T-79.514 Special Course on Cryptology

Seminar 10: Secure Approximate Matching

Matti Järvisalo
Helsinki University of Technology
http://www.tcs.hut.fi/~mjj/

Motivation

- A scenario: Alice wants to compare her DNA against a DNA DB with known genetic diseases \Rightarrow privacy concerns!
- Need for privacy in e.g. e-commerce, banking/health/etc. records
- In many cases exact matching is not possible
- Exact matching well-studied, approximate not so much
- High interest in efficient protocols (MPC too general)

Overview of the Lecture

- Secure Database Access (SDA)
- SDA in Different Models and Metrics
- Overview of Protocols for the Models
- More In-Depth Look at one Protocol

Based on W. Du, M.J. Atallah. Protocols for Secure Remote Database Access with Approximate Matching, appeared in ACM CCS 2000.

Secure Database Access (SDA)

The SDA Problem:

Alice has a string q, and Bob has a database of strings $T=$ $\left\{t_{1}, \ldots, t_{N}\right\}$. Alice wants to know whether there exists a string $t_{i} \in T$ that matches q. Give a protocol that accomplishes this without revealing to Bob neither (i) q nor (ii) the found match.

- The answer depends on whether exact or approximate PM is considered
- Depending on the model, the result can be either the closest match or the distance to the closest match

Metrics

Let $a=\left(a_{1} \ldots a_{n}\right), b=\left(b_{1} \ldots b_{n}\right)$ be two strings. Possible metrics are:

- $\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|$ (e.g. in image processing)
- $\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}$ (e.g. in image processing)
- $\sum_{i=1}^{n} f\left(a_{i}, b_{i}\right)$ (f a function)
- edit distance (e.g. in string matching)
- \# of indices in which a and b differ, etc.

Models: Overview

- Database T, possessed by Bob
* Number of entries (strings) N
* Each string of length n
\star Each string over an alphabet of size m (might be infinite)
- Four models, differences in
* whether T is private;
* who owns T; and
* who may query T.

Models: PIM

Private Information Matching model (PIM).

- Alice has a query string q, and wants to know $\operatorname{Match}(q, T)$ without revealing q nor $\operatorname{Match}(q, T)$ to Bob.
- Bob, the sole possessor of T, doesn't want to reveal any $t_{i} \in T$ to Alice except what can be derived from $\operatorname{Match}(q, T)$.
- Alice has to query T through Bob.

Models: PIMPD

Private Information Matching from Public Database model (PIMPD).

As PIM, but

- T is public
- the privacy concerns is that Alice doesn't want to reveal q nor $\operatorname{Match}(q, T)$ to Bob.

Models: SSO

Secure Storage Outsourcing model (SSO):

- The owner of T is Alice, but T has been outsourced to Bob (e.g. for storage space reasons).
- Alice wants to query T without revealing T nor q to Bob.

Models: SSCO

Secure Storage and Computing Outsourcing model (SSCO):

SSO with the following extension:

- any individual may query T
- Alice should be aware of any such queries.
- The individual making the query should learn the distance of the closest match from the query, while this should be kept secret from Alice.

Overview of Results

Model	Metrics	CC	3rd ?
PIM	$\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}$	$\mathcal{O}(n N)$	yes
	$\sum_{i=1}^{n}\left\|a_{i}-b_{i}\right\|$	$\mathcal{O}(n W N)$	yes
	$\sum_{i=1}^{n} f\left(a_{i}, b_{i}\right)$	$\mathcal{O}(m n N)$	yes
SSO	$\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}$	$\mathcal{O}(n)$	no
SSCO	$\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}$	$\mathcal{O}\left(n^{2}\right)$	yes

- W an accuracy parameter (in a Monte Carlo - based protocol)
- PIMPD is a special case of $\mathrm{PIM} \Rightarrow$ same protocols applicable
- Third party needed for computing scalar products $\mathrm{x} \cdot \mathrm{y}$ of Alice's x and Bob's y.

Protocol for SSO: Preliminaries

Idea: pick a random matrix and disguise T before outsourcing. Do the same for q.

- Let \mathbf{Q} be an $(n+3) \times(n+3)$ random invertible matrix
- Let R, R_{A} and $R_{i}, i \in\{1, \ldots, N\}$, be random numbers, private to Alice
- For each string $t_{i}=t_{i, 1} \ldots t_{i, n} \in T$, we have a vector $\mathbf{t}_{i}=$ ($\sum_{k=1}^{n} t_{i, k}^{2}+R-R_{i}, t_{i, 1}, \ldots, t_{i, n}, 1, R_{i}$) of length $n+3$
- $\operatorname{In} T^{\prime}$, the outsourced version of T, we have the entry $\mathbf{t}_{i}^{\prime}=\mathbf{Q t}_{i}{ }^{T}$

Protocol for SSO

1. Alice

- generates R_{A},
- constructs

$$
\mathbf{q}=\left(1,-2 q_{1}, \ldots,-2 q_{n}, R_{A}, 1\right), \text { and }
$$

- sends qQ^{-1} to Bob.

2. Bob

- computes score $_{i}=\mathbf{q} \cdot \mathbf{t}_{i}{ }^{T}$ for each $\mathbf{t}_{i}^{\prime} \in T^{\prime}$,
- determines arg $\min _{i=i}^{N} \operatorname{score}_{i}$, and
- sends t_{i}^{\prime} to Alice.

3. Alice determines the closest match $\mathrm{t}_{i}=\mathrm{Q}^{-1} \mathbf{t}_{i}^{\prime}$.

Notes on the Protocols (1/2)

For SSO and SSCO

- Quite similar solutions
- As Carl may also query, calculating $\mathrm{x} \cdot \mathrm{y}$ between Alice and Carl brings $\mathcal{O}(n)$ to communication complexity
- For SSCO the answer is only the distance to the closest match

Notes on the Protocols (2/2)

For PIM and PIMPD

- Not reasonable due to high communication complexity
- Similar to computing $\mathrm{x} \cdot \mathrm{y}$ for $\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}$
- A bit obfuscated Monte-carlo based protocol for $\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|$, answer is only the distance to the closest match ...
- ... as well as for f
- For f, predefined finite alphabet is required

In Addition

- No protocol given for edit distance, although it is said that one exists
- The need for a third party problematic; could this be avoided?
- It is proposed that a sublinear dependency w.r.t. N might be possible

