
T-79.514 Special course on cryptology: Cryptographic

Techniques for Privacy-Preserving Data Mining

Alexey Vyskubov

Abstract

This survey is aimed at reviewing privacy preserv-
ing protocol for ID3 algorithm, described in the ar-
ticle “Privacy preserving data mining” by Yehuda
Lindell and Benny Pinkas. As the survey is sup-
posed to be read also by people who specialises in
data mining not cryptography, the review of needed
cryptographic primitives from the article “Crypto-
graphic techniques for privacy-preserving data min-
ing” by Benny Pinkas is included.

1 Introduction: the setting

We will consider a scenario in which two parties
owning confidential databases wish to run a data
mining algorithm on the union of their databases
without revealing any unnecessary information,
specifically ID3 for building decision tree.

We are interested in distributed scenario, i.e. all
the data is processed by above-mentioned two par-
ties, without any central server or any help of some
third party.

It is obvious that if a data mining algorithm is
run against the union of the databases, and its
output becomes known to one or both parties, it
reveals something about the contents of the other
database. So if we want to build privacy preserving
protocol we have to define what “privacy” is.

Let us consider ideal scenario in which we have
some trusted third party (TTP). In this scenario
both parties (we will call them Alice and Bob) send
their databases to the TTP, who in turn runs data
mining algorithm on them and sends results back
to Alice and Bob. This scenario is ideal: both Alice
and Bob got as little information as possible if they
have to be given results of the algorithm. Our goal
is to build a protocol which will give Alice and Bob
as little information as they get in ideal scenario.

One can imagine a situation when Alice or Bob
is cheating and deviates from prescribing protocol
trying to get more information about other party’s
data. We will not consider this case, supposing that
both parties are honest but curious (semi-honest).
This means that both Alice and Bob will follow the
protocol but they will also try to get as much infor-
mation as possible from what they see during the
protocol run. We also suppose that there is some
way (outside of the protocol) to check that Alice
and Bob are using their real databases during the
calculations (as they can, for example, to substitute
empty set instead of their data).

Good motivation for this is the situation when
someone breaks into Alice’s or Bob’s system after
protocol has been finished and tries to get as much
information as possible from the found data. Of
course, this person cannot modify Alice’s (or Bob’s)
behaviour during the protocol, so what we have is
an attack which is modelled in the case of semi-
honest parties.

2 Introduction: crypto-
graphic results

We will need some “cryptographic building blocks”
for our protocol. We describe them shortly in this
section.

2.1 Oblivious transfer

Oblivious transfer is a basic protocol that is the
main building block of secure computation. We
will need 1-out-of-2 oblivious transfer. This proto-
col involves two parties, sender and receiver. The
sender’s input is a pair (x0, x1) and receiver’s in-
put is σ ∈ {0, 1}. At the end of the protocol the
receiver learns xσ (and nothing else) and the sender

1

learns nothing. In the case of semi-honest adver-
saries there exist simple and efficient protocols for
oblivious transfer.

Idea. One straightforward approach is for the
receiver to generate two random public keys, a key
Pσ whose decryption key he knows, and a key P1−σ

whose decryption key he does not know. The re-
ceiver then sends these two keys to the sender, who
encrypts x0 with P0 and x1 with P1, and sends the
two results to the receiver. The receiver can then
decrypt only xσ.

Oblivious transfer is often the most computation-
ally intensive operation of secure protocols, and is
repeated many times. Each invocation of oblivious
transfer typically requires a constant number of in-
vocations of trapdoor permutations (i.e. public-key
operations, or exponentiations).

2.2 Oblivious polynomial evaluation

Oblivious polynomial evaluation involves a sender
and a receiver. The sender’s input is a polynomial
Q of degree k over some finite field F and the re-
ceiver’s input is an element z ∈ F . We suppose
that the degree k is public.

The protocol is such that the receiver obtains
Q(z) without learning anything else about the poly-
nomial Q, and the sender learns nothing. There is
a protocol for semi-honest case with on overhead of
O(k) computation and O(k |F|) communication.

2.3 Yao’s protocol

We will use another protocol, invented by Yao,
which is a constant-round protocol for privately
computing any probabilistic polynomial-time func-
tion (where the adversary may be either semi-
honest or malicious).

Setting. Denote the parties as Alice (A) and
Bob (B), and denote their respective inputs by x
and y. Let f be the function that they wish to
compute (let us suppose that Bob should learn the
value f(x, y)). It is known that any polynomial-
time function can be expressed as a combinatorial
circuit of polynomial size. The protocol is based on
expressing f as a combinatorial circuit with gates
defined over some fixed base B. For example, B
can consist of all functions g : {0, 1}2 → {0, 1}.
The bits of the input are entered into input wires
and are propagated through the gates.

Encoding the circuit. We suppose that f is
pubic, i.e. circuit wiring for it is known to both par-
ties. Alice starts with “hardwiring” her inputs into
the circuit, generating circuit computing f(x, ·).
She then assigns to each wire i two random (“gar-
bled”) values (W 0

i ,W 1
i) corresponding to values 0

and 1 of the wire. These random values should
be long enough to be used as a keys to a pseudo-
random function (for example, 80–128 bits).

Then for every gate in the circuit Alice prepares
a table Tg. Let i and j will be input wires of g, and
k — output wire. Let F be some (public) pseudo-
random function such that pair of garbled values for
i and j can be used as a key for it. For every pair of
possible (garbled) values of i and j the table should
contain encryption of (garbled) value of output wire
k using F and (garbled) values of i and j as a key.
Every entry in table does not contain garbled input
values but has some label which can be computed
using these values.

The tables enables computation of the garbled
output of g from the garbled inputs of g. Bob,
using garbled values of i and j, may calculate the
correct label in table, then get encrypted garbled
value of k from table and decrypt it, using garbled
values of i and j, but he cannot get any information
about the output of g for any other inputs or about
the actual (non-garbled) inputs.

As pseudo-random functions are usually imple-
mented using private-key primitives such as block
ciphers or hash functions, they are very efficient.

Sending garbled circuit to Bob. Then Alice
sends the wiring of the original circuit, the tables
Tg and tables that translate the garbled values of
the output wires of the circuit to actual 0/1 values.
In this form the representation reveals nothing but
the wiring of the original circuit, and therefore Bob
learns nothing.

Encoding Bob’s input. The tables received by
Bob enable him to calculate f(x, y) from garbled
inputs. Unfortunately, he is not able to convert
his inputs to garbled form, as garbled values kept
secret by Alice. He also is not able to ask Alice
to convert his inputs to garbled form as he wants
to keep his inputs secret. Fortunately, we already
know the solution. Alice and Bob use 1-out-of-2
oblivious transfer for every Bob’s input: Alice is
the sender, her inputs are garbled values for the
given input wire; Bob is the receiver, the value of
his input for the circuit is σ. As a result of oblivious

2

transfer Bob learns only the garbled value of his
input and Alice learns nothing at all.

Computing the circuit. After previous stages
are completed, Bob has enough information to cal-
culate garbled outputs of the circuit and transfer
them to non-garbled values. Overhead of the pro-
tocol involves:

1. Alice and Bob engaging in an oblivious transfer
protocol for every input wire of the circuit.

2. Alice sending to Bob tables of size linear in the
size of the circuit.

3. Bob computing a pseudo-random function a
constant number of times for every gate.

As oblibious transfers can be run in parallel, the
protocol has a constant number of rounds.

More detailed description of tables Tg.
One possible construction of tables Tg follows. Let
F be a publicly known keyed pseudorandom func-
tion with key length n and output length n + 1.
For each wire, choose uniformly at random r0, r1 ∈
{0, 1}n and b ∈ {0, 1}. The encrypted signal cor-
responding to 0 is (r0, b) and the encrypted signal
corresponding to 1 is (r1, b ⊕ 1). Consider a gate
g : {0, 1}2 → {0, 1} in the circuit. Let the en-
crypted input signals be (r0, a), (r1, a⊕1), (s0, b) and
(s1, b ⊕ 1, and let the encrypted output signals be
t0, c) and (t1, c⊕1), where (r0, a), (s0, b) and (t0, c)
correspond to the value 0. The table Tg holds four
entries Tg[0, 0], . . . , Tg[1, 1]. If g(α, β) = γ, the cor-
responding entry in the table is given by

Tg[x, y] = Frα
(x)⊕ Fsβ

(y)⊕ (tγ , z) ,

where x = α ⊕ a, y = β ⊕ b and z = γ ⊕ c. The
encrypted circuit consists of all the tables Tg. Party
A sends the encrypted circuit, the encrypted signal,
corresponding to its inputs and the correspondence
between the encrypted signals and real values of the
output wires to B. If party B knows the encrypted
input signals (r, a) and (s.b) for a gate g, the en-
crypted output signal can be computed as

(t, c) = Tg[a, b]⊕ Fr(a)⊕ Fs(b) .

This description was proposed by Johan Wallén.

3 Introduction: ID3 algo-
rithm

The aim of classification problem is to classify
transactions into one of discrete set of possible
categories. The input is a structured database
comprised of attribute-value pairs. Each row of
database is a transaction and each column is an
attribute taking on different values. One of the at-
tributes in the database is designated as the class
attribute; the set of possible values for this at-
tribute being the classes. We wish to predict the
class of a transaction by viewing only the non-class
attributes. This can thus be used to predict the
class of new transactions for which the class is un-
known.

The ID3 algorithm solves classification problem
by building decision tree. A decision tree is a rooted
tree containing nodes and edges. Each internal
node is a test node and corresponds to an attribute;
the edges leaving a node correspond to the possible
values taken on by that attribute. The leaves of
the tree contain the expected class value for trans-
actions matching the path from root to that leaf.

We will notate a set of attributes as R, class at-
tribute as C and a set of transactions as T .

ID3 algorithm is recursive. At the root of the
tree, each attribute is tested to determine how good
it alone classifies the transactions. The “best” at-
tribute is then chosen and allows to partition the
remaining transactions by it. After partitioning is
done, the same scheme is applied to every partition.
The algorithm stops when partition in considera-
tion belongs to one class.

Obviously, ID3 is easy to distribute given a pro-
tocol for finding the “best” attribute. The main
question is how to choose the “best” attribute. It
is pretty obvious that the algorithm on every step
should try to minimise the information of class at-
tribute; so we search for minimal entropy in the
following way.

Let c1, . . . , cl be the class attribute values. Let
T (ci) be the set of transactions with class ci. Then
the information needed to identify the class of a
transaction in T is the entropy, given by:

HC(T) =
l∑

i=1

−|T (ci)|
|T |

log
|T (ci)|
|T |

Let A be a non-class attribute. Then the condi-

3

tional information of T given A is given by:

HC(T | A) =
m∑

j=1

|T (aj)|
|T |

HC (T (aj)),

if A may have values a1, . . . , am.
Now we can define information gain for A as:

Gain(A) = HC(T)−HC(T | A).

So the attribute with maximum Gain is chosen at
every step.

4 The ID3δ approximation

The privacy-preserving algorithm we are going to
discuss cannot implement ID3 algorithm. Instead
it implements ID3 with some precision. It means
if at some step there are two attributes A1 and A2

such that

|Gain(A1)−Gain(A2)| < δ

for some predefined small value δ > 0 then any of
them may be chosen as “best” one.

We will call this “approximation” ID3δ. The
value of δ influences efficiency but only by a log-
arithmic factor.

5 Finding the attribute with
maximal gain: part one

The only difficult step in privacy-preserving ID3δ

computation is finding the attribute with maximal
gain. This step can be stated as: Find the attribute
A which minimises the conditional information of
T given A, HC(T | A). If an attribute A has m
possible values a1, . . . , am and a class attribute C
has l possible values c1, . . . , cl then

HC(T | A) =
m∑

j=1

|T (aj)|
|T |

HC(T (aj))

=
1
|T |

m∑
j=1

|T (aj)|
l∑

i=1

−|T (aj , ci)|
|T (aj)|

log
|T (aj , ci)|
|T (aj)|

= − 1
|T |

m∑
j=1

l∑
i=1

|T (aj , cj)| log |T (aj , cj)|+

1
|T |

m∑
j=1

|T (aj)| log |T (aj)|.

Now if the database T is split between Alice and
Bob in parts T1 and T2 it is easy to see, that T (·) =
T1(·)+T2(·) (it just a number of transactions which
have given attribute value).

We do not care about actual values of the gains
as we just want to compare them so it is possible
to omit 1/|T | and use natural logarithms instead of
logarithms to the base 2. Therefore the expressions
that should be compared (the gains) can be written
as a sum of expressions of the form (v1 +v2) ln(v1 +
v2).

6 Computing x ln x

Let Alice and Bob have values v1 and v2 as inputs.
We suppose that there is some large enough field
F (we will not discuss how big it should be; details
are available in the original paper by Lindell and
Pinkas). The goal of the protocol: Alice obtains w1

and Bob obtains w2 such that:

1. w1 + w2 = (v1 + v2) ln(v1 + v2)mod|F|. ((v1 +
v2) ln(v1 + v2) is rounded to an integer.)

2. w1 and w2 are uniformly distributed in F when
viewed independently of one another.

It is not possible to use directly Yao’s method
of garbled circuits as the size of circuit is of the
order of the multiplication of the size of its inputs
which is very ineffective. It is possible to build
a solution which requires only a linear size circuit
(the multiplication circuit is quadratic in the input
size).

6.1 Computing shares of ln x

We now show how to compute random shares u1

and u2 such that u1 + u2 = ln x.
It is well-known that

ln(1 + ε) =
∞∑

i=1

(−1)i−1εi

i

for −1 < ε < 1. It is known that if one take only
first k elements of the series the error shrinks ex-
ponentially as k grows.

4

Now given an input x, let 2n be the power of 2
which is closest to x. Then x = 2n(1 + ε) and

lnx = n ln 2 + ε− ε2

2
+

ε3

3
− ε4

4
+ . . .

For our purpose x will be the number of transac-
tions so n < log |T |. Let us choose some large N >
log |T |. Then it is possible to built small circuit
that receives v1 and v2 as inputs and output shares
of 2Nn ln 2 and 2Nε. To create shares the first
party inputs in circuit random values α1 and β1;
the circuit actually calculates α2 = 2Nn ln 2 − α1

and β2 = 2Nε− β1.
The parties therefore have shares α1, β1, α2, β2

such that
α1 + α2 = ε2N

and
β1 + β2 = 2Nn ln 2.

The first party constructs the polynomial

Q(x) = lcm(2, . . . , k)
k∑

i=1

(−1)i−1

2(N(i−1))

(α1 + x)i

i
− w1,

where w1 is a random value. Oblivious polynomial
evaluation allows the second party to obtain w2 =
Q(α2) and w1 + w2 is an approximation of ln ε up
to multiplicative factor lcm(2, . . . , k)2N .

Let ui = wi + lcm(2, . . . , k)βi. Then

u1+u2 ≈ lcm(2, . . . , k)2N ln ε+lcm(2, . . . , k)2Nn ln 2 =

lcm(2, . . . , k)2N lnx.

So we calculated shares ln(v1 + v2) up to multi-
plicative factor which is public and can be removed
(but it is not important as we are interested only
in comparing values).

6.2 Back to x ln x

So now Alice and Bob have v1, v2, u1, u2 such that
v1 + v2 = x and u1 + u2 ≈ lnx and they are in-
terested in getting shares of (v1 + v2)(u1 + u2). To
achieve this Alice can define two linear polynomi-
als P1(y) = v1y + r1 and P2(y) = u1y + r2 where
r1, r2 are random. Bob runs oblivious polynomial
evaluation to obtain P1(u2) and P2(v2) and sets his
share to

P1(u2) + P2(v2) + u2v2 =

v1u2 + r1 + u1v2 + r2 + u2v2 =

(v1 + v2)(u1 + u2)− v1u1 + r1 + r2.

Alice sets her share to be v1u1 − r1 − r2.

7 Finding the attribute with
maximal gain: part two

Given the above protocol for privately computing
shares of x lnx, the attribute with maximum in-
formation gain can be determined. For this after
getting shares for information gains for every at-
tribute A, the shares are input into a small circuit
which outputs the appropriate attribute.

8 Conclusion

In this survey we shortly described privacy-
preserving algorithm for computing ID3 (with some
predefined precision δ) and cryptographic primi-
tives used to construct it. We omitted the follow-
ing points (discussion of which can be found in the
original paper by Lindell and Pinkas):

• Formal definition of privacy.

• All calculations because of cryptographic rea-
sons should be done in “large enough” field F .
We do not discuss here how large is it.

• We do not provide formal definitions of de-
scribed protocols as they can be found in the
original paper.

• We do not provide formal proofs of privacy;
in the most cases it is quite intuitive that de-
scribed protocols reveal no additional informa-
tion during their execution.

• We do not calculate how large should be pa-
rameter k to achieve the given precision δ.

9 Used articles

Yehuda Lindell and Benny Pinkas, “Privacy pre-
serving data mining”.

Benny Pinkas, “Cryptographic techniques for
privacy-preserving data mining”.

5

