
T-79.514 Special Course on Cryptology / Privacy-Preserving

Data Mining: Vulnerabilities in Similarity Search Systems

Sami Vaarala

November 24, 2003

Abstract

In this survey, we describe some fundamental vul-
nerabilities in similarity search systems, as de-
scribed by Tosun and Ferhatosmanoglu in their pa-
per “Vulnerabilities in Similarity Search Based Sys-
tems”.

1 Definitions

The database system under discussion is modeled
as a set of n-dimensional vectors, representing el-
ements of data in a space S. Unless noted other-
wise, we assume that the coordinates are real num-
bers and that the database is finite. Similarity (or
difference) is measured using a distance function,
d(x, y), using the l2 norm.

Two query models, illustrated in Figures 1 and
2 are used. In both models the query is repre-
sented as a single vector, q. In the reply model,
the database returns the element q′ which mini-
mizes the distance d(q, q′). In the score model the
distance d(q, q′), or some function f(x) of the dis-
tance x, is returned instead of the element q′. (The
authors only consider the case where the score di-
rectly equals the distance, i.e. f(x) = x.)

Figure 1: Reply model

Figure 2: Score model

Given a set of query points q1, ..., qm, a Voronoi
region of a certain query point qi is the set V =
{y ∈ S : d(qi, y) ≤ d(qj , y), j ∈ 1, ..., m, j 6= i}, i.e.
the set of points which are closer to query point
qi than any other query point qj . The authors do
not define their Voronoi region exactly, so it is a bit
unclear how the edge of the Voronoi regions is to
be handled (i.e. as an open or a closed set). This
has no real effect on the results.

Query points are also referred to as probe points
in the text.

2 Problem Considered

The problem described by Tosun and Ferhatosman-
oglu relates only indirectly to privacy-preserving
data mining. In [2], Du and Atallah describe proto-
cols for secure approximate matching; Alice wants
to know “is q approximately in the database?”
without letting Bob know q or the response to the
query. This problem is “inverse” to the problem
discussed by Tosun and Ferhatosmanoglu, where
Alice is willing to let Bob know q and the response
to the query, but Bob wants to prevent Alice from
reconstructing the database.

1



It is clear that the latter problem is, in general,
insolvable. If the coordinate space is discrete, the
attacker can simply iterate over all possible queries;
if coordinate space is continuous, the attacker can
iterate over a grid suitably dense to be considered a
replica of the database. Thus, the only useful intu-
itive measure is the difficulty (for instance, number
of queries) in doing so.

The two questions discussed by the authors are:

1. What is the best strategy to reconstruct the
entire database (using queries in either query
model)?

2. What can be done prevent (or alleviate) such
attacks?

The vulnerabilities in score and reply models
are quite different; the authors consider each sepa-
rately.

3 Reply Model Vulnerabilities

Here we will examine what follows when we assume
a distance function d(x, y) = (

∑

(xi − yi)
2)1/2 (as

the authors also do). Furthermore, we assume that
vector coordinates have a limited range.

3.1 Basic approach

Figure 3: Closest match in reply model

When a query for q is sent in the reply model,
we obtain the vector q′ which minimizes the dis-
tance d(q, q′) (Figure 3). Also, we then know that
points x for which d(q, x) < d(q, q′) (points inside
the circle) are not in the database.

The authors describe a basic method for recon-
structing a database where the minimum distance

between any two vectors is c. The idea is to cover
the space of possible queries with an equally spaced
grid of query points. The grid spacing (distance
between two query points) is chosen so that the
maximum distance between any two points in the
Voronoi region of a query point (i.e. the set of
points for which the closest grid point is the query
point in question) is at most c (see Figure 4). For
n dimensions (and the assumed distance function),
the grid spacing is c/

√
n.

If c was assumed correctly, each Voronoi region
of a query point contains at most one database el-
ement. If this were not the case, the assumption
regarding c would be violated (since the maximum
distance between any two points in the Voronoi re-
gion is c).

Figure 4: Query points and their Voronoi regions

The authors assume that the coordinate space
(or the database) is bounded. However, this is not
necessary as long as the database is finite. One can
simply extend the search from the origin until all
database points have been recovered. (Of course,
it is impossible for the attacker to know when to
stop; still, the reconstruction will be complete at
some point.)

When two queries are exactly equidistant from
a certain database element we have a rare “corner
case”. Depending on the implementation of the
database the query may go one way or the other.
The attacker cannot easily ensure, by an appro-
priate choice of the set of query points, that such
corner cases are not encountered.

However, by choosing c slightly smaller than the

2



actual minimum distance between database ele-
ments, the corner case resolves itself automatically;
the element itself is recovered in any case, and
neither Voronoi region can contain elements other
than the database element in question.

3.2 Schemes

The authors describe variants of the basic scheme
described above:

• Progressive scheme – start with a sparse grid,
and halve the grid spacing each round. This
makes intermediate results more useful.

• Adaptive progressive scheme – start with a
sparse grid and start refining the grid in ar-
eas where the density of database elements is
high.

• Random scheme – use random probes.

The authors also suggest that multiple proto-
col clients could be used in conjunction with any
other scheme (which they refer to as a “distributed
scheme”).

4 Score Model

In the score model, the authors assume that the
distance between the query vector, q, and the vec-
tor closest to the query vector, q′, is directly the
score returned by the database in the query result.
Further, they assume that the attacker knows the
distance function. The basic idea is then to perform
two or more queries which return scores related to
the same database element q′, and then use the
definition of the distance function and the scores
to determine coordinates of q′.

Suppose the distance function (in three dimen-
sions) is:

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

Further suppose the database element is x =
(x1, x2, x3), and the two query points are a =
(a1, a2, a3) and b = (b1, b2, b3). Then the distances
da = d(a, x) and db = d(b, x) are as follows:

da =
√

(a1 − x1)2 + (a2 − x2)2 + (a3 − x3)2

db =
√

(b1 − x1)2 + (b2 − x2)2 + (b3 − x3)2.

The attacker chooses a2 = b2 and a3 = b3, giving:

d2

a = (a1 − x1)
2 + (a2 − x2)

2 + (a3 − x3)
2

d2

b = (b1 − x1)
2 + (a2 − x2)

2 + (a3 − x3)
2;

thus

d2

a − d2

b = (a1 − x1)
2 − (b1 − x1)

2

= a2

1
− 2a1x1 + x2

1
− b2

1
+ 2b1x1 − x2

1
.

Solving for x1 we get:

x1 =
b2

1
− a2

1
+ d2

a − d2

b

2b1 − 2a1

.

The authors illustrate this approach for a
database containing a single element (but n di-
mensions). Following the authors’ approach in
our three dimensions, we choose a = (0, 0, 0) and
b = (1, 0, 0) in the first set of queries. The final
equation for x1 is then:

x1 =
1 + d2

a − d2

b

2
.

The method is then iterated for every component
in turn to determine all components of the unknown
vector q′. Note, however, that the method only
works if all scores obtained by the various queries
refer to the same database vector q′. The example
used by the authors avoids this by assuming there
is only one element in the database.

In practice one could overcome this limitation
by first doing random probes until a suitably small
score was obtained for some q′, and then perturbing
the query very slightly and apply the more generic
version of the method (described above). A poten-
tial database element can be easily verified using it
as a query element; if correct, distance should be
zero.

5 Attack Detection

How could these kinds of attacks be prevented or at
least detected? It seems that either we need to take
a complexity approach or we need some definition
for what constitutes a “illegal” sequence of queries
(for detection). The latter approach is implicitly
used by the authors, although they do not provide
any such concrete definition.

3



One observation is that in both score and reply
models, the query results provide more informa-
tion of what is not in the database than what is.
Figure 5 illustrates the case where four queries (in
either the reply or the score model, assuming that
score equals distance) effectively provide a “bound-
ing box” for the elements in the database. Each
shaded circle is the set of points that are known
not to be in the database.

Figure 5: Four queries and “bounding box”

5.1 Reply model

For the reply model not much can be done. Al-
though there will be some patterns in trivial query
sequences, there is nothing stopping an attacker
from avoiding trivial sequences. One could use
e.g. an encryption function as a permutation func-
tion to generate a cryptographically strong (un-
predictable) sequence of queries; alternatively, an
attacker may use true random numbers to gener-
ate queries. In both cases, a suspicious feature is
that the distribution is indeed random, while actual
queries would probably never have such a distribu-
tion.

In some sense the problem resembles network in-
trusion detection systems – the definition of an “in-
trusion” is arbitrary, and only weak security can be
achieved. False positives will also almost certainly

result.

5.2 Score model

For the score model there seem to be more possi-
bilities to protect the database.

The authors assume that the distance function
is known, and the attack described in Section 4
is possible. They propose that the attack can be
detected by noticing that multiple queries near a
certain query vector are being made. They define
a function which maps a set of coordinates and a
query source IP address into a single real number
as follows [1]:

f(x1, ..., xn, a, b, c, d) =1012a + 109b + 106c+

103d +
∑

xi

where the source IP address is a.b.c.d.
The idea is to compare the difference of two

queries, measured as a difference of the function
values; if the difference is very small, the queries are
possibly related to an attack. The authors used a
“three strike policy”, apparently meaning that two
very similar queries are allowed but a third one is
not.

It is a bit unclear why such a function f is re-
quired in the first place. One could simply define
a distance function for two vectors (each consisting
of query coordinates and the source IP address)
and use that to determine similarity of queries.
This would eliminate the false positives which re-
sult from the model used (although the probability
of such false positives is rather small). Perhaps the
motivation is simply to conserve space in databases
with a high number of dimensions.

To combat distributed attacks, the authors sug-
gest that the IP address classes (A, B, C) should
be used to determine whether queries come from
the same subnet. This solution clearly does not
work; the Internet nowadays uses a flexible subnet-
ting scheme and such strict classes no longer exist
[3]. Further, network address translation (NAT) [4]
of private addresses mean that thousands of queries
could come from the same source IP address. (And
even if there was still a way to detect the client’s
identity, this measure is rather weak and network
specific.)

If the definition of the distance function is not
public, the score model attack described by the au-

4



thors will not work directly (although it should be
possible to match parameters for a large class of
functions).

Suppose the distance function is chosen such that
d(x, y) = 0 iff x = y and d(x, y) = 1 otherwise
(which makes sense only if the coordinate space
is discrete). Clearly, using this distance function,
the score model is equivalent to an exact match
search, and consequently the database is as se-
cure from reconstruction attacks as using an ex-
act match search. Thus the security depends very
much on the distance function chosen.

If d(x, y) = (
∑

(xi − yi)
2)1/2 and we define

d′(x, y) = min(d(x, y), ε) for some ε, d′ returns a
uniform result for all queries except those within ε
from the database elements (as measured using d).
The smaller the ε, the more difficult the attack (in-
tuitively): a smaller ε means that a larger portion
of the search space returns a uniform score, and at
the same time each query eliminates a smaller por-
tion of the search space. However, the smaller ε is,
the less useful the similarity search is for the user.
(Figures 6 and 7 illustrate: the database consists
of six points and the distance to the nearest point
is plotted for each query point. The vertical axis
is the value of the distance function (to the closest
database element), while the two other axes are the
two coordinates.)

 0
 1

 2
 3

 4
 0

 1

 2

 3

 4

 5
 0

 0.5

 1

 1.5

 2

Figure 6: “Capped” distance function, ε = 0.5

One possibility is to discretize the distance func-
tion, e.g. d′(x, y) = ceil(d(x, y)) (Figure 8). This

 0
 1

 2
 3

 4
 0

 1

 2

 3

 4

 5
 0

 0.5

 1

 1.5

 2

Figure 7: “Capped” distance function, ε = 1.5

might also increase the difficulty of the attack
(as no “gradient information” is usually revealed).
However, the distance function still returns arbi-
trarily high values, which can be used to dismiss
large portions of the search space quickly (as illus-
trated in Figure 5).

 0
 1

 2
 3

 4
 0

 1

 2

 3

 4

 5
 0

 0.5

 1

 1.5

 2

Figure 8: Discrete distance function

5



6 Experiments Performed by

Authors

The experiments described in the paper pro-
vide quite ambiguous results, and do not confirm
whether the attacks are realistic. Attacks in the re-
ply model are clearly possible, however, the authors
use databases with only a few dimensions which do
not represent real databases well (all three experi-
ments use a two-dimensional database).

The authors did not try an attack on the score
model. Instead, they analyzed the distribution of
the sums of element coordinates (the function f
in the discussion above). This provides no useful
information about how realistic attacks against the
score model are.

7 Thoughts

The authors do not give an explicit measure of
“performance” of a reconstruction algorithm. This
makes comparison of relative advantages of each
algorithm difficult. The practical experiments do
not shed light on the practical effectiveness of the
algorithms, as described previously.

An oversimplified example of reconstruction ef-
fort: with 10 dimensions and coordinates in the
range [1, 100], 10010 queries are required in the
reply model (which is easier) to reconstruct the
database completely when grid spacing is 1 (and
thus c =

√
10). An attacker capable of a billion

queries per second would require ca. 3170 years to
complete the database reconstruction. Of course,
database elements representing the rough distri-
bution of elements in the database can be found
much more rapidly using the (adaptive) progressive
scheme.

Whether this is a problem depends on what con-
stitutes a “reconstruction”. Consider the situation
in Figure 9. In the figure, circled database ele-
ments are recovered using queries while others are
not. Note that no assumption about a minimum
distance c is made in the Figure. On the contrary,
it is assumed that the attacker’s choice for c is too
large (which leads to multiple database elements
populating a given Voronoi region).

Although the query grid properly characterizes
the areas where some points are located, it provides
little information about density of points which

may be an important factor. The density is dif-
ficult to recover if the minimum distance between
points in dense clusters is very small.

In the example given, an arbitrary number of
points could be added to cluster of points in the
database without changing the results of the query
sequence.

Figure 9: Recovery density is difficult

The importance of such “density” information
depends on the application; if one is interested in
knowing whether any database element has (ap-
proximately) some attributes, density is not im-
portant. On the other hand, if one is interested
in the number of database elements sharing (ap-
proximately) some attributes, density information
makes a difference.

References

[1] A. Tosun and H. Ferhatosmanoglu. Vulnera-
bilities in Similarity Search Based Systems.
Conference on Information and Knowledge
Management (CIKM 2002).

[2] W. Du and M. Atallah. Protocols for Secure
Remote Database Access with Approximate
Matching. 7th ACM Conference on Com-
puter and Communications Security (ACM-
CCS 2000).

[3] V. Fuller, T. Li, J. Yu and K. Varadhan.
Classless Inter-Domain Routing (CIDR): an

6



Address Assigment and Aggregation Strat-
egy. RFC 1519. Internet Engineering Task
Force, 1993.

[4] P. Srisuresh and K. Egevang. Traditional
IP Network Address Translator (Traditional
NAT). RFC 3022. Internet Engineering Task
Force, 2001.

7


