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Preliminaries

I assume you have seen different primitives
Block ciphers, stream ciphers
Hash functions
Public-key cryptosystems
Signature schemes

(Crypto I or an equivalent course. . . )

For every type of primitive, you have hopefully
seen some representatives, a security definition,
and sometimes an attack showing that the
representatives are not secure
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Goal of Cryptographic Protocols

More and more activities are done online
Examples: e-voting, digital signatures

Some activities are completely new/on a
completely new scale

Example: (privacy-preserving) data mining

In all such cases, one should get
security/correctness and privacy in the presence
of malicious parties

Helger Lipmaa MTAT.07.014 Cryptographic Protocols



Homomorphic Protocols: Beginning
Semisimulatability ++

First Lecture: Introduction
Second Lecture: Elgamal
Third Lecture: MH Protocols. Security
Fourth Lecture: Additively Homomorphic Encryption

Def. of Cryptographic Protocols

Cryptographic protocol: a two/multi-party
protocol that achieves its goals and protects
privacy even in the presence of realistically
malicious parties
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Why It May Be Hard: CPIR I

Server has database ~f = (f1, . . . , fn), |fi | = `

Client has index x ∈ {1, . . . , n}
Computationally-Private Information Retrieval:

Client should obtain fx (and may be more)
Server should obtain no new information

Nothing about x!

Simple protocol: server sends ~f to client
Takes `n bits, too expensive in practice

Can it be done better?
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Why It May Be Hard: CPIR II

If no privacy needed:
Client sends x , |x | = dlog2 ne, to server
Server sends fx , |fx | = `, to client
dlog2 ne+ ` bits
Very small constant Θ(1) computation on modern
computer

What if privacy needed?
Communication can be cut down to
Θ(log n + ` + κ) [Gentry and Ramzan, 2005]

κ is security parameter (e.g., key length)

What about computation?
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Why It May Be Hard: CPIR III

“Theorem”: since server does not know which
index client obtains, server has to “touch” all
database elements. Θ(n) computation

It was thought a few years ago that this is it

[Lipmaa, 2009]: Θ(n) computation can be
done in preprocessing phase, online
computation can be decreased to O(n/ log n)
and often less

Preprocessing is still Θ(n) as compared to
Θ(1) in non-private case /
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Why Often Simpler Than Assumed I

In e-voting, server receives ciphertexts of
individual ballots, and outputs a plaintext tally

Goal: tally is correct but server does not know
anything extra about individual ballots

Sounds impossible?

Can be done if one can do arithmetics on
ciphertexts: one server “adds up” ballots and
second server decrypts “‘sum”
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Why Often Simpler Than Assumed II

In e-voting, server must prove that his actions
were correct, without revealing any extra
information

Sounds impossible?

Can be done by using zero-knowledge and
proven with simulation-based proofs
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Simple Example: Veto

Assume Alice and Bob have to decide on some
issue

Vetoing: decision taken only if everybody
supports it
Privacy: minimal amount of information about
votes will be leaked

If Alice votes for then the result will be equal to
Bob’s vote ⇒ Bob’s privacy cannot be protected
here
If Alice votes against then result will be “no”
independently of Bob’s input ⇒ Alice should get
no information
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Mathematical Formulation: Veto = AND

Assume the private inputs are a, b ∈ {0, 1}
The common output is f (a, b) := a ∧ b

Alice/Bob should not get to know more than
inferred from her/his private input and f (a, b)

In general case, every party can have a different
private output fi(x1, . . . , xn)
Then the task is:

given private inputs bi , party i should learn
fi(b1, . . . , bn) and nothing else
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Example 2: Scalar Product

Alice’s input is ~a = (a1, . . . , an), Bob’s input is
~b = (b1, . . . , bn)

Alice’s output: f (~a,~b) =
∑n

i=1 ai · bi
Bob’s output: ⊥ (nothing)

Alice should be convinced that her output is
correct
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Example 3: E-voting

n voters vi , m candidates cj
Simple case: All voters cast vi their ballots for
some candidate cj , bi = cj
Ballots are sent to voting servers who output
the tally: for each j ∈ {1, . . . ,m},
Tj = |{i ∈ [n] : bi = cj}|
Everybody should learn {Tj : j ∈ {1, . . . ,m}}
Nobody should learn anything else

Voters should be convinced the result is correct
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Definitions of Security

Will be postponed — we will first see some
natural protocols
Semihonest model: parties behave honestly,
but are curious

Security = privacy (in semihonest model)

Malicious model: parties behave adversarially
Security = privacy + correctness
Will study later
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Efficient Protocols Based on Algebra

Many efficient protocols are based on algebraic
structures
Common example: a finite cyclic group (G, ◦)
where the exponentiation φ : Zq → G is both
one-way (hard to invert) and an isomorphism:

g 0 = 1 , g−a = 1/g a , g ag b ≡ g a+b .

One-way exponentiation makes it possible to
design very efficient protocols for many
problems.

Helger Lipmaa MTAT.07.014 Cryptographic Protocols



Homomorphic Protocols: Beginning
Semisimulatability ++

First Lecture: Introduction
Second Lecture: Elgamal
Third Lecture: MH Protocols. Security
Fourth Lecture: Additively Homomorphic Encryption

Reminder: Groups

(G, ◦) is a group if:

G is set, ◦ : G×G→ G is binary operation

Associative: g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3

Exists 1 ∈ G, s.t. for all g , 1 ◦ g = g ◦ 1 = g

∀g∃g−1 ∈ G, s.t. g ◦ g−1 = g−1 ◦ g = 1

(G, ◦) is abelian if additionally g1 ◦ g2 = g2 ◦ g1 for
all g1, g2

Multiplicative group: ·, 1, g−1

Additive group: +, 0, −g
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Reminder: Cyclic groups

Let (G, ◦) be a group

g x = g · g · · · · · g (x times)
If x =

∑
2ixi then g x = g

∑
2ixi =

∏
(g 2i )xi

g−x = g−1 · g−1 · · · · · g−1

For g ∈ G, let 〈g〉 := {g x : x ∈ Z}
g is a generator of 〈g〉
If G = 〈g〉 then G is cyclic
Example:

(Z,+) is cyclic with generator 1
(Zq = {0, 1, . . . , q − 1},+) is cyclic with gen. 1
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Reminder: Group Order

Element g ∈ G has order q = ord(g) if g q = 1
and g i 6= 1 for 0 < i < q

Group G has order q, q = ord(G) if
q = maxg∈G ord(g)

If G is cyclic of order q, then for every
generator g , h ∈ G, there exists a unique
i ∈ Zq, such that h = g i

Note that if q = ord(G), then
∀i : g i = g i mod q
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Reminder: Divisibility Etc

For a, b ∈ Z, a | b if there exists c ∈ Z such
that b = ca
For a, b > 1, gcd(a, b) is the greatest common
divisor of a and b

gcd(a, b) | a, gcd(a, b) | b
If c | a and c | b, then c ≤ gcd(a, b)

If gcd(a, b) = 1, then a and b are coprime

gcd(a, b) can be computed efficiently by using
the Euclidean Algorithm
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Instantiation 1 of G

For n > 1,
Z∗n := {i ∈ {1, . . . , n − 1} : gcd(n, i) = 1}
Fact: i is reversible in (Zn, ·) iff gcd(n, i) = 1

(Z∗n, ·) is group

ϕ(n) := |Z∗n| is Euler’s totient function
If p is prime, then ϕ(p) = p − 1

Z∗p = Zp \ {0}
Lagrange’s theorem: If G is finite and G′ ⊆ G
is subgroup, then ord(G′) | ord(G)
OTOH: If q | p and G is group of order p, then
G has subgroup of order q
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Instantiation 1 of G

Example

Let p, q be two large primes s.t. q | (p − 1). Let G
be the unique subgroup of Zp∗ of order q. Let g be
the generator of G.

Explanation: |Z∗p| = p − 1, thus there exists
(unique) subgroup G of Z∗p of order q.
In practical instantiations, log2 p ≈ 1536 and
log2 q ≈ 160. We need 1536 bits to represent an
element of G. Exponentiation in G takes up to 160
multiplications.
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Instantiation 2 of G

The most popular alternative involves elliptic curve
groups, where log2 q = 160 and G can be
represented by using ≈ log2 q bits. Much more
efficient than the previous case, though also much
more complicated mathematics.
Fineprint: The elliptic curve groups must be chosen carefully.

For example, in some e.c. groups, one can efficiently solve

DDH problem. But such groups are useful otherwise.
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Abstracting G

In the next, we will abstract away the concrete
group and assume that G is a multiplicative cyclic
group of order q (with some hardness assumptions).
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Second Lecture: Elgamal

See [Elgamal, 1985] for original paper on Elgamal
cryptosystem.
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Reminder: group isomorphisms

Let (G1,+) and (G2, ·) be groups
Function f : G1 → G2 is group isomorphism, if

f (g1 + g2) = f (g1) · f (g2)
f (0) = 1
f (−g) = f (g)−1
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Discrete Logarithm Problem

Let G be cyclic group of prime order q
Efficiently computable isomorphism
f (a) : Zq → G: given a generator g ,
a 7→ g a =: f (a).

f is an isomorphism:
f (a) · f (b) = g agb = g a+b = f (a + b),
f (0) = g 0 = 1, f (−a) = g−a = 1/g a = f (a)−1

Discrete Logarithm Assumption: f −1 is
intractable to compute. I.e., given (g , g a), it is
difficult to find a.
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Reminder: Basic Complexity Theory

Parameter: input size κ

poly(κ) = κO(1): polynomial in κ, exists
polynomial f such that |poly(κ)| ≤ |f (κ)|
negl(κ) = κ−ω(1): negligible in κ, for every
polynomial f , |poly(κ)| < |f −1(κ)|
“Efficient” algorithm: works in time poly(κ)

Probabilistic algorithm can use a random string

Non-uniform algorithm: construction of
algorithm for concrete input size can be
inefficient
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DL Assumption, More Formally

Let G be a cyclic group of prime order q. Fix
generator g ∈ G. Let

Adv dlG (A) := Pr[a← Zq : A(g , g a) = a] .

We say that G is (τ, ε)-DL group if for any
non-uniform probabilistic adversary A that works in
time ≤ τ , Adv dlG (A) ≤ ε.
We say G is DL group if it is (poly(κ), negl(κ))-DL
group.
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Assumption:

Sampleability: it is easy to pick a random
element from G
Follows from isomorphism: sample a← Zq

(easy) and compute b ← g a; since a is a
random element of Zq, then b is a random
element of G
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Diffie-Hellman Key Exchange Protocol I

Alice and Bob have both secret keys ska and
skb and public keys pka and pkb
Only Alice knows ska, while everybody knows
pka. Same for Bob

Alice and Bob generate a new common secret
key x such that only Alice and Bob know it

x is later used to encrypt other messages
We assume that all messages are sent on
authenticated channels

Alice’s/Bob’s messages are known to come from
Alice/Bob
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Diffie-Hellman Key Exchange Protocol II

Fix prime q,
s.t. log2 q ≈ 2 · κ, and
cyclic group G of order q.
Let g be generator of G
Protocol is on the right

xa = (g skb)ska = g ska·skb

= (g ska)skb = xb and Alice
and Bob have established
a secret key

Alice Bob

ska ← Zq,
pka ← g ska

pka

skb ← Zq,
pkb ← g skb

pkb

xa ← pkska
b xb ← pkskb

a
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Security of DH Key Exchange

Goal of adversary: given (g , g ska, g skb) for
random ska, skb ← Zq, output x = g ska·skb

This is not known to be hard under DL
assumption, and thus there is separate
assumption (CDH) for this problem

Computational Diffie-Hellman

If CDH is hard, then clearly DL is hard

There are some contrived groups where DL is
hard but CDH is not
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CDH Assumption, Formally

Let G be a cyclic group of prime order q. Fix
generator g ∈ Z∗q. Let

Adv cdhG (A) := Pr[a, b ← Zq : A(g , g a, g b) = g ab] .

We say that G is (τ, ε)-CDH group if for any
non-uniform probabilistic adversary A that works in
time ≤ τ , Adv cdhG (A) ≤ ε.
We say G is CDH group if it is
(poly(κ), negl(κ))-CDH group.
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Security of DH Key Exchange, II

Goal of adversary: given (g , g ska, g skb) for
random ska, skb ← Zq, output x ← g ska·skb

Not sufficient!
Adversary should not get to know anything
about x , i.e., x should look to her completely
random
Not known to be hard under CDH assumption,
and thus there is separate assumption for this
problem

Decisional Diffie-Hellman
There are well-known CDH groups that are not
DDH groups
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DDH Assumption, Formally

Let G be cyclic, prime order q. Fix gen. g ∈ Z∗q.

Experiment 1

Set (a, b)← Zq × Zq.
Set ~g ← (g , g a, gb, g ab).

Experiment 2

Set (a, b, c)← Zq × Zq × Zq.
Set ~g ← (g , g a, gb, g c).

Advddh
G (A) := |Pr[Exp1 : A(~g) = 1]− Pr[Exp2 : A(~g) = 1]| .

G is (τ, ε)-DDH group if for any non-uniform
probabilistic adversary A that works in time ≤ τ ,
Adv ddhG (A) ≤ ε.
G is DDH group ⇔ (poly(κ), negl(κ))-DDH group.
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Public-Key Encryption

Public-key cryptosystem is triple of efficient
algorithms Π = (G ,E ,D), such that

κ is security parameter (e.g., key length)

(sk, pk)← G (1κ) is key generation algorithm

Epk(m; r) = c is randomized encryption
algorithm

Dsk(c) = m is decryption algorithm

and

Correctness: Dsk(Epk(m; r)) = m for all m, r and
(sk, pk) ∈ G (1κ)
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Homomorphic Encryption

A public-key cryptosystem is multiplicatively
homomorphic if:

The plaintext set (M, ·) is multiplicative group,
the randomizer set (R, ◦) is group, and the
ciphertext set (C, ·) is multiplicative group.

All three sets can depend on (sk, pk).

Epk(m1; r1) · Epk(m2; r2) = Epk(m1 ·m2; r1 ◦ r2)

Thus Dsk(Epk(m1; r1) · Epk(m2; r2)) = m1 ·m2

for every m1,m2, r1, r2.

Discrete logarithm problem is hard in group M
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Hom. Encryption: Basic Properties

Dsk(Epk(m1; r1) · Epk(m2; r2)) = m1 ·m2
Computation of encryption of m1 ·m2 does not
need knowledge of m1 or m2

For m ∈M and α ∈ Z|M|,
Dsk(Epk(m; r)α) = mα (by def. of exp.)
Given x and {Epk(g fi )} for i ∈ {0, . . . , t}, one
can compute

Epk(g f (x)) =
t∏

i=0

Epk(g fi )x
i

.

where f (X ) :=
∑t

i=0 fiX
i
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Elgamal Encryption

Assume a cyclic group G = 〈g〉 of prime order q.

G (1κ): let sk← Zq and pk← h = g sk.

Encryption of m ∈ G: generate random
r ← Zq. Compute Epk(m; r)← (mhr , g r)

Decryption of c = (c1, c2) ∈ G2: set
Dsk(c1, c2)← c1/c

sk
2 .

Correctness:

Dsk(Epk(m; r)) =Dsk(mhr , g r) = m · hr/(g r)sk

=m · (g sk)r/(g sk)r = m .
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Elgamal Encryption is Homomorphic

Homomorphism in cyclic group G of order q, where
DL is assumed to be hard. Ciphertext group is G2

with (g1, g
′
1) · (g2, g

′
2) = (g1g2, g

′
1g
′
2)

Epk(m1; r1) · Epk(m2; r2) =(m1m2h
r1+r2, g r1+r2)

=Epk(m1 ·m2; r1 + r2) .

Also, for known α,

Epk(m; r)α = (mαhαr , gαr) = Epk(mα;αr) .
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Example Protocol: Asymmetric Veto

Alice learns if
a ∧ b = 1, Bob learns
nothing

Comp. DL is easy

In semihonest model,
Alice learns nothing
except a ∧ b, if
Elgamal is secure

Alice (a) Bob (b)

(sk, pk)← G (1κ),
r ← R

(pk,Epk(g a; r))

c ← Epk(g a; r)b

= Epk(g ab; br)
c

m← DL(Dsk(c))
= DL(g ab) = ab
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IND-CPA Security

Assume Π = (G ,E ,D). Let A be efficient
adversary.

Experiment 1

Set (sk, pk)← G (1κ).
Obtain (m1,m2)← A(pk).
Output Epk(m1; r) for r ← R.

Experiment 2

Set (sk, pk)← G (1κ).
Obtain (m1,m2)← A(pk).
Output Epk(m2; r) for r ← R.

Adv cpaΠ (A) :=
∣∣Pr[Exp1 : A = 1]−Pr[Exp2 : A = 1]

∣∣ .
Π is IND-CPA secure if no efficient A has
non-negligible Adv cpaΠ (A).
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Elgamal Is IND-CPA Secure

Theorem
Assume that G is DDH-group. Then Elgamal is
IND-CPA secure.

For proof, we note that if (g1, g2, g3, g4) = (g , g a, gb, g ab)
then (g4, g3) = (g ab, gb) is encryption of 1 under public key
pk = g2 = g a.

OTOH, if (g1, g2, g3, g4) = (g , g a, gb, g c) for random c , then

(g4, g3) = (g c , gb) = (g c−abg ab, gb) is encryption of random

plaintext g c−ab under public key pk = g2 = g a.
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Elgamal Is IND-CPA Secure: Proof I I

Assume that A can break IND-CPA security with
probability ε. Construct the next DDH distinguisher
D. (This shows that if DDH is hard, then Elgamal
is IND-CPA secure.)
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Elgamal Is IND-CPA Secure: Proof II I

Main idea of the proof: D participates in DDH
“game” with challenger. Since A can break
IND-CPA of Elgamal, D can use “help” from A.
Help consists in interacting with A in conversation
that looks like IND-CPA game to A. Thus, A will
“break” IND-CPA of Elgamal inside that game with
probability ε.
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Elgamal Is IND-CPA Secure: Proof II II

Challenger D A

bddh ← {1, 2},
g1 ← G, (a, b, c)← Z3

q,

g2 ← g a
1 , g3 ← g b

1 ,
g4 ← (bddh = 1) ? g ab

1 : g c
1

(g1, g2, g3, g4)

Message 1

Messages

Message s

b′ddh

b′
ddh

?
=bddh
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Elgamal Is IND-CPA Secure: Proof IV

AD(g1, g2, g3, g4)

g ← g1, pk← g2

(m1,m2)← A(g , pk)

(m1,m2)

bcpa ← {1, 2},
(c1, c2)← (mbcpa · g4, g3)

(c1, c2)

b′cpa←A(g ,pk,(c1,c2))

b′cpa

b′ddh=(b′cpa=bcpa) ? 1:2
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Elgamal is IND-CPA Secure: Proof V

Pr[D is correct] = Pr[b′ddh = bddh]

=Pr[b′ddh = 1 : bddh = 1] Pr[bddh = 1]+

Pr[b′ddh = 2 : bddh = 2] Pr[bddh = 2]

=
1

2
· Pr[b′cpa = bcpa : bddh = 1] +

1

2
· Pr[b′cpa 6= bcpa : bddh = 2]

=
1

2
· ε +

1

2
· 1

2
=
ε

2
+

1

4
.

Thus if A is successful, then D is successful with
approximately same time and success probability.
QED
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Third Lecture: MH Protocols. Security
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Homomorphic Encryption: Blinding

Let Epk(m;R) be distribution that one gets by
first choosing r ← R and then outputting
Epk(m; r)
Rerandomization/blinding: For any m ∈M
and r ∈ R,

Epk(m; r) · Epk(1;R) = Epk(m;R) .

Holds since R is cyclic, sampleable group
Used in situations where revealing r might
compromise privacy
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Example Protocol: Scalar Product I

Alice has (a1, . . . , at) ∈ Zt
q

Bob has (b1, . . . , bt) ∈ Zt
q

Alice learns
∑t

i=1 aibi mod q ∈ Zq

Privacy in semihonest model:
Alice learns nothing else, Bob learns nothing
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Example Protocol: Scalar Product II

Comp. DL is easy
if ai , bi are
Boolean (Alice’s
output is ≤ t)

r is used for
blinding: c is a
random encryption
of gm

Alice (a1, . . . , at) Bob (b1, . . . , bt)

(sk, pk)← G (1κ),
(r1, . . . , rt)← Rt ,
ci ← Epk(g ai ; ri)

(pk, (c1, . . . , ct))

r ← R,
c ←

∏t
i=1 c

bi
i · Epk(1; r)

c

m← logg(Dsk(c))
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Correctness: Scalar Product Protocol

Recall ci = Epk(g ai ; ri). Clearly,

c =
t∏

i=1

cbii · Epk(1; r) =
t∏

i=1

Epk(g ai ; ri)
bi · Epk(1; r)

=Epk

(
g
∑t

i=1 aibi ;
t∑

i=1

bi ri + r

)
.

and thus
m = logg(Dsk(c)) = logg(g

∑t
i=1 aibi ) =

∑t
i=1 aibi
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Example Protocol: Hamming Distance I

Alice has ~a := (a1, . . . , at) ∈ Zt
2

Bob has ~b := (b1, . . . , bt) ∈ Zt
2

Define wh(~a,~b) := |{i ∈ {1, . . . , t} : ai 6= bi}|
Alice learns wh(~a,~b)
Privacy in semihonest model:

Alice learns nothing else, Bob learns nothing

Clearly wh(~a,~b) :=
∑t

i=1(ai ⊕ bi) =∑t
i=1(bi + (−1)biai):

0 + (−1)0ai = ai = ai ⊕ 0
1 + (−1)1ai = 1− ai = ai ⊕ 1
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Example Protocol: Hamming Distance II

Alice (a1, . . . , at) Bob (b1, . . . , bt)

(sk, pk)← G (1κ),
(r1, . . . , rt)← Rt ,
ci ← Epk(g ai ; ri)

(pk, (c1, . . . , ct))

r ← R,

c ←
∏t

i=1(Epk(g bi ; 0) · c (−1)bi

i ) · Epk(1; r)

c

m← logg(Dsk(c))

Helger Lipmaa MTAT.07.014 Cryptographic Protocols



Homomorphic Protocols: Beginning
Semisimulatability ++

First Lecture: Introduction
Second Lecture: Elgamal
Third Lecture: MH Protocols. Security
Fourth Lecture: Additively Homomorphic Encryption

Correctness: Hamming Distance Protocol

Recall ci = Epk(g ai ; ri). Clearly,

c =
t∏

i=1

(Epk(gbi ; 0) · c (−1)bi

i ) · Epk(1; r)

=Epk

(
g
∑t

i=1(bi+(−1)bi ai );
t∑

i=1

(−1)bi ri + r

)
= Epk(gwh(~a,~b); . . . ) .

and thus m = logg (Dsk(c)) = logg (gwh(~a,~b)) = wh(~a,~b)
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2-Message Protocols I

2-pessage protocol is
IND-CPA secure if Bob
cannot distinguish
between Alice’s
message, corresponding
to Alice’s input a1,
from Alice’s message,
corresponding to a2

Similar definition to
IND-CPA of PKC

Alice (a) Bob (b)

(q, state)← Query(1κ, a)

q

r← Reply(1κ, b, q)

r

a = Answer(1κ, a, state, r)
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IND-CPA Security of 2-Message Protocols

Assume Γ = (Query ,Reply ,Answer). Let A be
efficient adversary.

Experiment 1

Obtain (a1, a2)← A(1κ).
Output q where
(q, state)← Query(a1).

Experiment 2

Obtain (a1, a2)← A(1κ).
Output q where
(q, state)← Query(a2).

Adv cpaΓ (A) :=
∣∣Pr[Exp1 : A = 1]−Pr[Exp2 : A = 1]

∣∣ .
Γ is IND-CPA secure if no efficient A has
non-negligible Adv cpaΓ (A).
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2-Message Homomorphic Protocols

a — anything
(e.g., a real value)

mi ∈M are
functions of a

mi = mi(a)

Alice (a) Bob (b)

(sk, pk)← G (1κ),
For i ∈ {1, . . . , t},
ci ← Epk(mi , ri)

(pk; c1, . . . , ct)

r← Reply(1κ, b, pk, c1, . . . , ct)

r

a = Answer(1κ, a, sk, pk, r)
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Metatheorem: 2MHP are IND-CPA Secure

Theorem

Assume Π = (G ,E ,D) is IND-CPA secure. Then
Γ = (Query ,Reply ,Answer) is IND-CPA secure.
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Proof: 2MHP are IND-CPA Secure I

Assume A can break Γ with time τ and probability
ε. Construct adversary B that breaks Π with same
probability and time τ + 2tτexp + small as follows.
(τexp is time for one exp.)
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Proof: 2MHP are IND-CPA Secure II

Challenger B A
(a1, a2)

(sk, pk)← G (1κ) pk

(g 0, g 1)

bΠ ← {1, 2}, r ← R,
c ← Epk(g bΠ−1; r)

c IND-CPA game of Γ

Message 1

Messages

Message s

b′Π

b′
Π

?
=bΠ
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Proof: 2MHP are IND-CPA Secure III

A first gives (a1, a2) to B
Assume that if B’s input to Γ is abΠ

, then the
values encrypted in Γ are (f1(abΠ

), . . . , ft(abΠ
))

In Hamming distance protocol, fi(~a) = ai

Bob does not know bΠ ∈ {1, 2} but he knows
Epk(g bΠ; r) and (fj(a1), fj(a2))
Clearly,
fj(abΠ

) = (2− bΠ)fj(a1) + (bΠ − 1)fj(a2)
bΠ = 1 : (2− 1)fj(a1) + (1− 1)fj(a2) = fj(a1)
bΠ = 2 : (2− 2)fj(a1) + (2− 1)fj(a2) = fj(a2)
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Proof: 2MHP are IND-CPA Secure IV

fj(abΠ
) = (2− bΠ)fj(a1) + (bΠ − 1)fj(a2)

c = Epk(gbΠ ; r)

Thus (Epk(g 2; 0)/c)fj (a1) · (c/Epk(g ; 0))fj (a2) =

((Epk(g 2; 0)/Epk(gbΠ ; r))︸ ︷︷ ︸
Epk(g2−bΠ ;−r)

)fj (a1)

︸ ︷︷ ︸
Epk(g

(2−bΠ)fj (a1)
;−rfj (a1))

· (Epk(gbΠ ; r)/Epk(g ; 0))fj (a2)︸ ︷︷ ︸
Epk(g

(bΠ−1)fj (a2)
;rfj (a2))

︸ ︷︷ ︸
Epk(g

(2−bΠ)fj (a1)+(bΠ−1)fj (a2)
;r(fj (a2)−fj (a1)))=Epk(g

fj (abΠ
)
;r(fj (a2)−fj (a1)))

B can compute encryption of g fj (abΠ
) without knowing

bΠ!
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Proof: 2MHP are IND-CPA Secure V

B(a1, a2, pk, c) A(a1, a2)

For j ∈ {1, . . . , t}:
cj ← (Epk(g 2; 0)/c)fj(a1) · (c/Epk(g ; 0))fj(a2) · Epk(1;R)

(pk; c1, . . . , ct)

b′Γ←A(pk;c1,...,ct)

b′Γ

b′Π←b′Γ
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Proof: 2MHP are IND-CPA Secure VI

By previous discussion, B’s input to Γ is equal to his
honest input corresponding to abΠ

even if he does
not know bΠ.
Assume A is successful with probability ε. Then B
is successful with probability

Pr[b′Π = bΠ] = Pr[b′Γ = bΓ] = ε .

B’s time is dominated by the execution of A and 2t
exponentiations. QED
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Conclusions

All homomorphic protocols are IND-CPA secure
given PKC is IND-CPA secure
We can always cite this metatheorem!

E.g.: if PKC is IND-CPA secure, then Hamming
distance protocol is IND-CPA secure

No significant security loss in ε or τ
Surprising: we intuitively expect that since attacker
of Γ sees more than 1 ciphertext, he gains more
advantage than when seeing just one

Proof uses same homomorphic properties of Π

We will deal with server’s security later
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Different Homomorphism: E-Voting I

Two candidates, 0, 1

Assume voter vi , i ∈ {1, . . . ,V }, votes for
candidate ci ∈ {0, 1}
Voter vi encrypts his ballot as
Ci ← Epk(g ci ; ri), sends it to vote collector

At the end, vote collector “sums” all ballots as
C ←

∏V
i=1 Ci = Epk(g

∑V
i=1 ci ;

∑V
i=1 ri)

= Epk(g |{i :ci=1}|;
∑V

i=1 ri)
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Different Homomorphism: E-Voting II

Vote collector does not know sk, it is only
known by separate tallier

Vote collector sends C · Epk(1;R) to tallier

By decrypting the result and taking discrete
logarithm of it, tallier finds |{i : ci = 1}|, and
declares 1 as winner exactly if that value is
> 50% of voters
Computation is efficient if number of voters is
“small”

DL of number from {0, . . . , 2n − 1} can be done in
time 2n/2 =

√
2n by standard algorithms
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Different Homomorphism: E-Voting III

Viable say for n ≤ 80 — and number of voters is
smaller than 280!
World population: < 233
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Multiple-Candidate Elections I

γ candidates mapped to {0, . . . , γ − 1}
Voter vi prefers candidate ci . His ballot is
Ci ← Epk(g (V+1)ci ; ri)

Denote Tk = |{i : ci = k}| — number of
voters who voted for k

“Sum”:
∏V

i=1 Ci = Epk(g
∑V

i=1(V+1)Ci ;
∑V

i=1 ri)
Intuition:

All voters who vote for k contribute gV k
to sum

Thus sum is g
∑γ−1

i=0 Ti ·(V+1)i
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Multiple-Candidate Elections II

Basis V + 1 was chosen here so that there are no
overflows: Ti < V + 1 and thus
Ti(V + 1)i < (V + 1)i+1

Tallier takes discrete logarithm of sum, obtains∑γ−1
i=0 Ti(V + 1)i

Tallier looks at this as number in (V + 1)-ary
number system, where ith “digit” is equal to Ti

Tallier extracts all digits (T0, . . . ,Tγ−1)

See [Cramer et al., 1997, Damg̊ard and Jurik, 2001]
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Problems with MC Elections

Maximum value for “sum” may be just slightly
smaller than g (V+1)γ

Assume V = 220− 1 (appr million), γ = 23 = 8
(usual Estonian parliamentary election, voting
for parties)

g (V+1)γ = g 160, and computing DLs of this (280

steps) is intractable!
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Fourth Lecture: Additively Homomorphic
Encryption
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What Went Wrong?

We always utilized multiplicatively
homomorphic PKC (Elgamal) as additively
homomorphic PKC in exponents, but at the
end, one party had to compute DL

By assumption if MH PKC, then DL is hard!

Thus MH PKC is mostly only useful for
applications where the final result comes from
small (or well-structured) set
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Lifted Elgamal

Define lifted Elgamal (G ,E ,D) as follows

Let G be cyclic multiplicative group of prime
order q, generator g ∈ G
Key generation: choose sk← Zq,
pk = h← g sk

Encryption: set r ← Zq,
c = (c1, c2) = Epk(m; r) := (gmhr , g r)

Decryption: set Dpk(c) = logg(c1/c
sk
2 )

Correctness: Dpk(Epk(m; r)) =
logg(gmhr/(g r)sk) = logg g

m = m
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Lifted Elgamal

Additive homomorphism:
Epk(m1; r1) · Epk(m2; r2) = (gm1+m2hr1+r2, g r1+r2)
= Epk(m1 + m2; r1 + r2)
All previous protocols can be rewritten in terms
of lifted Elgamal, with small modifications

Epk(g a; r)→ Epk(a; r) and
Epk(a; r)→ Epk(logg a; r)

logg Dsk(c)→ Dsk(c) and Dsk(c)→ gDsk(c)

All previous protocols and security results work

Decryption is inefficient unless in a small
plaintext space
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Hamming Distance with Lifted Elgamal

Alice (a1, . . . , at) Bob (b1, . . . , bt)

(sk, pk)← G (1κ),
(r1, . . . , rt)← Rt ,
ci ← Epk(ai ; ri)

(pk, (c1, . . . , ct))

r ← R,

c ←
∏t

i=1(Epk(bi ; 0) · c (−1)bi

i ) · Epk(0; r)

c

m← Dsk(c)
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Efficiency

While efficiency of cryptographic protocols is
very important, we have not talked about it
much
Several measures:

Communication complexity
Computational complexity (of Alice/Bob)
Round complexity

Up to now all protocols have had 2 messages
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Efficiency of HD Protocol with L. Elgamal

Communication complexity: 1 PK +
t ciphertexts = 2t + 1 group elements

1 elliptic curve group element is 160
bits, thus 320t + 160 bits

Alice’s computation (dominated by):
t enc + 1 dec = 2t + 1 exp + 1 DL

Bob’s computation (dom by): ≤ t
inversions (≈ t mults) and t + 1 mult

Epk(bi ; 0) = (gbi , g) can be
precomputed for bi ∈ {0, 1}
(costless — no exps)

Epk(0; r) = (hr , g r ) (2 exps)

c
(−1)bi

i is either ci or c−1
i (no exp)

1 exp ≈ 1.5 log q = 240 mults, 1 DL

≈ 2t/2 mults

Alice: ≈ 480t + 120 + 2t/2 mults

DL time dominates for t ≥ 28

Bob: ≤ 2t + 1 mults

Alice (a1, . . . , at) Bob (b1, . . . , bt)

(sk, pk)← G (1κ),
(r1, . . . , rt)← Rt ,
ci ← Epk(ai ; ri)

(pk, (c1, . . . , ct))

r ← R,

c ←
∏t

i=1(Epk(bi ; 0) · c (−1)bi

i ) · Epk(0; r)

c

m← Dsk(c)
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Efficiency w (L.) Elgamal: General

Alice:
To encrypt t plaintexts, Alice encrypts t times —
2t exp = 3t log q mults
Alice decrypts/computes DL say s times -
s(1.5 log q + 2n/2) mults for some n
Total: 3t log q + s(1.5 log q + 2n/2) mults
Plus may be some additional ops
Inherit lower bound
Goal of protocol designer is to minimize t, s and n

Bob’s efficiency can vary
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Additively Homomorphic Cryptosystems

PKC (G ,E ,D) with
Epk(m1; r1) · Epk(m2; r2) = Epk(m1 + m2; r1 ◦ r2)

With efficient decryption — no need to
compute DL!

Lifted Elgamal: AH for small plaintext group
Need AH PKC with large plaintext group

Paillier [Paillier, 1999]: Zn with n > 21536

Damg̊ard-Jurik [Damg̊ard and Jurik, 2001]: Zs
n

with n > 21536 and integer s ≥ 1
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Background: Factoring Assumption

Let ` = `(κ) some bitlength, and A = A` be a
non-uniform adversary. Let P` be the set of all `-bit
primes. Define

Adv fact` (A) := Pr[p, q ← P`, n← p·q : A(n) = (p, q)]

Factoring 2`-bit RSA moduli is hard if for any
non-uniform probabilistic adversary A = A` that
works in time ≤ τ , Adv fact` (A) ≤ ε.
Best factorization algorithm (GNFS) works in time

e( 3
√

64/9+o(1))(log n)1/3(log log n)2/3

for integer n
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Corollaries of Factoring Assumption I

If factoring is hard, then computing ϕ(n) for
random RSA modulus n is hard

ϕ(n) = ϕ(pq) = (p − 1)(q − 1) = pq − p − q + 1
If one knows both n and ϕ(n), one also knows
s = n − ϕ(n) + 1 = p + q
n = pq = p(s − p) = sp − p2, thus
p2 − sp + n = 0 — quadratic equation
One can recover p ← (s ±

√
s2 − 4n)/2

Example: n = 4347803203, ϕ(n) = 4347671328
Thus s = 131876, and p = 65809 or p = 66067.
In fact, 65809 · 66067 = 4347803203
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Corollaries of Factoring Assumption II

Since φ(n) = |Z∗n|, if y = xe mod n then
x = y e

−1 mod φ(n) mod n. Finding e−1

mod φ(n) is hard without knowing how to
factor n

A lot of other things are hard if factoring is
hard
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Background: Binomial Theorem and DL

(a + b)c =
∑c

i=0

(
c
i

)
aibc−i

For example:
(n + 1)c =

∑c
i=0

(
c
i

)
ni =

1 + cn +
(
c
2

)
n2 + higher powers of n

(n + 1)c ≡ cn + 1 (mod n2)
Can compute certain discrete logarithms easily:

If y = (n + 1)x mod n2, then y = xn + 1 mod n2

Thus x = (y − 1)/n mod n2

Denote L(y) := y−1
n (quotient of integer

division)
Thus: L((n + 1)x mod n2) = x
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Background: Basic Number Theory

lcm(a, b) — least common multiplier
a | lcm(a, b), b | lcm(a, b)
If a | c and b | c , then b ≤ c

a · b = gcd(a, b) · lcm(a, b)
Example: a = 4, b = 6
gcd(4, 6) = 2, lcm(4, 6) = 12
4 · 6 = 24 = 2 · 12
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Background: Carmichael Function

Def: for positive integer n, smallest positive
integer λ(n) = m such that am ≡ 1 (mod n)
for every integer a coprime to n.
λ(pk) = pk−1(p − 1) if p ≥ 3 or k ≤ 2
(= ϕ(pk)),
λ(2k) = 2k−2 for k ≥ 3, and
λ(pk1

1 . . . pktt ) = lcm(λ(pk1

1 ), . . . , λ(pktt ))

Theorem (Carmichael Theorem)

If gcd(a, n) = 1 then aλ(n) ≡ 1 (mod n).
Full proof is 6+ pages.

Helger Lipmaa MTAT.07.014 Cryptographic Protocols



Homomorphic Protocols: Beginning
Semisimulatability ++

First Lecture: Introduction
Second Lecture: Elgamal
Third Lecture: MH Protocols. Security
Fourth Lecture: Additively Homomorphic Encryption

Paillier’s Cryptosystem: Key Generation

Generate two independent random large prime
numbers p and q // both ≥ 768 bits

Let n← p · q
Let λ← λ(n) = lcm(p − 1, q − 1)

Let µ← λ−1 mod n.

The public key is pk = n, the private key is
sk = (λ, µ)
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Paillier’s Cryptosystem

Encryption of m ∈ Zn with pk = n:
Select random r ← Z∗n. Compute

c ← (n + 1)mr n mod n2

Note: c = (mn + 1)r n mod n2

r has order ϕ(n) = (p − 1)(q − 1).

Decryption of c ∈ Z∗n2 with sk = (λ, µ):

m← L(cλ mod n2) · µ mod n
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Correctness of Paillier Decryption

For sk = (λ, µ) and pk = n,

Dsk(Epk(m; r)) ≡Dsk((n + 1)mr n mod n2)

≡L((n + 1)λmrλn mod n2) · µ
≡L((λmn + 1)rλn mod n2) · µ (mod n) .

We have to get rid of rλn
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Correctness of Paillier Decryption

Now, λ(n2) = λ(p2q2) = lcm(λ(p2), λ(q2)) =
lcm(p(p−1), q(q−1)) = pq · lcm(p−1, q−1) = λn.
By Carmichael theorem, rλn ≡ rλ(n2) ≡ 1 mod n2.
Thus

Dsk(Epk(m; r)) ≡L(λmn + 1) · µ
≡λm · λ−1

≡λm
λ
≡ m (mod n) .

Helger Lipmaa MTAT.07.014 Cryptographic Protocols



Homomorphic Protocols: Beginning
Semisimulatability ++

First Lecture: Introduction
Second Lecture: Elgamal
Third Lecture: MH Protocols. Security
Fourth Lecture: Additively Homomorphic Encryption

Paillier: Homomorphism

Clearly,

Epk(m1; r1) · Epk(m2; r2) ≡(n + 1)m1r1
n · (n + 1)m2 · r2

n

≡(n + 1)m1+m2(r1r2)n

≡Epk(m1 + m2; r1 · r2) (mod n2) .

Thus the Paillier cryptosystem is homomorphic in
M = Zn.
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Security of Paillier

x is n-th residue modulo n2 iff there exists y such
that y n ≡ x (mod n2)

Definition
Decisional Composite Residuosity Assumption:
Distinguish a random n-th residue from a random
n-th non-residue modulo n2.

Equivalent (with small error): Distinguish a random
n-th residue from a random element of C = Zn2.
Fact: If factoring is easy, then DCRA is easy.
Opposite is not known.
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Security of Paillier

Theorem
Assume that DCRA is true. Then Paillier is
IND-CPA secure.

Sketch.
Idea: random encryption of 0 is a random n-th
residue; random encryption of a random element in
M is a random element of C. Proof goes along the
same lines as the security proof of Elgamal.
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Efficiency of Paillier

log n ≥ 1536 (need hardness of factoring)
Encryption: dom. by 1 1536-bit exp — ≈ 2304
3072-bit multiplications

Less efficient than lifted Elgamal on elliptic curve
groups (10x more mults, bitlength 20x longer)

Decryption: dom. by 1 3072-bit exp — ≈ 2304
3072-bit multiplications

Significantly more efficient than lifted Elgamal:
polynomial instead of exponential — thus can
decrypt much larger plaintexts

Ciphertext: 3072 bits
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2-Message AH Protocols

a — anything
(e.g., a real value)

mi ∈M are
functions of a

mi = mi(a)

Except this sentence,

this is copy of previous

slide!

Alice (a) Bob (b)

(sk, pk)← G (1κ),
For i ∈ {1, . . . , t},
ci ← Epk(mi , ri)

(pk; c1, . . . , ct)

r← Reply(1κ, b, pk, c1, . . . , ct)

r

a = Answer(1κ, a, sk, pk, r)
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Efficiency of HD Protocol with Paillier

Communication complexity: 1 PK +
t ciphertexts = n and 2t integers
modulo n2

1536 + 6144t bits

Alice’s computation (dominated by):
t enc + 1 dec = t + 1 exp

Bob’s computation (dom by): ≤ t
inversions (≈ t mults) and t + 1 mult

1 exp ≈ 1.5 log n = 2304 mults

Alice: ≈ 2304t + 2304 mults

Bob: ≈ 2t + 1 mults

Here: 3072-bit mult, in Elgamal –
160-bit mult (much faster)

Alice (a1, . . . , at) Bob (b1, . . . , bt)

(sk, pk)← G (1κ),
(r1, . . . , rt)← Rt ,
ci ← Epk(ai ; ri)

(pk, (c1, . . . , ct))

r ← R,

c ←
∏t

i=1(Epk(bi ; 0) · c (−1)bi

i ) · Epk(0; r)

c

m← Dsk(c)
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Elgamal or Paillier

If decrypted values not too big (DL efficient),
use (lifted) Elgamal
If decrypted values of average size, depends

Alice’s ops are 10x faster but Bob’s ops 50x slower
— what is more important?
E.g.: homomorphic e-voting

If decrypted values are large (DL intractable),
use Paillier
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Metatheorem: 2AHP are IND-CPA Secure

Theorem

Assume additively homomorphic Π = (G ,E ,D) is
IND-CPA secure. Then Γ = (Query ,Reply ,Answer)
is IND-CPA secure.

Proof.
Simple modification of MH case. Replace plaintexts
g x with plaintexts x .
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Fifth Lecture. Semisimulatability

For original definition of semisimulatability,
see [Naor and Pinkas, 1999].
For our (me and Sven Laur) paper on DIE/CDS,
see [Laur and Lipmaa, 2007]
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Recap: 2-Message AH Protocols

a — anything
(e.g., a real value)

ai(a) ∈M are
functions of a

Alice’s privacy
follows from
IND-CPA of PKC

Alice (a) Bob (b)

(sk, pk)← G (1κ),
For i ∈ {1, . . . , t},
ci ← Epk(ai , ri)

(pk; c1, . . . , ct)

r← Reply(1κ, b, pk, c1, . . . , ct)

r

a = Answer(1κ, a, sk, pk, r)
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Recap: What Can Be Done with
2AH/2MH?

Alice can encrypt arbitrary functions ai of a
See m-c elections, Hamming distance protocol

Bob can compute affine functions of encrypted
values for some functions bi , b

′ of b:
MH:

∏
i Epk(g ai ; ri)

bi · Epk(g b′; r ′) =
Epk(g

∑
i biai+b′; ·)

AH:
∏

i Epk(ai ; ri)
bi · Epk(b′; r ′) =

Epk(
∑

i biai + b′; ·)
Quite limited — most freedom is in choosing
ai , bi , b

′
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Can We Do More?

Functionality:
Are there any non-algebraic things we can do?
More algebraic freedom — compute quadratic
equations, . . .?
Many rounds — will it help?
Many parties — will it help?

Security:
Previous protocols guaranteed only Alice’s privacy
— can we do more?
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This Lecture

Functionality:
Are there any non-algebraic things we can do?
More algebraic freedom — compute quadratic
equations, . . .?
Many rounds — will it help?
Many parties — will it help?

Security:
Previous protocols guaranteed only Alice’s privacy
— can we do more?
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Security in Malicious Model

Alice:
Privacy: Bob does not learn Alice’s input —
IND-CPA security, we dealt with it
Security: Alice gets back correct answer — future
lectures

Bob:
Privacy: Alice does not learn more about Bob’s
input than necessary
Security: Bob gets back correct answer — easy
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Recap: (Boolean) Scalar Product

Alice has (a1, . . . , at) ∈ Zt
2

Bob has (b1, . . . , bt) ∈ Zt
2

Alice learns
∑t

i=1 aibi mod q ∈ Zq

Privacy in semihonest model:
Alice learns nothing else, Bob learns nothing

What about privacy in malicious model?
Bob still learns nothing, what about Alice?

Within this lecture we use Elgamal & corresponding
notation
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Cheating the Scalar Product

Alice obtains∑t
i=1 aibi mod q

Malicious Alice
sets ai ← 2i∑t

i=1 aibi =∑t
i=1 2ibi mod q

Alice recovers
Bob’s whole input!

Alice (a1, . . . , at) ∈ Zt
2 Bob (b1, . . . , bt) ∈ Zt

2

(sk, pk)← G (1κ),
(r1, . . . , rt)← Rt ,
ci ← Epk(g ai ; ri)

(pk, (c1, . . . , ct))

r ← R,
c ←

∏t
i=1 c

bi
i · Epk(1; r)

c

m← logg Dsk(c)
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Getting Bob’s Privacy. First Idea

Malicious Alice can only attack SSP by
encrypting values out of range

Make it so that if Alice encrypts wrong values
then Alice gets back garbage!
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Randomizing Elgamal Plaintexts

Plaintext group M is cyclic of prime order q.
Let g be generator
For fixed y = g x ∈M, and random r ← Zq,

y r = g xr =

{
g , x = 0 ,

random element of G , otherwise .

Latter holds since if x 6= 0 and r is random,
then xr mod q is a random element of Zq

Thus Epk(m; s)r for random r encrypts 1 if
m = 1, and encrypts random plaintext if m 6= 1
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More Than Just Algebra

Alice can encrypt arbitrary functions ai of a
See multi-candidate elections, Hamming distance
protocols

Bob can compute affine functions of encrypted
values,

∏
i Epk(g ai ; ri)

bi · Epk(g b′;R) =
Epk(g

∑
i biai+b′;R)

Bob can conditionally randomize plaint-s:
(
∏

i Epk(g ai ; ri)
bi · Epk(g b′; 0))Zq · Epk(g b′′;R)

encrypts g b′′ if
∑

i biai + b′ = 0, and a random
value otherwise
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Disclose-if-Equal Protocol with Elgamal

Alice’s input is a ∈ Zq

Bob’s input is b ∈ Zq, b′ ∈M
Alice obtains b′ if a = b and random value if
a 6= b
Note: one could also choose a, b ∈ G

In this application, using MH cryptosystem does
not mean that one has to compute discrete
logarithm!
However since we use DIE mostly to secure other
protocols, we use g a/gb instead of a/b
We however use b′ ∈M
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Disclose-if-Equal Protocol with Elgamal

Alice a ∈ Zq Bob b ∈ Zq, b
′ ∈M

(sk, pk)← G (1κ),
ra ← R,
c ← Epk(g a; ra)

(pk, c)

rb ← Zq, r ′b ← R,
c ′ ← (c · Epk(g−b; 0))rb · Epk(b′; r ′b)

c ′

m← Dsk(c ′) // No DL!
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Correctness of DIE Protocol

Recall c = Epk(g a; ra). Then

c ′ = (c · Epk(g−b; 0))︸ ︷︷ ︸
Epk(g a−b;ra)

rb

︸ ︷︷ ︸
Epk(g (a−b)rb ;rarb)

·Epk(b′; r ′b)

︸ ︷︷ ︸
Epk(g (a−b)rb ·b′;rarb+r ′b)

Since r ′b ← Zq is random, c ′ is random encryption
of g (a−b)rb · b′. Since rb is random, then Dsk(c ′) = b′

if a = b and random if a 6= b.
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Bob’s Privacy in DIE

As we showed, Alice obtains random encryption
of b′ if a = b and random encryption of
random plaintext if a 6= b

The latter contains no information about b

Intuitively, thus the protocol is private for Bob

How to formalize?
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Simulation I

Want: Bob’s second message r gives Alice no
extra information compared to what she would
have given her input a, first message q, and
rightful output a = f (a, b) of protocol

Instead of a we take a∗, set of plaintexts encrypted
by Alice in q
Reasoning: malicious Alice has no well-defined
input. It only matters what she did send to Bob

If Alice can construct r herself, given (a, q, a),
she gains no more information from r
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Fifth Lecture. Semisimulatability

Simulation II

We construct simulator that, given (a, q, a),
constructs simulated second message r∗

Required: (a, q, r, a) and (a, q, r∗, a) are
indistinguishable — come from (almost) same
distributions
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Recap: DIE Protocol

Input a∗ (= g a if Alice is
honest)

a = b′ if a∗ = gb,
a =M if a∗ 6= gb

q = (pk, c)

r = (c ′ = Epk(a;R))

Alice a ∈ Zq Bob b ∈ Zq, b
′ ∈M

(sk, pk)← G (1κ),
ra ← R,
c ← Epk(g a; r)

(pk, c)

rb ← Zq, r ′b ← R,
c ′ ← (c · Epk(g−b; 0))rb · Epk(b′; r ′b)

c ′

a← Dsk(c)

Helger Lipmaa MTAT.07.014 Cryptographic Protocols



Homomorphic Protocols: Beginning
Semisimulatability ++

Fifth Lecture. Semisimulatability

Simulator for DIE Protocol

Simulator gets (a∗, q = (pk, c), a) where

a =

{
b′ , a∗ = g b ,

M , a∗ 6= g b .

Simulator returns

r∗ := Epk(a;R) =

{
Epk(b′;R) , a∗ = g b ,

Epk(M;R) , a∗ 6= g b .

without knowing (b, b′)
Clearly r∗ = r as a distribution
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Semisimulatability

2-message protocol is semisimulatable if:
Alice’s privacy is guaranteed by IND-CPA security
Bob’s privacy is guaranteed by above definition of
simulatibility

Simulatability is stronger than IND-CPA
security

It expresses what we want from protocol
Simulatable protocols are usually much less
efficient

Fully simulatable security — future lectures

Terminology: Semisimulatable = half-simulatable = relaxed

secure
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DIE Protocol Is Semisimulatable

Theorem
DIE protocol is semisimulatable.

Proof.
IND-CPA security follows from earlier metatheorem.
We just showed Bob’s privacy.
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Constructing Semisimulatable Protocols

Construct 2-message homomorphic protocol

Make it Bob-private by using CDS — suitable
generalization of DIE protocol

Conditional Disclosure of Secrets: Alice obtains
Bob’s answer iff Alice’s encrypted inputs belong
to some public set S of valid inputs. Otherwise
Alice obtains random value [Aiello et al., 2001,
Laur and Lipmaa, 2007]
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Reminder: Scalar Product Protocol

Alice obtains∑t
i=1 aibi mod q

Valid inputs:
ai ∈ {0, 1} for
t ∈ {1, . . . , t}

Boolean formula
for valid inputs:∧t

i=1(ai = 0 ∨ ai =
1)

Alice (a1, . . . , at) ∈ Zt
2 Bob (b1, . . . , bt) ∈ Zt

2

(sk, pk)← G (1κ),
(r1, . . . , rt)← Rt ,
ci ← Epk(g ai ; ri)

(pk, (c1, . . . , ct))

r ← R,
c ←

∏t
i=1 c

bi
i · Epk(1; r)

c

m← logg Dsk(c)
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Semisim. SSP: Idea

Idea:
Alice obtains secret si if ai = 0 or ai = 1
Alice obtains s =

∑t
i=1 si if he knows all values si

Alice obtains
∑

aibi + s. Thus Alice obtains∑
aibi only if ai ∈ {0, 1} for all i
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Semisimulatable SSP

Alice (a1, . . . , at) ∈ Zt
2 Bob (b1, . . . , bt) ∈ Zt

2

(sk, pk)← G (1κ),
(r1, . . . , rt)← Rt ,
ci ← Epk(g ai ; ri)

q← (pk, (c1, . . . , ct))

If q 6∈ G2t+1, then halt.
r , s1, . . . , st ,

(
r ′ij , r

′′
ij

)
i∈{1,...,t},j∈{0,1} ← Zq,

For i ∈ {1, . . . , t} and j ∈ {0, 1}
c ′ij ←

(
ci/Epk(g j ; 0)

)r ′ij · Epk(g si ; r ′′ij )

c ←
∏t

i=1 c
bi
i · Epk

(
g
∑t

i=1 si ; r
)

r← ((c ′ij)i∈{1,...,t},j∈{0,1}, c)

For i ∈ {1, . . . , t}: wi ← Dsk(c ′i ,ai )

a← logg(Dsk(c)/
∏t

i=1 wi)
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Semisimulatable SSP: Correctness I

Recall ci = Epk(g ai ; ri) for some ai , ri . Then

c =
∏t

i=1 Epk(g ai ; ri)
bi · Epk(g

∑t
i=1 si ; r) =

Epk(g
∑t

i=1 aibi+
∑t

i=1 si ;
∑t

i=1 ribi + r) and

c ′ij = (ci/Epk(g j ; 0)︸ ︷︷ ︸
Epk(gai−j ;ri )

)r
′
ij

︸ ︷︷ ︸
Epk(g

(ai−j)·r′
ij ;ri r

′
ij )

·Epk(g si ; r ′′ij )

︸ ︷︷ ︸
Epk(g

(ai−j)·r′
ij

+si ;ri r
′
ij+r ′′ij )
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Semisimulatable SSP: Correctness II

Since r ′ij , r
′′
ij are random,

c ′ij =

{
Epk(g si ;R) , ai = j ,

Epk(M;R) , ai 6= j .

Thus wi ← g si , if Alice is honest. If Alice is malicious,

wi ←M (random). Thus if Alice is honest then

m = log2(g
∑

aibi ) =
∑

aibi , otherwise g a is a random element

of G (and computing DL is hard!)
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Remarks: CDS with Paillier

One can substitute Elgamal with Paillier, but
it’s more complex then

M = Zn with n = pq has nontrivial subgroups.
If ai 6= 0 belongs to some such subgroup M1,
then ai · M =M1, not ai · M =M
If malicious Alice encrypts say p, then
Dsk(Epk(p; ·)M) divides by p and thus does not
hide perfectly

See [Laur and Lipmaa, 2007] for simple
solution

Helger Lipmaa MTAT.07.014 Cryptographic Protocols



Homomorphic Protocols: Beginning
Semisimulatability ++

Fifth Lecture. Semisimulatability

Remarks

One can generalize SSP example to CDS for
arbitrary efficiently computable set S

Write down circuit that computes S. Handle
AND/OR gates as in SSP case. For NOT gates,
see [Laur and Lipmaa, 2007] (easy)

Example. Assume that valid value of ai is
ai ∈ {0, . . . , 255}

Simplistic approach: distribute g si iff
ai = 0 ∨ ai = 1 ∨ · · · ∨ ai = 255 — requires 256
ciphertexts
More efficient: encrypt bits aij of ai separately.
Distribute g sij if aij = 0 ∨ aij = 1. Write si =

∑
j sij

— requires 2 · 8 = 16 ciphertexts
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