T-79.514 Special Course on Cryptology

Revealing Information while Preserving Privacy

Emilia Oikarinen

Helsinki University of Technology emilia.oikarinen@hut.fi

October 29, 2003

T-79.514 Special Course in Cryptology, 29.10.2003

Revealing Information while Preserving Privacy

Background

- Consider a hospital database consisting of medical history of a population.
 - * The privacy of individual patients should be maintained.
 - * Could the database be used to obtain some statistical information?
 - ★ Why the removing of all identifying attributes from the database does not help?
- Discussion based on I. Dinur and K. Nissim, Revealing Information while Preserving Privacy. In Proc. of 22nd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 202–210. ACM Press. USA, 2003.

Overview of the Lecture

- Model-Statistical Databases and Statistical Queries
- Database Privacy in Terms of Non-Privacy
- Impossibility Results Exponential/Polynomial Adversary
- Privacy and Feasibility Results
- Conclusions

Notations

- neg(n) a function that is asymptotically smaller than any inverse polynomial, i.e. for all c > 0 and for all sufficiently large n, it holds that neg(n) < 1/n^c.
- dist(c,d) the Hamming distance of two binary strings $c,d \in \{0,1\}^n$, i.e. dist $(c,d) = |\{i \mid c_i \neq d_i\}|$.
- $\tilde{O}(T(n)) = O(T(n) \log^k(n))$, for some k > 0.
- \mathcal{M} is a Turing-machine. $\mathcal{M}^{\mathcal{A}}$ is an \mathcal{A} -oracle Turing-machine, where \mathcal{M} has an access to algorithm \mathcal{A} and each call to \mathcal{A} costs a unit time.

Model-Statistical Databases and Statistical Queries

- Let d = (d₁,...,d_n) ∈ {0,1}ⁿ. A (statistical) query is a subset q ⊆ {1,...,n}. The (exact) answer to a query q is the sum of all database entries in q, i.e. a_q = ∑_{i∈q} d_i.
- A (statistical) database D = (d, A) is a query-response mechanism. The response to a query q is A(q, d, θ), where θ is the internal state of the algorithm A.
- We usually omit d and θ and write $\mathcal{A}(q)$ for $\mathcal{A}(q, d, \theta)$.

Privacy Methods for Statistical Databases

- (i) query restriction
- (ii) data perturbation
- (iii) output perturbation

The quality of a database algorithm \mathcal{A} in terms of the magnitude of its perturbation:

- An answer $\mathcal{A}(q)$ is within \mathcal{E} perturbation if $a_q \mathcal{A}(q) \leq \mathcal{E}$.
- An algorithm A is within E perturbation if for all queries q ⊆ {1,...,n} the answer A(q) is within E perturbation.

Database Privacy

- Problem of finding a balance between private functions and information functions.
- A *computational* definition of privacy: it is *computationally infeasible* to retrieve private information from the database.
- Other measures of privacy used in previous works include e.g. variance of query answers and the estimator variance.
- Reversed order compared to cryptography.
- Before we define privacy, we consider the concept of non-privacy.

Non-Privacy

A database D = (d, A) is t(n)-non-private, if for every constant ε > 0 there exists a probabilistic Turing-machine M with time-complexity t(n) such that

 $\Pr[\mathcal{M}^{\mathcal{A}}(1^n) \text{ outputs } c \text{ s.t. } \operatorname{dist}(c,d) < \varepsilon n] \geq 1 - \operatorname{neg}(n),$

where the probability is taken over coin tosses of \mathcal{A} and \mathcal{M} .

• From now on, we will restrict the adversary by making the queries nonadaptive.

Impossibility Results – Exponential Adversary

- **Theorem.** Let $\mathcal{D} = (d, \mathcal{A})$ be a database where \mathcal{A} is within o(n) perturbation. Then \mathcal{D} is $\exp(n)$ -non-private.
- Adversary's algorithm. Let \mathcal{A} be within $\mathcal{E} = o(n)$ perturbation. Let \mathcal{M} be the following.
 - (i) (Query phase) For all $q \subseteq \{1, ..., n\}$, let $\tilde{a}_q = \mathcal{A}(q)$.
 - (ii) (Weeding phase) For all $c \in \{0,1\}^n$, if $|\sum_{i \in q} c_i - \tilde{a}_q| \leq \mathcal{E}$ for all $q \subseteq \{1, \ldots, n\}$, then output c and halt.

Impossibility Results – Polynomial Adversary

Let us consider a more realistic scenario in which the adversary is polynomially bounded.

• **Theorem.** Let $\mathcal{D} = (d, \mathcal{A})$ be a database where \mathcal{A} is within $o(\sqrt{n})$ perturbation. Then \mathcal{D} is $\operatorname{poly}(n)$ -non-private.

Impossibility Results – Polynomial Adversary Cont'd

- Adversary's algorithm. (A within $\mathcal{E} = o(\sqrt{n})$ perturbation):
 - (i) (Query phase) Let $t = n \log^2(n)$. For $1 \le j \le t$, choose uniformly at random $q_j \subseteq \{1, \ldots, n\}$, and set $\tilde{a}_{q_j} = \mathcal{A}(q_j)$.
 - (ii) (Weeding phase) Solve the following linear program (LP) with n unknowns c_1, \ldots, c_n .

$$egin{aligned} ilde{a}_{q_j} - \mathcal{E} &\leq \sum\limits_{i \in q_j} c_i \leq ilde{a}_{q_j} + \mathcal{E} & ext{for} & 1 \leq j \leq t \ & 0 \leq c_i \leq 1 & ext{for} & 1 \leq i \leq n \end{aligned}$$

(iii) (Rounding phase) Let $c'_i = 1$ if $c_i > 1/2$ and $c'_i = 0$ otherwise. Output c'.

Revealing Information while Preserving Privacy

Tightness of the Impossibility Results

• A database algorithm that is within $\tilde{O}(\sqrt{n})$ perturbation and private against polynomial adversaries:

Let $d \in \{0,1\}^n$ at random and set the perturbation magnitude $\mathcal{E} = \sqrt{n}(\log n)^{1+\varepsilon} = \tilde{O}(\sqrt{n})$. Consider database $\mathcal{D} = (d, \mathcal{A})$ with algorithm \mathcal{A} defined as follows,

- (i) For an input query $q \subseteq \{1, \ldots, n\}$, compute $a_q = \sum_{i \in q} d_i$.
- (ii) If $|a_q \frac{|q|}{2}| < \mathcal{E}$, return $\frac{|q|}{2}$.
- (iii) Otherwise, return a_q .
- The above database is effectively useless.

Tightness of the Impossibility Results Cont'd

- We present now, a database algorithm that has some privacy combined with some usability.
- We relax the requirements in definition of non-privacy and require that $\mathcal{A}(q)$ is within \mathcal{E} perturbation for most q, i.e.

 $\Pr_{q \in \{1,...,n\}} [\mathcal{A}(q) \text{ is within } \mathcal{E} \text{ perturbation}] = 1 - \operatorname{neg}(n).$

• Let \mathcal{DB} be the uniform distribution over $\{0, 1\}^n$ and select $d \in \mathcal{DB}$ at random.

Tightness of the Impossibility Results Cont'd

- The database algorithm \mathcal{A} will use an internal state θ that is initialized upon the first call.
- θ consists of *n* bits $d' = (d'_1, \dots, d'_n)$ where $d'_i = d_i$ with probability $1/2 + \delta$ and $d'_i = 1 d_i$ otherwise. Thus θ is a private version of the database.
- On an input query $q \subseteq \{1, \ldots, n\}$ algorithm \mathcal{A} answers $\tilde{a}_q = \sum_{i \in q} d'_i$.
- \mathcal{A} is within $\tilde{O}(\sqrt{n})$ perturbation and the database has some usability (Note that, the algorithm is essentially RRT).

Definition of Privacy

Let \mathcal{DB} be a distribution over $\{0, 1\}^n$ and d is drawn according to \mathcal{DB} . A database $\mathcal{D} = (d, \mathcal{A})$ is $(\mathcal{T}(n), \delta)$ -private, if for every pair of probabilistic Turing machines \mathcal{M}_1 and \mathcal{M}_2 having time-complexity $\mathcal{T}(n)$, it holds that

 $\Pr\left[\begin{array}{c}\mathcal{M}_{1}(1^{n}) \text{ outputs } (i, view);\\\mathcal{M}_{2}(view, d^{-i}) \text{ outputs } d_{i}\end{array}\right] < \frac{1}{2} + \delta,$

where $d^{-i} = (d_1, \dots, d_{i-1}, d_{i+1}, \dots, d_n)$. The probability is taken over the choice of *d* from \mathcal{DB} and the coin tosses of all machines involved.

Feasibility Results

- Assume that the adversary has no prior information about the database (modeled by drawing the database from the uniform distribution over *n*-bit strings)
- Theorem. Let $\mathcal{T}(n) > \log^{k}(n)$ and $\delta > 0$. Let \mathcal{DB} be uniform distribution over $\{0, 1\}^{n}$, and select $d \in \mathcal{DB}$ at random. There exists a $\tilde{O}(\sqrt{\mathcal{T}(n)})$ -perturbation algorithm \mathcal{A} such that $\mathcal{D} = (d, \mathcal{A})$ is $(\mathcal{T}(n), \delta)$ -private.

Conclusions

- If some random noise of magnitude ≤ E is added to a database to preserve privacy, there is a threshold phenomenon where a polynomially bounded adversary can reconstruct almost all the database entries if E ≪ √n, and if E ≫ √n the adversary can reconstruct none of them.
- Privacy can be preserved with respect to an adversary having running time limited to T(n) for an arbitrary T when a perturbation magnitude of about \sqrt{T(n)} is used.