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Problem setting

= Elections and polls: respondents give their
information only if their privacy is preserved

= A large literafure exists for elections

= Polls are different in many ways:
- less widely accepted procedures
. less trust between the parties
. statistical estimates are wanted instead of exact
counfts
= a strong motivation for designing poll systems



Randomized Response Techniques (RRT)

Basic setting

"Do you belong to a stigmatizing group A?”

The respondent is given a biased coin and asked to
tell the fruth if the coin gives heads (this has probability
per), ANd lie otherwise.

The a prior probability of answering “yes” is

Pyes = Pct - TTA + (1 — pct)(]- - 7TA)

where w4 is the overall percentage of A in the
population. An unbiased estimator is pyes = L/N
where L respondents out of NV answer “yes”,



The overall percentage of A in the population is
estimated as

— pct_1 L 1
Th=—————t ——.
2pct_1 N 2pct_1

We will say that a respondent is of type t = 1 if she
belongs to group A, and t = 0 otherwise.



Innocuous question method

The respondent is given two questions: the one of
interest in the poll, and another completely harmless.
She chooses between the two questions by a toss of a
biased coin.

Polychtomous RRT

A question with multiple mutually exclusive answers
A4, ..., A, some of which are harmless and some of
which the respondent typically wants to keep as a
secret.



Problems with RRT

The respondent may not want 1o lie, even if asked fo.
Or she may refuse to answer to some questions. This
biases the estimation of 4. To overcome this, the
authors propose Cryptographic RRT.



Cryptographic RRT

Guarantees the privacy of the respondent

Also guarantees the privacy of the interviewer: the
respondent cannot determine the outcome of the
protocol before the end.



Some basics of algebra

A group is a set G together with some operation x
which obeys

» fa,be Gthenaxbe G

= (axb)xc=ax(bxc)

= There is an identity element I such that
Ixa=ax*x] =aVaeG

= Every a € G has an inverse o~ ! such that

1 lya=1

axa  =—=a

We will use Z,, which is the set of infegers modulo an
integer p: Z, = {0,...,p — 1}. In ofther words, if we
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divide any infeger by p then the remainder is in Z,.

Let G be a group and g € G. Let (g) = {g']i > 0} be
the set of the powers of g. We say that g is a generafor
of Gif (¢g) = G.

For example, consider G = {1,2,4,5,7,8} C Zg. 2isQ
generator of G:
(2) = {2°,2% 22,23 2% 2° ..} ={1,2,4,8,7,5}

If g is a generatfor, then for any y € G there is a unique
i € {0,...,m — 1} (where m is the number of
elements in G) such that ¢* = y. This i equals log,(y)
and takes exponential time to find.



Protocol 1

Background

= p and g are primes such that g divides p — 1. The
public key consists of g and A that are two
generafors of G that is a unique subgroup of Z,,, of
size q.

= Evenif g and h are known, ¢g"h" is hard to invert

(here v is the message, and v is picked at random
from Z,).

= n,¢ € Nsuchthat p., = ¢/n > 1/2.



Precomputation step:

= The respondent R prepares n random bits
p; € {0,1}fori =1,...,n,suchthat > . u; = £if
herfypeist =1and ) . pu; =n —£ift = 0.
(Thus p.: = £/n is the probability that a randomly
picked bit equals her type).
Additionally, she sets p, 11 «— 1 — t.

= The interviewer Z chooses o € {1,...,n}



Interactive step:

- T picks a and b at random from Z, and sends g%, ¢°
and ¢g?® 7! to R.

= R repeats the following forall i € {1,...,n}: Pick
r; and s; af random from Z,. Compute
w; — g'i(g")% = gt
and
vi — (g")"i(g
and use v; as d key to encrypt the answer u; t0 y;
using
yi < g"ih'.
Send w; and y; to Z.

= T computes w’ (note that when i = o above, then

ab—o—l—lgi—l)si — g(ri+asi)b+(i—a)sil
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the key v; is w?) and
b

g"? — y,/h"

and then computes u, from that.

(With probability p.;, thisis 1, and he will conclude

rr = 1; with probability 1 — p., thisisOand rg = 0.)
« R must now prove that she created {u1, ..., ftnii}

correctly. Use noninteractive zero-knowledge

arguments (details are seen in the paper).

= 7 verifies the arguments, and halts if the verification
fails.

The interviewer’s output rr corresponds to the “yes”
answer in the basic RRT: in computing w4, L is now the
number of rr = 1 values in the population.



Protocol 2

Now d = [1/(1 — pe)]|. other background is as before.

Precomputation:
= R chooses arandom p € {0,1,...,n — 1}.
= 7 chooses randomv € {0,1,...,n — 1} and

oce{0,1,...,d—1}.



Interactive step:

= R commits to t and p and sends the commitments
fo Z.

= 7 chooses a random p and commits fo o by setfing
y «— Ck(o;p). He sends v and y to R, together
with a zero-knowledge argument for y.

= R verifies the argument. She computes for all
i €4{0,1,...,d— 1} avalue p; such that u; = ¢ if
andonly if (u + v + ¢ mod n) < £. She signs y
and sends her signature together with all i, and @
zero-knowledge argument.

« I sets rg «— u., accompanied with R’s signature
on the commitment.



Quantum cryptographic RRT

= dllows using p.; that is not a rational numlber

= provides a relaxed form of information-theoretic
security for both partfies:
. if R is dishonest, her vote only counts as < /2
votes
- If Z gets to know R’s private input with some
probability, he is also caught cheating with
another probability.

= the protfocol can implemented using
contemporary fechnology



