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Overview of the Lecture

• Private Information Retrieval (PIR)
? Allow a user to retrieve information from a database while maintain-
ing his query private

• Symmetrically Private Information Retrieval (SPIR)
? Quarantees also the privacy of the data, as well as of the user

• Very Short Introduction to Quantum Mechanics
? Formalism used in quantum computing

• Quantum SPIR scheme on top of the classical PIR scheme
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Background

• Data privacy is a natural and crucial requirement in many settings.
For example, consider a commercial database which sells information,
such as stock information, to users, charging by the amount of data
that the user retrieved. Here, both user privacy and database privacy
are essential.

• Y. Gertner et al. Protecting Data Privacy in Private Information Re-
trieval Schemes. Journal of Computer and Systems Sciences,
60(3):592–629, 2000. Earlier version in STOC 98.

• I. Kerenidis, R. de Wolf. Quantum Symmerically-Private Information
Retrieval. arXiv:quant-ph/0307076, 2003.
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Definitions

• Database DB is a binary string x = x1 . . . xn of length n, identical
copies of this string are stored by k ≥ 2 servers

• By [l] is denoted the set {1,2, . . . , l}. For any sets S, S′ ⊆ [l], we
let S ⊕ S′ denote the symmetric difference between S and S′ (i.e.,
S ⊕ S′ = (S\S′) ∪ (S′\S)), and χS denote the characteristic vector
of S: an l-bit binary string whose j-th bit is equal to 1 iff j ∈ S.

• {0,1}n is the set of strings of length n with each letter being either
zero or one.
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• “PIR and SPIR scheme” refer to 1-round information theoretically pri-
vate schemes

• Complexity is measured in terms of communication

• User privacy requirement: under any two indices i, i′, the communica-
tion seen by any single database is identically distributed

• The data privacy condition of SPIR schemes requires for any user
interacting with the honest databases DB1, . . . ,DBk there exists an
index i s.t. for every data strings x, x′ satisfying xi = x′i the distribution
of communication is independent of the data strings x and x′.
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Basic Cube Scheme

k = 2d databases, the size of n = ld, where d, l ∈ Z+. The in-
dex set [n], is identified with the d-dimensional cube [l]d. Each index
i ∈ [n], is identified with a d-tuple (i1, . . . , id). A d-dimensional subcube
S1 × · · · × Sd ⊆ [l]d, where each Si ⊆ [l].

QUERIES: The user picks a random (S0
1, . . . , S

0
d ), where S0

1, . . . , S
0
d ⊆

[l]. Let S1
m = S0

m⊕im (1 ≤ m ≤ d). For each σ = σ1σ2 . . . σd ∈ {0,1}d,
the user sends to DBσ the subcube Cσ = (Sσ1

1 , . . . , S
σd
d ), where each

Sσmm is presented by its characteristic l-bit string.

ANSWERS: Each DBσ, σ ∈ {0,1}d, computes XOR of the bits in
the subcube Cσ, and sends the resultant bit bσ to the user.

RECONSTRUCTION: The user computes xi =
⊕
σ∈{0,1}d bσ.
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PIR Scheme B2 (2-database covering-codes scheme)

l = n1/3, i = (i1, i2, i3), DB000 and DB111 emulates the 4 databases
DBσ, σ ∈ {0,1}3, s.t. Hamming distance of σ from its index is at most 1.

QUERIES: The user sends C000 = (S0
1, S

0
2, S

0
3) to DB000 and

C111 = (S1
1, S

1
2, S

1
3) to DB111.

ANSWERS: DB000,111 replies with single bits b000,111 along with 3 l-bit
long strings, i.e.DB000 emulatesDB100 by computing

⊕
(S0

1⊕i1, S
0
2, S

0
3)

for every i1 ∈ [l].

RECONSTRUCTION: In the l-bit long strings, the index of the re-
quired answer bit bσ is i1 (for σ = 100,011), i2 (σ = 010,101), or i3
(σ = 001,110). The user computes xi =

⊕
σ∈{0,1}3 bσ.
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Correctness and Complexity

• The correctness of the basic cube scheme follows from the fact that
every bit in x except xi appears in an even number of subcubes Cσ,
σ ∈ {0,1}d, and xi appears in exactly one such subcube.

• For the basic cube scheme communication complexity is k·(d·l+1) =

2d · (d · d
√
n+ 1) = O(n1/d)

• B2 has total communcation complexity 2(6 3
√
n+1) = O(n1/3). Note

that it is too expensive to let DB000 emulate DB011 as this will require
considering all ( 3

√
n)2 possibilities for (S1

2, S
1
3).
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Conditional Disclosure of Secrets

• The “condition” h: {0,1}n → {0,1} for some n; an external party
Carol holds y ∈ {0,1}n, which is also partitioned between the
P1, . . . , Pk players which have access to a shared random string (hid-
den from Carol). A secret input s is known to at least one of the players.
Based on its share of y and on the shared randomness, each Pj si-
multaneously sends a message to Carol, s.t. (1) if h(y) = 1, then
Carol is able to reconstruct the secret s; and (2) if h(y) = 0, then
Carol obtains no information about s.

• Claim 1. Suppose h: {0,1}n has a Boolean formula of size S(n),
and let s denote a secret bit known to at least one player. Then there
exist a protocol for disclosing s subject to the condition h, whose total
communication complexity is S(n) + 1.
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Private Simultaneous Messages (PSM)

• Each player P1, . . . , Pk is holding a private input string yj. All players
have access to a shared random input, which is unknown to Carol.
Based on yj and the shared random input, each player Pj simulta-
neously sends a single message to Carol. From the messages she
received, Carol should be able to compute some predetermined func-
tion f(y1, . . . , yk), but should obtain no additional information on the
input other than what follows from the value of f .

• Example 1. In the basic cube scheme data privacy can be main-
tained (respect to an honest user) if instead of sending original an-
swer bσ, each DBσ sends a masked answer bσ ⊕ rσ, where r =
r0...00r0...01 . . . r1...11 are randomly chosen from the k-tuples whose
bits XOR to 0.
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Honest-User-SPIR Schemes B′2 and B′k

• The reconstruction function of B2 may be viewed as a two-stage pro-
cedure: (1) the user selects a single bit from each of 8 answer strings,
depending only on the index i; and (2) the user exclusive-ors the 8 bits
it has selected to obtain xi.

• The user independently shares χim, m = 1,2,3, among the two
databases. (r0m ⊕ r1m = χim)

• Each bit of aσ is an input to a PSM protocol computing the XOR of
8 answer bits. Let wσ denote the string where each bit from aσ is
replaced by its corresponding PSM message bit.
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• For every σ ∈ {0,1}3 and 1 ≤ j ≤ |wσ|, the database use their
shared randomness to disclose to the user the j-th bit of wσ, (wσ)j,
subject to an appropriate condition (r0m)j ⊕ (r1m)j = 1.

• The user reconstructs the eight PSM message bits corresponding to
the index i (using the reconstruction function of the conditional disclo-
sure protocol), and computes their exclusive-or to obtain xi.

• Based on the Claim 1. it can be shown that the communication com-
plexity of the B′2 is O(n1/3). Generalization gives,

Theorem 1. For every constant k ≥ 2 there exist a k-
database honest-user-SPIR scheme, B′k, of communication complex-
ity O(n1/(2k−1)).
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Cube Schemes B′′2 and B′′k

• The user can cheat in two ways in the previous honest-user-SPIR
scheme: sharing the all-ones vector instead of χim, and by sending
invalid queries invalid queries in the original PIR scheme. (may obtain
O(n1/3) physical data bits)

• The databases share a random bit s. The bit s is disclosed to the
user subject to the condition

∧3
m=1(S

0
m ⊕ S1

m = {r0m ⊕ r1m}) which
validates the user’s queries.

• The honest user can reconstruct s and the 8 bits corresponding to
index i and compute their exclusive-or to obtain xi. The user can only
learn (s⊕ b000 ⊕ b111 ⊕ b), where b =

⊕
σ 6=000,111 bσ.
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• The user’s queries can be verified by a Boolean formula of size
O(l log l). For disclosing PSM message strings wσ one needs a
Boolean formula of size O(log l). From these it follows that the
scheme B′′2 has communication complexity O(logn · n1/3).

• The previous is generalized by the following theorem.

Theorem 2. For every constant k ≥ 2 there exist a k-database SPIR
scheme, B′′k, of communication complexity O(logn · n1/(2k−1)).
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Very Short Introduction to Quantum Mechanics

• The standard quantum mechanical notation for a vector in a complex
vector space is |ψ〉

• The quantum analog of a bit is qubit which is two- state system where
the two possible states are called |0〉 and |1〉.

• The most essential property of them is the possibility of superposition.
The general state is, |ψ〉 = α|0〉+ β|1〉 where |α|2 + |β|2 = 1.

• The elements of V ⊗W are linear combinations of ’tensor products’
|v〉 ⊗ |w〉 of elements |v〉 of V and |w〉 of W .
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QSPIR Scheme
The user picks a random string r, and depending on index i and r, picks
k queries q1, . . . , qk ∈ {0,1}t. In addition, he picks k random strings
r1, . . . , rk ∈ {0,1}a. The user also holds strings b1, . . . , bk ∈ {0,1}a
which are determined by i and r in a way that

k∑
j=1

aj · bj = xi (mod 2).

The user defines r′j = rj−bj and set up the following (1+k(t+a))-qubit
state

1√
2
|0〉|q1, r1〉 . . . |qk, rk〉+

1√
2
|q1, r′1〉 . . . |qk, r

′
k〉.

The jth server performs the following unitary mapping,

|qj, r〉 → (−1)aj·r|qj, r〉.

T-79.514 Special Course in Cryptology, Private Information Retrieval, Vesa Vaskelainen

16



The servers then send all the qubits they have back to the user.

1√
2
(−1)a1·r1|q1, r1〉 . . . (−1)ak·rk|qk, rk〉

+
1√
2
(−1)a1·r

′
1|q1, r′1〉 . . . (−1)ak·r

′
k|qk, r′k〉.

The common factor (−1)
∑
j aj·rj can be ignored. Thus previous equals to,

1√
2
|0〉|q1, r1〉 . . . |qk, rk〉+

1√
2
|1〉(−1)

∑k
j=1 aj·bj |q1, r′1〉 . . . |qk, r

′
k〉 =

1√
2
|0〉|q1, r1〉 . . . |qk, rk〉+

1√
2
|1〉(−1)xi|q1, r′1〉 . . . |qk, r

′
k〉.

The user can get |xi〉 from this by using Hadamard transform operator

H ≡
1√
2

(
1 1
1 −1

)
.
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Conclusions

• Clearly, PIR can be realized by making the server send the whole
database to user, better protocols exist if the database is replicated
among some k ≥ 2 different servers, who cannot communicate.

• Classical SPIR schemes requires the shared randomness between
servers.

• The honest-user quantum SPIR schemes exist even in the case where
the servers do not share any randomness.
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