T-79.514 Special Course on Cryptology

Private Information Retrieval

Vesa Vaskelainen

Helsinki University of Technology

vvaskela@cc.hut.fi

Overview of the Lecture

- Private Information Retrieval (PIR)
 - * Allow a user to retrieve information from a database while maintaining his query private
- Symmetrically Private Information Retrieval (SPIR)
 - * Quarantees also the privacy of the data, as well as of the user
- Very Short Introduction to Quantum Mechanics
 - * Formalism used in quantum computing
- Quantum SPIR scheme on top of the classical PIR scheme

Background

- Data privacy is a natural and crucial requirement in many settings. For example, consider a commercial database which sells information, such as stock information, to users, charging by the amount of data that the user retrieved. Here, both user privacy and database privacy are essential.
- Y. Gertner et al. Protecting Data Privacy in Private Information Retrieval Schemes. Journal of Computer and Systems Sciences, 60(3):592-629, 2000. Earlier version in STOC 98.
- I. Kerenidis, R. de Wolf. *Quantum Symmerically-Private Information* Retrieval. arXiv:quant-ph/0307076, 2003.

Definitions

- Database \mathcal{DB} is a binary string $x = x_1 \dots x_n$ of length n, identical copies of this string are stored by $k \geq 2$ servers
- By [l] is denoted the set $\{1, 2, \dots, l\}$. For any sets $S, S' \subseteq [l]$, we let $S \oplus S'$ denote the symmetric difference between S and S' (i.e., $S \oplus S' = (S \setminus S') \cup (S' \setminus S)$, and χ_S denote the characteristic vector of S: an l-bit binary string whose j-th bit is equal to 1 iff $j \in S$.
- $\{0,1\}^n$ is the set of strings of length n with each letter being either zero or one.

- "PIR and SPIR scheme" refer to 1-round information theoretically private schemes
- Complexity is measured in terms of communication
- User privacy requirement: under any two indices i, i', the communication seen by any single database is identically distributed
- The data privacy condition of SPIR schemes requires for any user interacting with the honest databases $\mathcal{DB}_1, \ldots, \mathcal{DB}_k$ there exists an index i s.t. for every data strings x, x' satisfying $x_i = x'_i$ the distribution of communication is independent of the data strings x and x'.

Basic Cube Scheme

 $k=2^d$ databases, the size of $n=l^d$, where $d,l\in\mathbb{Z}_+$. The index set [n], is identified with the d-dimensional cube $[l]^d$. Each index $i \in [n]$, is identified with a d-tuple (i_1, \ldots, i_d) . A d-dimensional subcube $S_1 \times \cdots \times S_d \subseteq [l]^d$, where each $S_i \subseteq [l]$.

QUERIES: The user picks a random (S_1^0, \ldots, S_d^0) , where $S_1^0, \ldots, S_d^0 \subseteq [l]$. Let $S_m^1 = S_m^0 \oplus i_m$ ($1 \le m \le d$). For each $\sigma = \sigma_1 \sigma_2 \ldots \sigma_d \in \{0, 1\}^d$, the user sends to \mathcal{DB}_{σ} the subcube $C_{\sigma} = (S_1^{\sigma_1}, \dots, S_d^{\sigma_d})$, where each $S_m^{\sigma_m}$ is presented by its characteristic *l*-bit string.

ANSWERS: Each \mathcal{DB}_{σ} , $\sigma \in \{0,1\}^d$, computes XOR of the bits in the subcube C_{σ} , and sends the resultant bit b_{σ} to the user.

RECONSTRUCTION: The user computes $x_i = \bigoplus_{\sigma \in \{0,1\}^d} b_{\sigma}$.

PIR Scheme \mathcal{B}_2 (2-database covering-codes scheme)

 $l=n^{1/3}$, $i=(i_1,i_2,i_3)$, \mathcal{DB}_{000} and \mathcal{DB}_{111} emulates the 4 databases \mathcal{DB}_{σ} , $\sigma \in \{0,1\}^3$, s.t. Hamming distance of σ from its index is at most 1.

QUERIES: The user sends $C_{000} = (S_1^0, S_2^0, S_3^0)$ to \mathcal{DB}_{000} and $C_{111} = (S_1^1, S_2^1, S_3^1)$ to \mathcal{DB}_{111} .

ANSWERS: $\mathcal{DB}_{000,111}$ replies with single bits $b_{000,111}$ along with 3 l-bit long strings, i.e. \mathcal{DB}_{000} emulates \mathcal{DB}_{100} by computing $\bigoplus (S_1^0 \oplus i_1, S_2^0, S_3^0)$ for every $i_1 \in [l]$.

RECONSTRUCTION: In the l-bit long strings, the index of the required answer bit b_{σ} is i_1 (for $\sigma = 100,011$), i_2 ($\sigma = 010,101$), or i_3 $(\sigma = 001, 110)$. The user computes $x_i = \bigoplus_{\sigma \in \{0,1\}^3} b_{\sigma}$.

Correctness and Complexity

- The correctness of the basic cube scheme follows from the fact that every bit in x except x_i appears in an even number of subcubes C_{σ} , $\sigma \in \{0,1\}^d$, and x_i appears in exactly one such subcube.
- For the basic cube scheme communication complexity is $k \cdot (d \cdot l + 1) =$ $2^{d} \cdot (d \cdot \sqrt[d]{n} + 1) = \mathcal{O}(n^{1/d})$
- \mathcal{B}_2 has total communication complexity $2(6\sqrt[3]{n}+1) = \mathcal{O}(n^{1/3})$. Note that it is too expensive to let \mathcal{DB}_{000} emulate \mathcal{DB}_{011} as this will require considering all $(\sqrt[3]{n})^2$ possibilities for (S_2^1, S_3^1) .

Conditional Disclosure of Secrets

- The "condition" $h: \{0,1\}^n \to \{0,1\}$ for some n; an external party Carol holds $y \in \{0,1\}^n$, which is also partitioned between the P_1, \ldots, P_k players which have access to a shared random string (hidden from Carol). A secret input s is known to at least one of the players. Based on its share of y and on the shared randomness, each P_i simultaneously sends a message to Carol, s.t. (1) if h(y) = 1, then Carol is able to reconstruct the secret s; and (2) if h(y) = 0, then Carol obtains no information about s.
- Claim 1. Suppose $h: \{0,1\}^n$ has a Boolean formula of size S(n), and let s denote a secret bit known to at least one player. Then there exist a protocol for disclosing s subject to the condition h, whose total communication complexity is S(n) + 1.

Private Simultaneous Messages (PSM)

- Each player P_1, \ldots, P_k is holding a private input string y_j . All players have access to a shared random input, which is unknown to Carol. Based on y_i and the shared random input, each player P_i simultaneously sends a single message to Carol. From the messages she received, Carol should be able to compute some predetermined function $f(y_1, \ldots, y_k)$, but should obtain no additional information on the input other than what follows from the value of f.
- Example 1. In the basic cube scheme data privacy can be maintained (respect to an honest user) if instead of sending original answer b_{σ} , each \mathcal{DB}_{σ} sends a masked answer $b_{\sigma} \oplus r_{\sigma}$, where r = $r_{0...00}r_{0...01}...r_{1...11}$ are randomly chosen from the k-tuples whose bits XOR to 0.

Honest-User-SPIR Schemes \mathcal{B}'_2 and \mathcal{B}'_k

- The reconstruction function of \mathcal{B}_2 may be viewed as a two-stage procedure: (1) the user selects a single bit from each of 8 answer strings, depending only on the index i; and (2) the user exclusive-ors the 8 bits it has selected to obtain x_i .
- ullet The user independently shares χ_{i_m} , m=1,2,3, among the two databases. $(r_m^0 \oplus r_m^1 = \chi_{i_m})$
- Each bit of a_{σ} is an input to a PSM protocol computing the XOR of 8 answer bits. Let w_{σ} denote the string where each bit from a_{σ} is replaced by its corresponding PSM message bit.

- ullet For every $\sigma \in \{0,1\}^3$ and $1 \leq j \leq |w_{\sigma}|$, the database use their shared randomness to disclose to the user the j-th bit of w_{σ} , $(w_{\sigma})_{j}$, subject to an appropriate condition $(r_m^0)_j \oplus (r_m^1)_j = 1$.
- The user reconstructs the eight PSM message bits corresponding to the index i (using the reconstruction function of the conditional disclosure protocol), and computes their exclusive-or to obtain x_i .
- Based on the Claim 1. it can be shown that the communication complexity of the \mathcal{B}_2' is $\mathcal{O}(n^{1/3})$. Generalization gives,
 - For every constant $k \geq 2$ there exist a kdatabase honest-user-SPIR scheme, \mathcal{B}'_k , of communication complexity $O(n^{1/(2k-1)})$.

Cube Schemes \mathcal{B}_2'' and \mathcal{B}_k''

- The user can cheat in two ways in the previous honest-user-SPIR scheme: sharing the all-ones vector instead of χ_{i_m} , and by sending invalid queries invalid queries in the original PIR scheme. (may obtain $\mathcal{O}(n^{1/3})$ physical data bits)
- The databases share a random bit s. The bit s is disclosed to the user subject to the condition $\bigwedge_{m=1}^3 (S_m^0 \oplus S_m^1 = \{r_m^0 \oplus r_m^1\})$ which validates the user's queries.
- The honest user can reconstruct s and the 8 bits corresponding to index i and compute their exclusive-or to obtain x_i . The user can only learn $(s \oplus b_{000} \oplus b_{111} \oplus b)$, where $b = \bigoplus_{\sigma \neq 000,111} b_{\sigma}$.

- The user's queries can be verified by a Boolean formula of size $\mathcal{O}(l \log l)$. For disclosing PSM message strings w_{σ} one needs a Boolean formula of size $\mathcal{O}(\log l)$. From these it follows that the scheme \mathcal{B}_2'' has communication complexity $\mathcal{O}(\log n \cdot n^{1/3})$.
- The previous is generalized by the following theorem.

Theorem 2. For every constant $k \geq 2$ there exist a k-database SPIR scheme, \mathcal{B}_k'' , of communication complexity $\mathcal{O}(\log n \cdot n^{1/(2k-1)})$.

Very Short Introduction to Quantum Mechanics

- The standard quantum mechanical notation for a vector in a complex vector space is $|\psi\rangle$
- The quantum analog of a bit is qubit which is two- state system where the two possible states are called $|0\rangle$ and $|1\rangle$.
- The most essential property of them is the possibility of superposition. The general state is, $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ where $|\alpha|^2 + |\beta|^2 = 1$.
- The elements of $V \otimes W$ are linear combinations of 'tensor products' $|v\rangle\otimes|w\rangle$ of elements $|v\rangle$ of V and $|w\rangle$ of W.

QSPIR Scheme

The user picks a random string r, and depending on index i and r, picks k queries $q_1, \ldots, q_k \in \{0, 1\}^t$. In addition, he picks k random strings $r_1,\ldots,r_k\in\{0,1\}^a$. The user also holds strings $b_1,\ldots,b_k\in\{0,1\}^a$ which are determined by i and r in a way that

$$\sum_{j=1}^{k} a_j \cdot b_j = x_i \qquad (\text{mod 2}).$$

The user defines $r'_{i} = r_{j} - b_{j}$ and set up the following (1 + k(t+a))-qubit state

$$\frac{1}{\sqrt{2}}|0\rangle|q_1,r_1\rangle\dots|q_k,r_k\rangle+\frac{1}{\sqrt{2}}|q_1,r_1'\rangle\dots|q_k,r_k'\rangle.$$

The jth server performs the following unitary mapping,

$$|q_j,r\rangle \to (-1)^{a_j\cdot r}|q_j,r\rangle.$$

The servers then send all the qubits they have back to the user.

$$\frac{1}{\sqrt{2}}(-1)^{a_1 \cdot r_1}|q_1, r_1\rangle \dots (-1)^{a_k \cdot r_k}|q_k, r_k\rangle$$

$$+\frac{1}{\sqrt{2}}(-1)^{a_1\cdot r_1'}|q_1,r_1'\rangle\dots(-1)^{a_k\cdot r_k'}|q_k,r_k'\rangle.$$

The common factor $(-1)^{\sum_j a_j \cdot r_j}$ can be ignored. Thus previous equals to,

$$\frac{1}{\sqrt{2}}|0\rangle|q_1,r_1\rangle\dots|q_k,r_k\rangle + \frac{1}{\sqrt{2}}|1\rangle(-1)^{\sum_{j=1}^k a_j \cdot b_j}|q_1,r_1'\rangle\dots|q_k,r_k'\rangle =$$

$$\frac{1}{\sqrt{2}}|0\rangle|q_1,r_1\rangle\dots|q_k,r_k\rangle+\frac{1}{\sqrt{2}}|1\rangle(-1)^{x_i}|q_1,r_1'\rangle\dots|q_k,r_k'\rangle.$$

The user can get $|x_i\rangle$ from this by using Hadamard transform operator

$$H\equivrac{1}{\sqrt{2}}\left(egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight).$$

Conclusions

- Clearly, PIR can be realized by making the server send the whole database to user, better protocols exist if the database is replicated among some $k \geq 2$ different servers, who cannot communicate.
- Classical SPIR schemes requires the shared randomness between servers.
- The honest-user quantum SPIR schemes exist even in the case where the servers do not share any randomness.