Cryptographic Randomized Response Techniques

by Ambainis, Jakobsson and Lipmaa

T-79.514, Oct 22, 2003

Ella Bingham, ella@iki.fi HUT Lab of Computer and Information Science

Problem setting

- Elections and polls: respondents give their information only if their privacy is preserved
- A large literature exists for elections
- Polls are different in many ways:
 - less widely accepted procedures
 - less trust between the parties
 - statistical estimates are wanted instead of exact counts
 - \Rightarrow a strong motivation for designing poll systems

Randomized Response Techniques (RRT)

Basic setting

"Do you belong to a stigmatizing group A?" The respondent is given a biased coin and asked to tell the truth if the coin gives heads (this has probability p_{ct}), and lie otherwise.

The a prior probability of answering "yes" is

$$p_{yes} = p_{ct} \cdot \pi_A + (1 - p_{ct})(1 - \pi_A)$$

where π_A is the overall percentage of A in the population. An unbiased estimator is $\widehat{p_{yes}} = L/N$ where L respondents out of N answer "yes".

The overall percentage of A in the population is estimated as

$$\widehat{\pi_A} = rac{p_{ct} - 1}{2p_{ct} - 1} + rac{L}{N} \cdot rac{1}{2p_{ct} - 1}$$

We will say that a respondent is of type t = 1 if she belongs to group A, and t = 0 otherwise.

Innocuous question method

The respondent is given two questions: the one of interest in the poll, and another completely harmless. She chooses between the two questions by a toss of a biased coin.

Polychtomous RRT

A question with multiple mutually exclusive answers A_1, \ldots, A_m , some of which are harmless and some of which the respondent typically wants to keep as a secret.

Problems with RRT

The respondent may not want to lie, even if asked to. Or she may refuse to answer to some questions. This biases the estimation of π_A . To overcome this, the authors propose Cryptographic RRT.

Cryptographic RRT

Guarantees the privacy of the respondent

Also guarantees the privacy of the interviewer: the respondent cannot determine the outcome of the protocol before the end.

Some basics of algebra

A group is a set G together with some operation * which obeys

• If $a, b \in G$ then $a * b \in G$

•
$$(a * b) * c = a * (b * c)$$

- There is an identity element I such that $I*a = a*I = a \ \forall a \in G$
- Every $a \in G$ has an inverse a^{-1} such that $a * a^{-1} = a^{-1} * a = I$

We will use \mathbb{Z}_p which is the set of integers modulo an integer p: $\mathbb{Z}_p = \{0, \dots, p-1\}$. In other words, if we

divide any integer by p then the remainder is in \mathbb{Z}_p .

Let G be a group and $g \in G$. Let $\langle g \rangle = \{g^i | i \ge 0\}$ be the set of the powers of g. We say that g is a generator of G if $\langle g \rangle = G$.

For example, consider $G = \{1, 2, 4, 5, 7, 8\} \subset \mathbb{Z}_9$. 2 is a generator of G: $\langle 2 \rangle = \{2^0, 2^1, 2^2, 2^3, 2^4, 2^5, \ldots\} = \{1, 2, 4, 8, 7, 5\}$

If g is a generator, then for any $y \in G$ there is a unique $i \in \{0, \ldots, m-1\}$ (where m is the number of elements in G) such that $g^i = y$. This i equals $\log_g(y)$ and takes exponential time to find.

Protocol 1

Background

- p and q are primes such that q divides p − 1. The public key consists of g and h that are two generators of G that is a unique subgroup of Z_p, of size q.
- Even if g and h are known, $g^{\mu}h^{\nu}$ is hard to invert (here μ is the message, and ν is picked at random from \mathbb{Z}_q).
- $n, \ell \in \mathbb{N}$ such that $p_{ct} = \ell/n > 1/2$.

Precomputation step:

- The respondent \mathcal{R} prepares n random bits $\mu_i \in \{0, 1\}$ for $i = 1, \ldots, n$, such that $\sum_i \mu_i = \ell$ if her type is t = 1 and $\sum_i \mu_i = n - \ell$ if t = 0. (Thus $p_{ct} = \ell/n$ is the probability that a randomly picked bit equals her type). Additionally, she sets $\mu_{n+1} \leftarrow 1 - t$.
- The interviewer $\mathcal I$ chooses $\sigma \in \{1, \ldots, n\}$

Interactive step:

- \mathcal{I} picks a and b at random from \mathbb{Z}_q and sends g^a , g^b and $g^{ab-\sigma+1}$ to \mathcal{R} .
- \mathcal{R} repeats the following for all $i \in \{1, \ldots, n\}$: Pick r_i and s_i at random from \mathbb{Z}_q . Compute $w_i \leftarrow g^{r_i}(g^a)^{s_i} = g^{r_i + as_i}$ and $v_i \leftarrow (g^b)^{r_i}(g^{ab-\sigma+1}g^{i-1})^{s_i} = g^{(r_i + as_i)b+(i-\sigma)s_i}$, and use v_i as a key to encrypt the answer μ_i to y_i using

 $y_i \leftarrow g^{\mu_i} h^{v_i}$. Send w_i and y_i to \mathcal{I} .

• \mathcal{I} computes w^b_σ (note that when $i = \sigma$ above, then

■ 🖛 🔿 🖬 ? 🗙

the key v_i is w_i^b) and $g^{\mu\sigma} \leftarrow y_\sigma/h^{w_\sigma^b}$

and then computes μ_{σ} from that. (With probability p_{ct} , this is 1, and he will conclude $r_{\mathcal{R}} = 1$; with probability $1 - p_{ct}$, this is 0 and $r_{\mathcal{R}} = 0$.)

- *R* must now prove that she created {μ₁,..., μ_{n+1}} correctly. Use noninteractive zero-knowledge arguments (details are seen in the paper).
- I verifies the arguments, and halts if the verification fails.

The interviewer's output $r_{\mathcal{R}}$ corresponds to the "yes" answer in the basic RRT: in computing π_A , L is now the number of $r_{\mathcal{R}} = 1$ values in the population.

Protocol 2

Now $d = \lfloor 1/(1 - p_{ct}) \rfloor$, other background is as before. Precomputation:

- \mathcal{R} chooses a random $\mu \in \{0, 1, \dots, n-1\}$.
- \mathcal{I} chooses random $\nu \in \{0, 1, \dots, n-1\}$ and $\sigma \in \{0, 1, \dots, d-1\}$.

Interactive step:

- \mathcal{R} commits to t and μ and sends the commitments to \mathcal{I} .
- \mathcal{I} chooses a random ρ and commits to σ by setting $y \leftarrow C_K(\sigma; \rho)$. He sends ν and y to \mathcal{R} , together with a zero-knowledge argument for y.
- \mathcal{R} verifies the argument. She computes for all $i \in \{0, 1, \ldots, d-1\}$ a value μ'_i such that $\mu'_i = t$ if and only if $(\mu + \nu + i\ell \mod n) < \ell$. She signs y and sends her signature together with all μ'_i and a zero-knowledge argument.
- \mathcal{I} sets $r_{\mathcal{R}} \leftarrow \mu'_{\sigma}$, accompanied with \mathcal{R} 's signature on the commitment.

Quantum cryptographic RRT

- allows using p_{ct} that is not a rational number
- provides a relaxed form of information-theoretic security for both parties:
 - if ${\cal R}$ is dishonest, her vote only counts as $\leq \sqrt{2}$ votes
 - if I gets to know R's private input with some probability, he is also caught cheating with another probability.
- the protocol can implemented using contemporary technology