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Abstract

This chapter gives a summary of cryptographic e-voting protocols. We start with a motivation and an overview of
some aspects of traditional elections. We then outline the security requirements of e-voting and present in detail two
approaches to cryptographic e-voting, based on homomorphic encryption and mix networks. We finish the chapter
with a list of open problems.

1 Introduction

During the last five or ten years, one of the global buzzwords (or rather, buzz-letters) has been“e” , short from
electronic, that signifies almost everything, connected with (inter)networking. The ubiquity of “e” is caused by the
global penetration of the Internet, and already in many places of the world, by easier availability of Internet-based
services, compared to the traditional services. Numerous e-processes are already taking place, starting from e-banking
and ending with (in some countries) e-government. This had led to the situation where one wants to “e-ise” most of
the processes and services that can be found in a modern society. After all, moving to the e-services helps one to cut
down costs and save time. Additionally, it makes it possible for more and more people to become a part of the global
society, and to benefit from its services.

Not surprisingly, also “e-ising” (nation-wide or local) elections promises to give measurable benefits. The very
basic idea of the elections is to give every citizen of a country (or some other political unit) an equal right when
deciding about the future of their country. To guarantee equal rights, it is essential to achieve a high voter turnout. As
the most extreme case, look at an imaginary political system that has only two parties with election where “winner
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takes all”. If only 51% of the voters vote and the winning party collects 51% of the participating votes, the resulting
government does not necessarily represent the majority of the citizens.

This is exactly where e-voting could help: it is at least one’s hope that when voting is made more convenient,
considerably more voters will turn out. And what could be more convenient than voting at your own home by using
your own personal computer? Or your laptop, when travelling—or even your mobile phone when you do not have
access to the Internet? Moreover, if votes are submitted electronically, vote counting could be almost instantaneous—
in the contemporary world, quick vote counting is unfortunately an important issue. And last but not least, e-voting
could make it cheaper and easier to organise elections.

But alas, convenience is not everything. Traditional voting booths have been designed to prevent vote coercion.
How to prevent coercion when a user votes from home? How to ascertain that voter’s computer functions correctly
(no viruses, Trojan horses or keyboard sniffers)? How to ascertain that voting centre’s computer functions correctly?
(Denial of Service attacks, insider attacks, . . . ) Asking from a voter’s—who may not know anything about how a
computer or the Internet works—point of view, can one guarantee the correctness and robustness of the elections?
And privacy? Can one protect the voter against coercers?

The answer is “partially, yes”. Under some feasiblecryptographicassumptions, privacy can be protected, although
the voter still needs to trust hisvoting platform—e.g., a computer or a mobile phone—, and other pieces of hardware
that are not under his or her own control. (But see also Sect. 8.) If, additionally, special hardware is used, one can
design coercion-free elections. The use of secure cryptographic protocols together with fault-tolerant, well-organised,
sufficiently duplicated and constantly verified voting infrastructuremight also guarantee robustness. The necessary
cryptography is already out there, together with a developing understanding of what are (at least some of) the specific
requirements on the infrastructure and on the voters. Real understanding cannot come before people have gone through
many trials and errors that result from electronic elections with significant, non-duplicated, and non-reputable outcome.
It is our feeling that these real-life requirements will never be satisfied, even if some new breakthrough in cryptography
makes some of the requirements obsolete.

Before going further, some warnings. E-voting means at least two quite different things:Internet-voting—voting
over the Internet, as discussed above, by using a personal computer or mobile device with the possible help of minimal
additional specialised hardware, orkiosk-voting—voting in some fixed location (like library, kiosk) by using special
hardware; kiosk-voting also includes the current practice of some countries to use electronic or mechanical devices—
like optical scans—in the voting stations. Kiosk-voting can be easier to organise—there is no question about the
untrusted operating system on the voter’s computer, for example—but it does not allow convenient “anywhere voting”.
(However, note that a diligent user can analyse software, running on his or her computer, while software, running in
a kiosk is most likely going to be non-accessible.) Still, kiosk-voting might increase the voter turnout—and definitely
decreases vote counting time. In this survey, by e-voting we will primarily mean Internet-voting. All the protocols
that we will present can also be used in the case of kiosk-voting, although some of their features might be an overkill.
On the other hand, even in the case of kiosk-voting, the current cryptographic solutions—even if used 100% correctly,
which is rarely the case—are not yet completely satisfying.

In this chapter, we are going to present in detail several (under appropriate definitions) secure and (relatively)
efficient cryptographic e-voting protocols. We will discuss the level of security achieved by the described protocols
and also their efficiency. We will stop on the requirements on the infrastructure that seem to be necessary for the state
of the art cryptographic e-voting protocols to fulfil their promise. Finally, we outline some important open questions
and further research directions.

Notation. Let cands be the number of candidates, somehow enumerated by integers from0 to cands − 1. Let
V = (V1, . . . , Vvoters) be the set of eligible voters. LetV ′ ⊆ V be the set of eligible voters who turned up and voted.
Let vi be the vote as cast byVi; we assumevi = ⊥ if Vi did not vote. Letµ be the concrete voting mechanism that is
being used.

2 Voting: General Overview

During an election of e.g., national or local government, voters cast votes to a number of candidates. After the voting
phase, the winning candidate(s) are computed from the set of votes. There are many game-theoretically sound (or
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just validated by practice)voting mechanismsfor the latter part. Next, we briefly summarise some of the well-known
voting mechanisms (in all cases, the candidate with the most points wins). As in the rest of the paper we assume that
there arevoters voters andcands candidates. In all four cases, every voter outputs an ordered list ofcands candidates.

Plurality: A candidate receives1 point for every voter that ranks it first. (Here, it is sufficient for the voter to output
only the top choice.)

Borda: For each voter, a candidate receivescands−1 points if it is the voter’s top choice,cands−2 if it is the second
choice, . . . ,0 if it is the last.

Single Transferable Vote (STV): The winner determination process proceeds in rounds. In each round, a candidate’s
score is the number of voters that rank it highest among the remaining candidates, and the candidate with the
lowest score drops out. The last remaining candidate wins. (A vote transfers from its top remaining candidate
to the next highest remaining candidate when the former drops out.)

Maximin: A candidate’s score in a pairwise election is the number of voters that prefer it over the opponent. A
candidate’s number of points is the lowest score it gets in any pairwise election.

If a mechanismµ is used, letµ(v1, . . . , vvoters) be the result of the election given votesvi.
Exactly how the voting process is organised, depends largely on the individual country, and sometimes also on

the individual county or even the village. However, an election tends to have at least the following phases, where the
specifics of every phase may vary wildly:

Voter registration: All/most of the/some of the citizens are automatically registered as voters. The rest must register
themselves as eligible voters.

Voting: During a few pre-announced days, every registered voter can cast his or her vote. At some a priori known
time moment, the voting phase will be over. Voting period may depend on the individual tallier. (Thus, this
model includes absentee voting.)

Tallying: After the end of voting phases, talliers count their tallies that are then mixed together to obtain the final
result. (This phase depends heavily on the voting mechanism, the size of the country, etc.)

In practice, plurality and Borda elections are somewhat easier to organise than STV and Maximin since in them,
only the total count of points for every candidate is needed for every candidate. This total count can just be incre-
mented, as more and more votes from different voting stations become counted. This also means that when there are
are many talliers—e.g., corresponding to different counties—, different sub-tallies can just be added up.

3 E-Voting: General Setting

Different countries implement elections in a different way, to comply and cope with their own traditions, definition
of democracy, size of the country, etc. E-voting must take all such considerations into account and thus, just to make
e-voting understandable to the voters, at least at first, e-voting must largely mimic conventional voting. In particular,
an e-voting should have a registration phase, a voting phase and a tallying phase. Only later, when voters have become
used to the e-voting, one could change the election process to suit better the specifics of e-voting.

Thus, we will think of e-voting as just a method to make voting more convenient, by enabling both the voters and
the talliers to use technology to speed up their part of the process. Maybe later on, changes caused by e-voting will
cause a revolution in the voting process—and thus, in the whole society. Currently, the change offered by e-voting is
(or at least, in our opinion, should be) rather evolutionary.

How would (evolutionary) e-voting look like in an ideal world? First, the voters enter their votes to thevoting
platform(e.g., a computer). Then, the votes get transmitted to a central machine (thetallying platform) that computes
the winner by using a fixed voting mechanism. Finally, the talliers output the name of the winner (or winners) with
other auxiliary information that may be necessary (e.g., the number of votes of every candidate). In such an ideal
world, all parts of the system function correctly. In particular, ideal e-voting has the next two important properties:
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Correctness: The output of the elections isµ(v1, . . . , vvoters). That is, the election outputs a correct result, meaning
that only the votes of legitimate voters count.

Privacy: During the election, nobody will gain new information about any ofvi-s—except what follows from
µ(v1, . . . , vvoters) and their own private inputs. This includes at least the next subgoals: (a) Voter’s prefer-
ences remain private. (b) Voting is coercion-free: even if you choose so, you are not able to later prove your
vote. (c) Independence: voter should know his or her vote.

All mentioned subgoals correspond to the necessity of avoiding certain attacks. For example, imagine a simple voting
protocol where every voter sends its encrypted vote to the tallier. Bob, a huge fan of a singer called Alice, just copies
her encrypted vote and enters this to the voting platform. Or may be, Bob is able to manipulate the ciphertext so that
his vote is the opposite of Alice’s vote. This does not violate Alice’s privacy (only under very special circumstances,
Bob gains any information about Alice’s vote!) but it creates undesirable situations where voters vote as their idol
does—or as their hated one does not. This means that Bob must know his vote.

Next, we will give the definition of a secure electronic voting protocol. The definition is not fully formal, since in
practice, it is not clear what is meant by “security.” Moreover, some of the electronic voting protocols, presented in
the following sections, do not satisfy the ideal security definition.

Assume that we have a fixed voting mechanismµ, like Plurality or Borda. LetΦµ be the function that, given
votes of participating voters, computes some intermediate result that is necessary for finding the winner. For example,
ΦPlurality(v1, . . . , vvoters) is usually a function that returns a vector(w1, . . . , wcands, w⊥), wherewi = ]{j : vj = i} is
the number of votersVj that voted for theith candidate. It is possible to defineΦPlurality(v1, . . . , vvoters) = w, wherew
is the name of the winner. However, such solutions are not usually considered in the case of paper-ballot voting, since
the privacy of losing candidates is usually hard to implement. The concrete definition depends on the voting traditions
of an individual country. For example, if the number of seats in the parliament is proportional to the number of votes
every party achieves, the full vector(v1, . . . , vvoters) must be revealed.

Exactly like the conventional election, an e-voting protocol consists also of the registration phase, the voting phase
and the vote counting phase. In the registration phase, the legitimate voters obtain the right to participate in e-voting.
How this is done depends heavily on the traditions and technological infrastructure. For example, in some countries
the voters may be able to register by using their ID-cards. This is largely a political issue, and we will just assume that
legitimate voters will be able to vote, and obtain necessary information (like the public keys of the authorities) in an
authenticated manner.

In the voting and tallying phase, we make a comparison with the “ideal world”. In the ideal-world e-voting
protocol, the trusted third partyT keeps a database of votes. Every voterVi casts a votevi that may be equal to⊥.
The third partyT stores the vote in her database. (A voter might be able to vote several times, but then only the result
of the last vote counts.) After the end of the voting phase,T computesψ = Φµ(v1, . . . , vvoters). In the tallying phase,
the valueψ is published. The tallierA finds the winner(s) of the election, based onψ, by using rules, induced by the
mechanismµ. (This part of the election is repeatable and verifiable by everybody.)

It is required that at the end of the protocol, the participants should have no information about the private inputs
and outputs of their partners, except for what can be deduced from their own private inputs and outputs. In particular,
Vi has no information about the value ofvj for j 6= i, andA has no information about the value ofvi for anyi, except
what they can deduce from their own private inputs and outputs. In practice, it usually means that it is required that
the voting centre gets to know how many voters voted for every candidate, but not how did every single voter vote.

In an ideal world, exactly three types of attacks are possible [Gol04]: a party can (a) refuse to participate in the
protocol; (b) substitute his or her private input to the trusted third party with a different value; or (c) abort the protocol
prematurely. In our case, the attack (c) is irrelevant, sinceVi has no output in the voting phase, andT has no output in
the tallying phase. (Attack (c) models the case when the first party halts the protocol after receiving his private output
but before the second party has enough information to compute her output.)

Therefore, in an ideal-world e-voting protocol, we cannot protect against a participant, who (a) refuses to partic-
ipate in voting (non-participation attack) or (b) enters vote, different from her preference (may correspond to vote
manipulation). No other attacks should be possible. Neither (a) nor (b) is traditionally considered an attack in the con-
text of voting. The argument here is game-theoretic, and the solutions must be proposed by mechanism design (and
politics!), instead of cryptography: namely, a non-manipulable mechanism (e.g., the algorithm with what the election
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winner is determined from all the collected votes) must be designed so that answering against one’s true preference
(or non-participation) would not give more beneficial results to the respondent than the truthful answer.

On the other hand, as we stated, no other attacks should be allowed. This requirement is very strict, so we will
explain why it is necessary in the voting context. Clearly, one must protect the privacy of voters: it is required that
in democracy, one should be able to vote according to his or her true preferences. There are many cases where non-
private voting could damage the interests of the individual voter (starting from a quarrel with his or her significant
other, and ending with the possibility of getting discriminated by the new government, against whom one just voted).

It is also necessary to protect the privacy ofA, although the reason here is more subtle. Namely, ifVi obtains
any additional information aboutψ before the end of the elections, he or she might halt the protocol or change his or
her vote. This might always happen since by a classical result of voting theory, all non-dictatorial voting mechanisms
can be manipulated [Gib73, Sat73]. As an easy example, a voter can decide to vote for his or her second preference,
when the first preference has no chance to win. (Halting the e-voting protocol while having no information onψ is
equivalent to the non-participation attack.) The third requirement on the protocol, of course, is thatA either halts or
receivesΦµ(v1, . . . , vvoters).

In a real-world implementation, we want to replaceT by a cryptographic protocolΠ = (V1, . . . , Vvoters;A) be-
tweenVi andA. This protocol(V1, . . . , Vvoters;A) is assumed to be “indistinguishable” from the ideal-world protocol,
that is, with a high probability, it must be secure against all attacks except (a) and (b). “Secure” means that the privacy
of Vi (resp.A) must be protected, ifVi (resp.A) follows the protocol, and thatA either halts, or receives the value
Φµ(v1, . . . , vvoters). Note that in particular this means that all messages between voters andA bust be authenticated
by say using digital signatures.

Ideally, the security of the voters should be information-theoretical (that is, even an omnipotent adversary should
not be able to violate the privacy of voters), while the security of tallierA can be computational (that is, a computa-
tionally bounded adversary should not be able to forceA to accept an output that is not equal toΨµ(v1, . . . , vvoters)).
This is since the voters, if they cheat, must do it online, while the adversary has all the eternity to violate voters’s
privacy. However, it is much easier to design e-voting with computational voter-security. In particular, all protocols
that are described in the next sections provide only computational voter-privacy.

In a majority of existing secure e-voting protocols, every participant proves in zero-knowledge [GMR89] that he or
she behaved correctly. (Sometimes, it is sufficient to have weaker guarantees, e.g., to present witness indistinguishable
proofs.) Every voter must be able to verify the correctness of the zero-knowledge proofs, and thus can verify that his or
her vote was counted with. In this case, one talks aboutvoter-verifiable (or voter-verified) electronic elections. If the
zero-knowledge correctness proofs are not only verifiable by the designated verifier but for everybody, including the
casual observers, one talks aboutuniversally verifiable electronic elections. In practice, it is important that electronic
(including both Internet and kiosk) elections were universally verifiable. Without universal verifiability, there is no
hope of having any reliable “vote recounting” in the case of over-voting or under-voting, and no hope of correcting the
errors in current kiosk-voting. See, e.g., [Ver04] for a high-profile campaign for universal verifiability.

Finally, note that the security requirements of e-voting schemes are different from the requirements of say elec-
tronic banking. One could assume that e-banking is at least to some extent reliable, since in the case of cheating, bank
would get out of business. However, the sitting government will get out of business also when it loses the election, and
moreover, has means to influence operators of e-voting systems. This is one of the reasons why universal verifiability
is a must in the case of e-voting.

4 Cryptographic preliminaries

A public-key cryptosystem is a tripleΠ = (Gen,Enc,Dec) whereGen is the key generation algorithm that generates a
private/public key pair(sk, pk), Enc is the encryption algorithm andDec is the decryption algorithm. For a fixedΠ and
public keysk, we denote the corresponding plaintext space byP = P (Π, pk), randomness space byR = R(Π, pk)
and ciphertext space byC = C(Π, pk). Denote the encryption of a messagem ∈ P asEncpk(m; r) wherepk is the
used public key andr ∈ R is the used random coin. Throughout this paper, letκ denote the security parameter.
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IND-CPA secure homomorphic cryptosystems. Define

Advpkcsem
Π,κ (A) := |Pr[(sk, pk)← Gen(1κ),(m0,m1)← A(1κ, pk), b←r {0, 1}, r ←r R :

A(1κ,m0,m1, pk,Encpk(mb; r)) = b]− 1
2
| .

We say thatΠ is IND-CPA secureif Advpkcsem
Π,κ (A) is negligible inκ for any probabilistic polynomial-time machineA.

That is,Π is IND-CPA secure iff it is difficult for a polynomially bounded adversary to distinguish between random
encryptions of two elements, chosen by herself.

Assume that theC (resp.P ) is a group with group operation· (resp.+). Assume thatR is a groupoid with groupoid
operation◦. Π is homomorphicwhenEncpk(m1; r1) · Encpk(m2; r2) = Encpk(m1 +m2; r1 ◦ r2) for any valid public
keypk, plaintextsmi, and random coinsri.

The first well-known IND-CPA secure homomorphic cryptosystemElGamal was proposed by ElGamal [El 84].
In the conventionalElGamal, one fixes two large primesp andq, s.t.q | (p − 1), and letsGq be the unique subgroup
of Z∗

p of order q. Let g be a generator ofGq. Private key is a random elementsk ←r Zq. The corresponding
public key ish ← gsk. Encryption is defined asEncpk(m; r) := (gr;mhr). A ciphertext(c, d) can be decrypted by
m← d/csk = mhr/gskr. SinceEncpk(m1; r1)Encpk(m2; r2) = Encpk(m1m2; r1 + r2), P is the multiplicative group
(Gq, ·). ElGamal is IND-CPA secure under the Decisional Diffie-Hellman assumption [TY98].

In several e-voting protocols, one needs an additively homomorphic cryptosystem, that is, whereP = (Zn,+) for
some (possibly key-dependent)n. One can modifyElGamal to behave like an additively homomorphic cryptosystem
by definingEncpk(m; r) := (gr; gmhr), but in this case decryption is feasible only whenm is known to belong to
some relatively small set (e.g.,m ∈ {0, 1}).

Paillier’s cryptosystemPaillier [Pai99] is the first well-known IND-CPA secure additively homomorphic cryp-
tosystem. Its IND-CPA security is based on the Decisional Composite Residuosity Assumption [Pai99]. Paillier’s
cryptosystem was extended by Damgård and Jurik to allow encryption of large messages [DJ01]. In the Damgård-Jurik
cryptosystemDJ01, n = pq is the public key, and its factorisation(p, q) is the secret key. One setsEncpk(m; r) :=
(1 + n)mrns

mod ns+1, wheres ≥ 1 can be freely chosen aftern is generated. Here,m ∈ Zns andr ←r Z∗
n. (In

practice,r ←r Zn suffices.) For decrypting, one first computesEncpk(m; r)(p−1)(q−1) = (1 + n)m(p−1)(q−1)rϕ(ns)

mod ns+1 = (1 + n)m(p−1)(q−1) mod ns+1 and recoversm from that by using an algorithm from [DJ01].
Another similar cryptosystem,DJ03, was proposed by Damgård and Jurik in [DJ03].DJ03 is slower and has longer

ciphertexts thanDJ01, and its IND-CPA security is based on both the Decisional Diffie-Hellman and the Decisional
Composite Residuosity Assumptions being true. On the other hand, it has a simpler threshold version thanDJ01.

Threshold homomorphic cryptosystems. The goal of a threshold cryptosystemΠ = (Gen,Enc,Dec) is to make it
possible to share the private key among a set of receivers, so that only authorised sets of servers can decrypt messages.
As always,Gen is the key generation algorithm,Enc is the encryption algorithm andDec is the decryption algorithm.
In the case of a threshold cryptosystem, the key is generated jointly by all participants so that everybody knows the
public keypk, and all servers will have shares of the private keysk. Decryption is done by an authorised set of servers
without explicitly reconstructing the private key. On the other hand, encryption algorithm is mostly used by outsiders
who might not know that decryption is done in a threshold manner.

Next, we will describe thethreshold ElGamal Cryptosystem, mostly because of its simplicity. A description of the
more complicated thresholdDJ01 andDJ03 cryptosystems can be found from [DJ01, DJ03]. LetGen be a subgroup
of Z∗

p of orderq, whereq andp are large primes. To generate a secret keys ∈ Zp, every serverServerj generates a
sharesj as in Shamir’s secret sharing scheme [Sha79]. That is,sj = f(j) for some polynomialf that is unknown to
any single server. There exists exactly one polynomialf of degreek such thatsj = f(j) for j ∈ {1, . . . , k}. Serverj
commits to her sharesj by publishing the valuehj ← gsj . As in Shamir’s secret sharing scheme, the secrets is equal
to s = f(0).

By the Lagrange interpolation formula, givenk points (xi, yi), s.t. yi = f(xi), i = 1, . . . , k, f(x) =∑k
i=1 yi

∏k
j=1,j 6=i

x−xj

xi−xj
(mod p) (here,xj = j andyj = sj), and thuss = f(0) =

∑k
i=1 cisi (mod p), where

cj :=
∏k

j=1,j 6=i
−j
i−j mod p.
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Therefore,gs can be computed as
∏

j∈X h
cj

j from the public valueshj only, whereX is any subset ofk author-
ities. Then,h = gs is announced as the public key. No collection of< k servers learnss, but note thats is only
computationally hidden (w.r.t. the discrete logarithm problem).

To decrypt(x, y) = (gr,mhr), the serversServerj perform the following steps: (a) eachServerj broadcasts
wj = xsj , and proves in zero-knowledge thatlogg hj = logx wj ; (b) letX be any subset ofk authorities who passed
the zero-knowledge proof. The plaintext can be recovered byX asm′ ← y∏

j∈X w
cj
j

. Really,wcj

j = xcjsj = grcjsj ,

thusm′ = mgrs/
∏
grcjsj = m.

How to prove equality of discrete logarithms? Chaum and Pedersen [CP92] proposed the following protocol where
A proves thatx = gµ ∧ y = hµ for someµ: (a) Prover generates a randomr ←r Zq, and sends(a, b) ← (gr, hr) to
verifier. (b) Verifier sends a randome←r {0, 1}t, t ≥ 80, to prover. (c) Prover sendsz = r + µe mod q to verifier.
(d) Verifier checks thatgz = axc andhz = byc.

Commitment schemes. A commitment scheme is a functionC : X ×R→ Y from the plaintext spaceX and ran-
dom coin spaceR to the commitment spaceY . A commitment schemeC is (a)statistically hidingif the commitment
y =C(m; r) leaks a statistically insignificant amount of information about the plaintextm and the coinr; and (b)com-
putationally bindingif given commitmenty = C(m; r) to some elementr from the plaintext space, it is hard to find
m′ ∈ P ,m′ 6= m, and anr′, s.t.y = C(m′; r′). For the best known commitment schemes (e.g., Pedersen’s [Ped91]),
the plaintext space is equal toZn for somen. Therefore,C(m; r) = C(m + n; r) and therefore, such commitment
schemes are not binding over the integers.

Fujisaki and Okamoto proposed aninteger commitment scheme[FO99] that is binding over the integers. Their
scheme was later improved by Damgård and Fujisaki [DF02]. The Damgård-Fujisaki integer commitment scheme is
computationally binding and statistically hiding, given some reasonable cryptographic assumptions. Moreover, one
can construct a very efficient honest-verifier statistical zero-knowledge (HVSZK) argument of knowledge that given
three commitmentsc1, c2 andc3, the prover knows such integersµ1 andµ2 and corresponding random coinsρ1, ρ2

andρ3, thatc1 = C(µ1; ρ1), c2 = C(µ2; ρ2) andc3 = C(µ1µ2; ρ3).
The homomorphic property of integer commitment schemes together with the efficient HVSZK argument of

knowledge for the multiplicative relation can be used to construct efficient HVSZK arguments of knowledge of type
c1 = C(µ1; ρ1) ∧ · · · ∧ cn = C(µn; ρn) ∧ ci+1 = C(µi+1; ρi+1) ∧ µi+1 = p(µ1, . . . , µn), wherep is an arbi-
trary polynomialp ∈ Z[X1, . . . , Xn]. Lipmaa [Lip03] proposed a uniform methodology for constructing efficient
HVSZK arguments of knowledge for a relatively large classD of languages; it is conjectured but not known that
D = NP [Lip03]. Given a statistically hiding and computationally binding integer commitment scheme with effi-
cient HVSZK arguments of knowledge for additive and multiplicative relations, one can argue in HVSZK that she
knows an auxiliary (suitably chosen) witnessω, such thatRS(µ;ω) = 0, whereRS is the representing polynomial of
S [Mat93, Lip03]. In particular, this results in an sub quadratic-lengthDiophantine argument systemfor all languages
from the classL2 of bounded arithmetic.

Therange argumenty = C(µ; ρ) ∧ µ ∈ [L,H] has a HVSZK argument of knowledge with linear lengthΘ(|µ|) ·
κ [Lip03]. It is based on the famous theorem of Lagrange that every nonnegative integerµ can be represented as
ω2

1 + · · ·+ ω2
4 for some integersωi. The corresponding valuesωi can be computed efficiently [Lip03]. (See [Gro04]

for a slight refinement.)

Efficient RAIE. In the next, we need an honest-verifier zero-knowledge proof of knowledge that the prover has
encrypted a value of formvotersj wherej ∈ [0, cands − 1] for some publicly-known constantsvoters andcands.
This is called arange argument in exponents(RAIE). The currently most efficient honest-verifier computational zero-
knowledge (HVCZK) RAIE was proposed by Lipmaa, Asokan and Niemi [LAN02]. The resulting RAIE has commu-
nicationΘ(max(k, cands log voters) · log cands) = Θ(cands · log voters · log cands). For RAIE, one can use another
functiona[[i]] instead of the exponentiationai [Lip03]. The functiona[[i]] is defined as follows. All nonnegative integral
solutions(x, y) of the equationx2− axy− y2 = 1 are either equal to(a[[i+1]], a[[i]]) or (a[[i]], a[[i+1]]), i ≥ 0, wherea[[i]]

can be computed by using the next recurrent identities [Mat93]:a[[0]] := 0, a[[1]] := 1, anda[[i+2]] := aa[[i+1]] − a[[i]] for
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i ≥ 0. Thus,{a[[i]]}i∈N is a Lucas sequence. Whena > 2 andi > 0 then(a − 1)i ≤ a[[i+1]] ≤ ai. Also, a[[i]] can be
computed almost as efficiently asai.

Bulletin board. A bulletin board is a public broadcast channel with memory where a players write information that
any party can read. See, e.g. [CGS97].

5 Homomorphic E-Voting Schemes

Assume that the election uses the Plurality mechanism. (Implementing other mechanisms by using the next approach
is also possible, although much more cumbersome.) Then, secure e-voting can be achieved as follows by using a
secure homomorphic threshold cryptosystemΠ = (Gen,Enc,Dec) [CGS97, DJ01]: Leta be the upper limit to the
number of voters. Letτ ≥ 1. There is2τ + 1 servers that share a public keypk and a private keysk so that everybody
can encrypt a message by usingpk, but only≥ τ + 1 collaborating servers can jointly decrypt the ciphertext. Assume
vi ∈ [0, cands − 1] corresponds to the preferred candidate. Theith voter encryptsvotersvi by using the keypk and
sends it to the servers. The servers collect all ciphertexts and return receipts to the voters. The list of all encrypted
votes is written on the bulletin board. After the end of the election, the servers multiply all ciphertexts, getting
y = Encpk(

∑
i votersvi) = Encpk(

∑
αjvotersj), whereαj is the number of voters who voted for the candidatej.

Thus, the servers can jointly decrypty, and then compute the coefficientsαj . The valuey together with the vector
(α1, . . . , αcands) is published.

Next, we will look into the details of this generichomomorphic e-votingprotocol.

Guaranteeing Correctness. To guarantee the correctness of this protocol, all voters must prove or argue in zero-
knowledge that they encrypted a value of formaj wherej ∈ [0, cands − 1]. This corresponds to the RAIE. The
functiona[[i]] is exactly as suitable asai to be used as the encoding function that the voters use in the homomorphic
e-voting scheme [Lip03]. Due to the fact that(a[[i]])2− aa[[i]]a[[i+1]]− (a[[i+1]])2 = 1, there is aΘ(cands log voters)-bit
HVSZK argument of knowledge to prove that a voter voted correctly. Lipmaa, Asokan and Niemi [LAN02] proposed
an alternative RAIE that is also based on the methodology from [Lip03]. Instead of the functionvotersi (or voters[[i]]),
it uses the functionbi, whereb is the least primeb ≥ voters. Sincevoters is fixed a priori and publicly known,b
can be computed before the electronic voting starts. This RAIE is approximately as efficient as the RAIE based on
the Lucas sequences: the arguer must argue that the committed valueµ is such thatbL ≤ µ andµ | bH . As later
shown in [DGS02], one can simplify the argument even more by assuming thatb = p2 for a primep: then one has to
argue the knowledge of anω, for which (ω | pH−L) ∧ (ω2p2L = µ). The RAIE is the single most communication-
consuming sub-protocol of the homomorphic voting scheme. Therefore, the use of HVSZK arguments results in a
Θ(log cands)-fold decrease of total communication.

Server’s correctness can be verified by every voter by multiplying all the votes on the bulletin board, checking that
their own votes are there, that the product is equal toy, and finally, that

∑
αjvotersj is a correct decryption ofy (by

verifying another zero-knowledge proof).

Multi-candidate voting. The homomorphic e-voting scheme is especially efficient when used together with the
additive variant ofElGamal. However, this is true only whenvoterscands is relatively small: the decryption results in
g

∑
αjvotersj

, from which
∑
αjvotersj ∈ [0, voterscands − 1] can be found by solving the restricted discrete logarithm

problem. The realistic value ofvoters is in {1, . . . , 108}, depending on the elections. In the two-candidate case, when
cands = 2, and assuming thatvoters = 107, voterscands ≤ 1014 ≤ 247. Finding the corresponding discrete logarithm
can be done in timeO(

√
voterscands) ≤ 224, which is still realistic in most of the cases. However, forcands > 3, we

must look at alternatives toElGamal.
The DJ01 cryptosystem can serve as a natural alternative. By usingDJ01, the servers directly recover∑
αjvotersj , and thus the costly discrete logarithm computation can be avoided. Moreover, values up to say

voterscands ≈ 24096 (this corresponds to sayvoters ≤ 108 andcands ≤ 150) can be tolerated without significant
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performance loss. On the other hand, the thresholdDJ01 cryptosystem is slower and less convenient than the thresh-
old ElGamal cryptosystem. Some compromise is offered by theDJ03 cryptosystem. However, at this moment, the
choice of existing IND-CPA secure homomorphic cryptosystems is not completely satisfying.

The currently most efficient multi-candidate homomorphic voting protocol is described in [DGS02].

6 Verifiable Shuffle-Based E-Voting Schemes

In the verifiable shuffle-based approach (initiated by Chaum [Cha81]), every voter encrypts his or her votevi by using
a public-key cryptosystemΠ = (Gen,Enc,Dec) that must be IND-CPA secure, allow certain efficient zero-knowledge
proofs of knowledge and be re-blindable. Re-blindability means that there must exist a functionblind, such that for
every ciphertextc, blindpk(c;R) = Encpk(Decsk(c);R) as distributions, whereR is the domain of random coins ofΠ.
Clearly, every homomorphic cryptosystem is re-blindable, since then one can defineblindpk(c; r) := c · Encpk(0; r).

In this approach, the encrypted votes,c0i = Encpk(vi; ri) are posted on the bulletin board together with
the zero-knowledge proof of knowledge thatDecsk(c0i) corresponds to a valid candidate. This zero-knowledge
proof of knowledge may not be necessary, and can be replaced by a potentially simpler proof of knowledge
that the voter knowsDecsk(c0i). At the end of the voting phase, the valuesc0i will be mixed by `, ` > 1,
mix-serversMixServer1, . . . ,MixServer`. The jth mix-serverMixServerj receives a list ofvoters encrypted votes
(cj−1,1, . . . , cj−1,voters), cj−1,i = Encpk(vχj−1(i); r

′
j−1,i), whereχj−1 is some permutation, andr′j−1,i is some ran-

dom number. She then randomly re-blinds all ciphertexts and permutes them. That is, she generates a random permu-
tationπj , and for everyi ∈ [1, voters], she creates a random blinding factorr′′ji. She defines

cji := blindpk(cj−1,π−1
j (i); r

′′
ji) (1)

and writes(cj1, . . . , cjvoters) on the bulletin board. This must be accompanied by a proof of correctness that for some
permutationπj and for some randomr′′ji, (1) holds.

Every mix-server must verify the proofs of knowledge up to her round. At the end of` rounds, all servers (and
voters) must verify the correctness of all proofs of knowledge on the board. After that, everybody can be sure that
(c`1, . . . , c`voters) is an encryption of some permutation of(v1, . . . , vvoters). Thus, the only thing left is to decrypt the
ciphertext tuple. This can be done in a threshold manner, assuming that1

2`+ 1 servers have to collaborate to decrypt
this tuple. At the end of this section we will describe some alternative possibilities.

How to prove efficiently that (1) is true for someπj and{r′′ji}i? Next, we give a brief description of two existing
verifiable shuffle protocols. (See [Nef01] for the third.)

Furukawa-Sako protocol. Represent the permutationπj by the permutation matrixM j , withM j
ab = 1 iff πj(a) =

b, andM j
ab = 0, otherwise. A nice way of using this matrix representation to achieve efficient zero-knowledge proofs

is described in [FS01, Fur04]. It is based on the next fact [FS01]: Letδij be1 if i = j and0 otherwise. Letδijk be1
if i = j = k and0 otherwise. Letq be a large prime. Anvoters× voters matrixM is a permutation matrix iff∑

h

MhiMhj = δij (2)

and ∑
h

MhiMhjMhk = δijk . (3)

Thus, instead of (1), one could prove thatcji = blind(
∏voters

i=1 c
Mji

j−1,i; r
′′
ji) and that (2) and (3) are true.

Equation (2) can be verified by definingsi =
∑voters

j=1 Mijej , for ej chosen randomly by verifier, and then checking

that
∑voters

i=1 s2i =
∑voters

i=1 e2i . Due to (2),s2i =
∑voters

j=1 MijMikejek =
∑
e2χ(i) and

∑voters
i=1 s2i =

∑voters
i=1 e2χ(i) =∑voters

i=1 e2i . Analogously, (3) is verified by checking that(
∑
Mijej)3 =

∑
e3i . Some more care has to be taken to

achieve complete security [FS01, Fur04].
In this approach, the prover must make approximately8voters exponentiations, and the verifier must make approx-

imately10voters exponentiations. When|p| = 1024 and|q| = 160, it takes about5280voters bits to communicate the
proof of knowledge.
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Groth’s verifiable shuffle. An alternative, somewhat more efficient, verifiable shuffle was proposed by
Groth [Gro03]. It assumes the use of an IND-CPA secure homomorphic cryptosystemΠ (e.g., ElGamal, Paillier
or DJ01), and of a compatible homomorphic commitment scheme. In this verifiable shuffle, the prover first commits
to the shuffle. The verifier picks a vector of random integers, and the prover proves that the scalar product of this
vector and the vector of encrypted votes is preserved after the shuffling. In more details, Groth’s verifiable shuffle is
as follows:

• Prover: Forj ∈ {1, . . . voters}, commit toC1,i ← Cpk(π(j); r2,j). SendC1,i, together with a proof of correct
shuffle, to verifier.

• Verifier: Forj ∈ {1, . . . , voters}, generate a randomtj and sendtj to prover.

• Prover: Forj ∈ {1, . . . , voters}: C2,i ← Cpk(tπ(j); rtj). Send{C1,i}i, together with a proof of correct shuffle
and that this shuffle was the same as on step 1, to verifier.

• Prover proves in zero-knowledge thatDecsk(
∏
c
tπ(i)
ji ) = Decsk(

∏
cti
j−1,i)

The three first proofs of knowledge can be executed jointly, by proving that for a randomλ, chosen by the verifier,
{C1,iC

λ
2,i} commits to{i + λti}. The proof that{ci} commits to{mi} can be done as follows: Prover setscm =

Cpk(m; 0), form generated by the verifier, and proves that the multiplication of the contents ofc1c
−1
m , . . . ,cvotersc−1

m is
equal to

∏voters
i=1 (mi −m). All (or at least a significant fraction) of the resultingvoters zero-knowledge multiplication

proofs can be done in parallel by using multi-commitments.
In this approach, the prover must perform approximately6voters exponentiations, and the verifier must perform

approximately6voters exponentiations. When|p| = 1024 and|q| = 160, it takes about1184voters bits to communi-
cate the proof of knowledge.

Security model and strengthening. By using a verifiable shuffle based scheme as described above, both the privacy
of the voters and the correctness will hold if at leastτ + 1, where` = 2τ + 1, servers are honest. It is however
possible to achieve a better result. Assume thatΠ is theElGamal cryptosystem and that every mix-serverMixServerj
has additionally her own private keyskj and public keyhj = gskj . Every voter encrypts his votev as

(a0, b0)← (gr; v · (h1 · · · · · h` · h)r)

for r ←r R. The first mix-server generates a random numberr1, and computes

(a1, b1)← (a0 · gr1 , b0 · a−sk1
0 · (h2 . . . h` · h)r1) .

Then (a1, b1) = (gr+r1 , v · (h2 . . . h` · h)r+r1), that is, the first mix-server has peeled off encryption by his own
key. He will then shuffle the result and accompany it with a proof of correct re-encryption and shuffling. This can be
done efficiently [Fur04], although the proof will not be zero-knowledge but “permutation hiding”. The second mix-
server behaves analogously, by generating a random numberr2, and computing(a2, b2) = (gr+r1+r2 , v(h3 . . . h` ·
h)r+r1+r2), and sending the results—in a shuffled form, accompanied with correctness proofs—to the third server.
The last server outputs the set{(gr+r1+···+r` , vhr+r1+···+r`)} of encrypted votes. After that,2t+1 servers collaborate
to recover{v}. Here, the privacy of any voter is preserved if at least one of the mix-servers is honest. At leastτ + 1
servers must be honest to recover{v} from the shuffle. (See [Gro04] for a different approach.)

7 Comparison and Practical Consideration

We described shortly two main approaches to cryptographic e-voting: one, directly based on IND-CPA secure ho-
momorphic encryption, and the second one, that is based on verifiable shuffles. (We did not describe the third major
approach, based on blind signatures, due to the lack of universal verifiability. There are also potentially other problems
with this approach. See, e.g., [FOO92] for one possible blind-signature based protocol.) From these two approaches,
the first one is more efficient, but the second one is more universal. The verifiable shuffle-based approach becomes
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more efficient when the number of candidates is large (in hundreds), when there is a need to support write-ins or
different voting mechanisms (e.g., Borda). Moreover, in the verifiable shuffle-based e-voting, the voters do not have
to perform zero-knowledge proofs of vote validity: it suffices to encrypt and sign the vote; invalid votes will be de-
tected by servers anyhow. This is important in practice, since it decreases the complexity of software that needs to be
installed in voters machines. Last and not least, the privacy of voters is guaranteed if at least one of the mix-servers
is honest (given that the re-encryption techniques are used), while the correctness of elections is guaranteed when at
least the fraction of12 of the servers is honest. This compares favourably to the homomorphic approach, where also the
privacy depends on the threshold trust. This means, in particular, that in the case of verifiable shuffle-based solution,
less servers could be used.

On the other hand, in the homomorphic e-voting protocols, the job of talliers is considerably simpler, and it
is simpler to achieve universal verifiability. In the verifiable shuffle-based protocols, every mix-server has to per-
form Cvoters exponentiations (shuffle verification and correctness proof, re-encryption, etc), whereC ≈ 20 is a
small constant. In the homomorphic protocols, the servers must just multiply the encryptions, and then jointly de-
crypt the result. The verification of voter’s correctness proofs can be distributed among different servers so that
every server verifies only a fraction of them. This means that it is likely that homomorphic protocols are faster
at least by an order of the magnitude. However, one must first test this in practice. It is also likely that con-
tinuous research in both directions will result in even faster protocols. Only during the last three years, we have
started to see really efficient cryptographic protocols for e-voting (e.g., protocols used in homomorphic e-voting
from [DJ01, LAN02, DGS02, Lip03] and verifiable shuffle protocols from [FS01, Nef01, Gro03, Fur04]). The re-
cent breakthroughs in both directions are at least partially caused by the recently developed efficient IND-CPA secure
homomorphic cryptosystems [OU98, NS98, Pai99, DJ01, DJ03] and the relatively new concept of integer commitment
schemes [FO99, DF02].

8 Further Research Topics

All described e-voting protocols have some flaws in common. Next, we outline some major problems in e-voting
protocols and propose some initial solutions. An efficient solution to any of the following problems would be a major
advance in the state of the art. Note that some of (or even, most of) the problems in e-voting cannot have cryptographic
solutions, and we will not discuss them at all.

Information-theoretic privacy for voters. As mentioned before, ideally the privacy of voters should be
information-theoretic. However, all the described approaches only guarantee computational privacy. To somewhat
improve the situation, one could use public-key encryption with really high security parameter (say,ElGamal in Zp

with |p| = 4096 and|q| = 256). Many zero-knowledge proofs in a voting protocol can be done by using statistically
hiding commitment schemes; due to statistical hiding, such proofs may executed by using moderate security parame-
ters. Alternatively, one could try to devise protocols that really are information-theoretically secure (in a suitable trust
model). At this moment the corresponding solutions are inefficient [Ots04].

Alternatively, real information-theoretical security can be obtained by usingcryptographic randomised response
techniques (cryptographic RRTs)[AJL04]. Here, every voter randomises his or her vote by using a publicly known
probability; the result of randomisation does not say anything about the real preference of the voter. If a large number of
votes are “summed” together, one can obtained an unbiased estimate to the actual voting result with a very small error
margin. Cryptographic RRT of [AJL04] should be used to guarantee that the voters randomise their votes correctly.
Whether this solution is politically acceptable, is unclear. However, it seems to be currently the only efficient way to
guarantee unconditional vote privacy.

Eliminating the random oracle assumption. Almost all e-voting protocols use honest-verifier zero-knowledge
proofs (or arguments) of knowledge that are known to be intrinsically interactive in the standard model, i.e., without
any assumptions of the existence of a random oracle or a common reference string. However, for universal verifiability,
the correctness proofs must be non-interactive. Honest-verifier zero-knowledge proofs of knowledge are usually made
non-interactive—in the random oracle model—by using the Fiat-Shamir heuristic [FS86], by first proving that the
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protocol is secure when using a random oracle, and then the random oracle with a hash function like SHA1. Unfortu-
nately, it is known that there exist natural-looking protocols that are secure in the random oracle model but that cannot
be instantiated with any function. There is no guarantee that this is not the case with the existing voting e-protocols.

The common reference string (CRS) model seems to be much more realistic, and in efficiency, protocols in the
CRS model rival with the protocols in the random-oracle model. As a short example, Damgård [Dam01] has proposed
the next general methodology of transforming three-round honest-verifier zero-knowledge proofs to non-interactive
zero-knowledge proofs in the CRS model. Assume that all participants have an access to a trapdoor commitment
public key of a central authority (e.g., the CA who is needed anyways). Then given a three-round honest-verifier
zero-knowledge protocol with messages(a, e, z), the prover will first transfer a trapdoor commitment toa, obtaine,
and only then return(a, z). (See [Dam01] for a complete protocol.)

In electronic voting, we however need non-interactive zero-knowledge. The current non-interactive zero-
knowledge proofs in the CRS model are not that efficient, unless one wants to use non-standard assumptions. For
example, Groth [Gro04] proposes efficient non-interactive zero-knowledge proofs in the CRS model, where the secu-
rity assumption is that the concrete protocol is sound. It is an important open problem to design efficient non-interactive
zero-knowledge proofs in the CRS model that rely only on standard computational assumptions.

Moreover, we think that the CRS model is almost realistic, but it would still be desirable to do without it. The
implication of non-interactive witness-indistinguishable protocols, obtained by say derandomisation [BOV03], to the
e-voting is something that must still be studied.

Achieving coercion-resistance. As noted before, an e-voting system should be secure against coercing (and vote
buying). A lot of relevant cryptographic research has been focusing on receipt-freeness: that is, making it impossible
for a voter to prove that he or she obeyed the coercer. However, as noted in [JJ02], receipt-freeness is insufficient.
To be really coercion-resistant, an e-voting protocol should additionally be secure against the randomisation attack
(coercer forces the voter to submit invalid vote), forced-abstention attack (coercer forces the voter to refrain from
voting) and simulation attack (coercer buys the secret key of the voter and simulates the voter by using this key). Juels
and Jakobsson proposed acoercion-resistant e-voting protocol[JJ02] that is secure against the mentioned attacks.
However, their—yet formally unpublished—solution is not very efficient. It would be very important in practice to
improve upon their protocol.

Finally, note that the next simple administrative procedure helps significantly. Allow parallel kiosk voting and
Internet voting, such that for voters who have voted both ways, only their kiosk vote will be counted. However, this
solution has also clear drawbacks. First, ideally, one would like to organise e-voting without any kiosk voting at all, to
decrease costs. Parallel voting would instead increase the costs. Second, an invalid or a closely guarded individual is
not able to go to a kiosk polling station.

Human-oriented verifiability. One huge problem with all described e-voting protocols is that they are hardly veri-
fiable by an average Joe. To increase the trust in e-voting, it should be possible for every voter to verify that their own
vote is counted correctly. There are yet no completely satisfying solutions to this problem. See [MMP02, Cha04] for
some recent work in this direction, and [DJ02] for another approach that does not require trust in the equipment.
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9 Glossary

Electronic voting: paperless voting by using any electronic or mechanical voting.

Homomorphic public-key cryptosystem: a public-key cryptosystem where group operations on ciphertexts result in
group operations on plaintexts.
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Internet voting: voting over Internet, by using personal computing devices.

Kiosk voting: electronic voting in predestined locations (libraries, schools).

Public-key cryptosystem: a triple(Gen,Enc,Dec), whereGen is an efficient key generation algorithm that generates
a public and a secret key,Enc is an efficient encryption algorithm that uses the public key andDec is an efficient
decryption algorithm that uses the secret key.

Universal verifiability: an election is said to be universally verifiable if anybody, not only the voters, can verify that
the election winner has been determined correctly.

Verifiable shuffle: a permutation of ciphertexts, such that nobody but the permuter can distinguish the used permuta-
tion, but anybody can verify that some permutation was used.

Voting mechanism: a rule to determine election winner from the votes of the voters.
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