be chosen at the same stage
as other system parameters, and g». This is an interesting result by itself since
in [KWO03], H, had to be gprogrammablerandom oracle for their security proof to
go through. The description of the flllVS-KW scheme follows:

SigNsks pky, (m): Signy generates randomw,t «— Z,, and setsy; « g7 mod p,
as < g5 mod p, ¢ — gyt mod p, h — H,(pkg, pkp,a1,as,c,m) andz —
r+ (h+w)xs mod ¢. She outputs the signatuse— (w, ¢, h, z).

Simulgy,, ok (m): By selecting three random numbetsa, 3+, Z,, Desmond
createsc = (w,t,h,z) for any messagen as follows: (a1, a2) «— (gfyl‘éf’
mod p,ggyz_sﬁ mod p), h — H,(pkg, pkp, a1, a2,¢f mod p,m), w «— B —h
mod ¢, t + (a —w)zrp' mod q.

Vifygi. o, (13w, T, h, 2): The verifier checks whethér= H,(pkg, pkp, gy14" "

— (h+n
mod p, giyo4 ) mod p, gyt mod p,m).

Security:First, clearly this scheme is correct and perfectly non-transferable. Second,
we can prove the next result that is a generalisation of a proof from [KWO03]:

Theorem 1. LetG be a(7’,¢’)-DDH group with|G| = ¢ such that exponentiation in
G takes timée..,. Then the above designated-verifier signature scherfie ds, ¢, €)-
unforgeable in the non-programmable random oracle model, wheter’ — (3.2q; +
5-6)texp ande > e + Qthq_Q + q_l + th_z-

Proof. Assume that we have an algorithf running in time at most and making at
mostq;, hash queries and in total at mgstsigning and simulation queries, which forges
a new message/signature or a new message/simulated signature pair with probability at
leasts. We useF to construct an algorithr running in timer’” which solves the DDH
problem with probability’. The stated result follows.

Algorithm A is given as input a tuplég:, 92, y1p, y2p); its goal is to determine
whether this represents a “random tuple” or a “DDH tuple”. To this end, itigets=



(91,92, 1D, Y2D), Sets Signy’s public keypks to be equal to a random DDH tuple
pks = (91,92, Y15 = 91°, Y25 = g5° ) for which she chooses the corresponding secret
key s «— Zg, and runsF on input(pkg, pkp). Algorithm A simulates the signing
oracle and the random oracle féras follows:

Hash queries. In response to a quetdl, (pkg, pkp, a1, az, ¢, m), algorithm A re-
sponds withh < H,(pkg, pkp, a1, az, c, m). Additionally, if this query was not made
before, A stores the tuplépkg, pkp, a1, as, c,m).

Signing and simulation queries. If F asks either for a signature or a simulation
on messager, thenA attempts to sigpkg. That is,.A chooses random w, t « Z,,
setsa; < g mod p,as < g5 mod pandc «— ¢y}, mod p. If H, had previously
been queried on inpu,(pkg, pkp, a1, az, ¢, m) then A aborts (with outpub); oth-
erwise, A setsh — H,(pkg, pkp, a1, az,c, m) and outputs the signatufey, ¢, b, z),
wherez — r + (h + w)zs mod q.

At some point,F outputs its forgery(m,s = (w,t,h,z)), where we assume
that & was not previously the response to a quign,, . (m) or Simulg, (m). Set
a — gfyféhﬂv) mod p, do ggyz_S(M'w) mod p, ¢ + gyt mod p. Now, if
H,(pkg, pkp,di,dz, & m) = h (i.e., Vrfy, (m,5) = 1), thenA outputsl; otherwise,

A outputs0.

We now analyse the probability that outputsl. If (g1, 92, y1p,y2p) is a Diffie-
Hellman tuple, thend provides a perfect simulation foF except for the possibility
of an abort. An abort can occur during's simulation of any of the signing queries;
in the simulation of any particular signing query, it is not hard to see that the proba-
bility of abort is at mosty;, /¢2. Thus the overall probability thatl aborts is at most
qsqn/q*. This means tha#d outputs a forgery (and hencé outputs1) with proba-
bility at leaste — qsqx/q?. On the other hand, ifg:, g2, y1p, y2p) iS a random tu-
ple then with probabilityl — ¢—! it is not a Diffie-Hellman tuple. In this case, for
any queryH,(pkg, pkp, a1, as, c, m) made byF there is at mosy possible values of
(w, t, z) such that the verification succeeds. Th#&sputputs a forgery (and hencé
outputs1) with probability at mos;—! + ¢,¢~2. Putting everything together, we see
thatAdva™ (A) > e —qsqng 2 —q ' —gng~2 = £'. The running time of4 includes the
running time of 7 and is otherwise dominated by two exponentiations and one multi-
exponentiation that are performed for each query to the signing oracle plus those done
in generating Signy’s key and verifying the output®f Assuming as in [KWO03] that a
two-exponent multi-exponentiation takes timeét.., gives the result of the theorem.

O

On NPRO versus RO model The non-programmable random oracle model is known

to be strictly weaker than the random oracle model [Nie02]. This is not surprising look-
ing at the corresponding security proofs, e.g., at the security proof in [KWO03] and at
the proof of Thm. 1. In the former, the adversary does not know the secret key, and
therefore is forced to program the random oracle to be able to answer successfully to
the signature queries. In the latter, the adversary knows Signy’s secret key, and knowing
this, can answer successfully to the signature and simulation queries without a need to
program the random oracle. A conceptual difference between the two models is that
proofs in the RO model work for the “best case” (showing that for every forger, there



exists a functionH, such that the signature scheme is unforgeable), while proofs in
the NPRO model work for the “average case” (showing that the signature scheme is
unforgeable for a randomly chosen functifly «— (2., independent of the forger).
Given such arguments, we think that unforgeability in the NPRO model is an important
property ofDVS-KW.

Conventional signature scheme with tight reduction to DDH in the NPRO+CRS
model. From DVS-KW, one can build a conventional signature scheme with the same
properties (tight reduction to the DDH problem in the non-programmable random oracle
model) if one additionally assumes the common reference string (CRS) model. More
precisely, in this case, the CRS is equal to a p&ip, y2p ), drawn randomly from the
set{(g7",95"°) : xp € Z4}. Itis assumed that nobody will use the corresponding
secret key to simulate a DVS; in our case, this is easily achieved since CRS can be a
random DDH tuple. On the other hand, for the proof to go throudlis allowed to
generate the CRS herself. This scheme is about twice less efficient than the Katz-Wang
scheme, but its security does not rely on programmable random oracles. On the other
hand, this scheme is more efficient than the currently known signature schemes that are
unforgeable in the plain model, and/or has a more standard underlying assumption.

Non-delegatability of DVS-KW. Next, we will give a proof of the non-delegatability
of DVS-KW. Because of the structure of our proof, we expect that an arbitrary DVS
scheme would have a similar time bound in its security proof.

Theorem 2. Assume that for some € M, F can produce valid signatures in time
7 and with probabilitye. ThenDVS-KW is (567 /e, %)-non-delegatable in the pro-
grammable random oracle model.

Proof. Assume that > « = 1/q. We must show there exists a knowledge extraktor
that on inputo and on black-box oracle access&ocan produce eithetkg or skp in
expected time’ < 567 /¢ and with probabilityl.

Let F,, be a forger with inputn. Consider two executions of,,, by K on the
same random input af,,. In both casesK executes?,, step-by-step, except that
K returns different random value& (versush’) as the answer to the hash query
H,(pkg, pkp, a1, az,c,m). Since(a1, az, c) are under the hash, their values must be
equal in both runs. If both signatures are valid, one must have(h + w)zs =
Z'—(W+w')xs mod qgandw+txp = w'+t'xp mod ¢, where(w, t, h, z) is the first
signature andw’,t', b’ 2’'), h # I/, is the second signature. Now we have two cases. If
w #Z w' mod g thenone canfindp «— (w—w')/(t' —t) mod ¢. If w=w" mod ¢
thenh +w # A’ +w’ mod ¢ and thus one can finds «— (z —2')/(h— W +w —w')
mod ¢. Now, assum®&ewind is an algorithm that, given an oracle accesgjq in time
TR, for somerg, produces two different valid signaturés, ¢, h, z) and(w’, t', h’, 2")
onm, such thath # h' but (a1, as,c) = (a}, dh, ¢’). Then one can compute eitheg
or zp with probability1. Thus, given that algorithiRewind runs in expected timg6 /=
(counting every access 18, as one step), we have proven the theorem.

Next, let us describe the algorithRewind. We are given a forgef,,, who returns
a signaturdw, t, h, z) that may or may not be correct. We are given that the probability
of a correct answer taken ové,, coins and the choice df is at least. We want to
find correct answers to two differehtvalues for a giveriai, as, ¢, m) as efficiently as



possible. The idea is to run the prover, and use rewinding to try to make him answer
two different challenges correctly. But to run him, we need to supply random coins.
Although we know that the average success probability ise do not know thaf,,

is equally successful with any random input. To get a better view of thig/lee a
matrix with a row for each possible set of random coins#gy, and one column for
each possible challenge value. Writén an entry if 7,,, answers correctly with the
corresponding random choices and challenge, @otherwise. UsingF,, as black-

box, we can probe any entry we want/if and our goal can be rephrased to: find two
1's in the same row. What we know is thaequals the fraction of-entries inH. Now,
Rewind uses an algorithm from [DF02] to find suttentries in times6/¢. ad

6 On Disavowability

In a few proposed designated-verifier signature schemes [JSI96], given @paiy,

Signy and Desmond cannot prove to a third party, even when they join their forces,
which one of them generated In some other schemes—that we adifavowable—

Signy can prove that (a) she signed messages that she really signed, and (b) she has
not signed signatures, simulated by Desmond. This is achieved by decomposing the
signatures of a messagen in two non-empty partss (“undeniable signature”) and

P (“designated-verifier proof”), where for every messageand for every possibly
incorrects, the designated verifier can produce a simulated pfosfich that the dis-
tribution of (5, P) is computationally indistinguishable from the distribution of the real
signature(s, P). Therefore, in this cas&imul takes an additional argumest and

one requires also the existence of four additional protod@dsfirm, ConfirmVrfy,
Disavowal and DisavowalVrfy. To model our attack on the JSI scheme we must also
define “secure disavowability”. The idea behind such definition is to prove that if
Vrfyok ok, (12, 8) = accept and on input(m, s), an oracle maching can, with high
probability, produce & such thaDisavowalVrfy,, _ .. ~(m;o,d) = success then there
exists a knowledge extractor that can Uséo recoverskp.

The JSI scheme [JS196] was claimed to be disavowable—although, as shown earlier
in this paper, it is nhot—while most of the subsequent DVS schemes provide perfect
non-transferability and thus are not disavowable. (If a DVS scheme is perfectly non-
transferable then there is no trapdoor information that Signy might use to prove that a
message was or was not signed by her. Thus, to make it able for Signy to disavow a
signature, a DVS scheme must be computationally but not perfectly non-transferable.)
However, even in [JS196], disavowability was not seen as a feature of the DVS schemes
and disavowability was never formally defined; their scheme, being based on Chaum’s
undeniable signature, just happens to have this property.

Corrected JSI SchemeJSI+. As mentioned before, the original JSI scheme, is secure
including pkg, pkp ands = m®s under the hash. Since we want this scheme to be
disavowableSimulg,, ok, also gets an additional inputc Z,. Clearly,JSI+ is com-
putationally but not perfectly non-transferable. Unforgeability, non-delegatability and
secure disavowability of this scheme can be proven by using standard cryptographic
tools, although most probably either in the RO model or with looser reductions. One
of the reasons is that sin€@/S-KW is perfectlynon-transferable, in its unforgeability



proof.A could answer signing and simulation queries in the same manner. Therefore, it
was sufficient for4 to know only one oks andskp to simulate both kind of queries
without using a programmable random oracle. It is not a priori clear how to achieve the
same in the case dbl+.

Further work and acknowledgments. We feel that this paper raises interesting ques-
tions about the relationship between different non-standard security models; it is an
interesting open question to study the necessity of these models in any concrete case.
We would like to thank anonymous referees for useful comments. The first author was
partially supported by the Estonian Science Foundation.
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