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1 Introduction

This survey is a review of randomized response
techniques for privacy-preserving data mining as
described in the papers ”Using Randomized Re-
sponse Techniques for Privacy-Preserving Data
Mining” by W. Du, and Z. Zhan [1] and ”Privacy
Preserving Mining of Association Rule” by A. Ev-
fimievski, R. Srikant, R. Agrawal, and J. Gehrke.s
[2].

There are two different approaches presented in
the papers. One for the association rule mining
and one for the data classification.

It is really easy to build up a survey utilizing
Internet. Because of the privacy issues the accu-
racy of the collected data are not as good as it
could be. People try to protect themselves from
email spam by lying to the surveys.

The basic idea of the randomized response is
to randomize the answers so that the true value
cannot be estimated with sufficient precision but
the aggregate information can still be utilized.

Randomized Response Technique is shortly
presented in Section 2. Association rule mining
based on [2] is reviewed in Section 3. In Section
4 the decision tree building is described based on
[2]. In Section 5 short summary is presented.

2 Randomized Responses

Both papers are based on the Randomized response
technique developed by Warner in 1965 [5]. The
technique tries to solve the problem where respon-

der has attribute A but he dares not share it out
to the interviewer.

The technique consists of two models called
Related-Question Model and Unrelated-Question
Model. Only the first one is presented in the pa-
pers. In the Related-Question Model two questions
are asked from the responder instead of one. The
questions are related so that the answers are oppo-
site to each other. Questions can be:

1. I have the sensitive attribute A

2. I do not have the sensitive attribute A

The Responder uses a randomizing device to de-
cide which question to answer without letting the
interviewer to know which question is answered.
Let’s say that the probability of choosing the first
question is θ and the second one is 1− θ.

To estimate the proportion of people who have
the attribute A, we can set the following equations

P
∗(A = yes) = P (A = yes) · θ + P (A = no) · (1 − θ) (1)

P
∗(A = no) = P (A = no) · θ + P (A = yes) · (1 − θ) (2)

where P ∗(A = yes) is the proportion of the ’yes’
obtained from the disguised data. P (A = yes) is
the estimated proportion of the ’yes’. By solving
the above equations we can get P (A = yes) and
P (A = no) in the cases where θ 6= 1/2. If θ = 1/2
the Unrelated-Question Model can be used.
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3 Association Rule Mining

3.1 Uniform Randomization

Uniform Randomization is presented by Ev-
fimievski et al. [2] as a generalization of Warner’s
idea. In this generalized form the responder is
not answering a question but sending a transac-
tion. Before sending a transaction to the server,
the responder takes each item and with probability
p replaces it by a new one not originally present in
this transaction.

For large values of p, most of the items in most
randomized transactions will be ’false’ meaning
that they are not from the original transaction.
However, if there are enough clients and transac-
tions, then frequent itemsets will still be ’visible’.

Uniform Randomization has its problems. For
instance for a 3-itemset it is more likely that one or
two items are changed than all three. If we have a 3-
itemset that occurred seldom, after randomization
it is even more unlike to occur even once. Then
every time we see it in a randomized transaction
we are quite sure that at least one item from this
item set is ’true’. In this case we can say that a
privacy breach has occurred.

Example 3.1 With p = 80% a 3-itemset that orig-
inally occurred in 1% transactions will occur in
about 1% · (0.2)3 = 0.008% transactions. If there is
10 000 possible items, the probability that 10 ran-
domly inserted items contain a given 3-itemset is
less than 10−7%.

3.2 Privacy Breaches

A privacy breach is a situation when, for some
clients, the disclosure of its randomized private in-
formation to the server reveals that a certain prop-
erty of unrandomized private information holds
with high probability.

Let’s have randomization operator R that ran-
domly transforms a sequence of N transactions (T )
into a (usually) different sequence of N transactions
(T ′). ti is the i-th transaction in T and t′i is the
i-th transaction in randomized sequence T ′.

Definition 3.2 We say that item set A causes a
privacy breach of level b if some item a ∈ A and
for some i ∈ 1...N we have P [a ∈ ti|A ⊂ t′i] ≥ p

Evfimievski et al. focus on the controlling pri-
vacy breaches given by above definition 3.2. Other
information obtained from the randomization is ig-
nored like the missing items and the size of the
randomized transactions. Also all extra informa-
tion the server might know about the client are
skipped.

The problem with Definition 3.2 is that we have
to randomize the data before we can calculate the
privacy breach. If we select ’over safe’ randomiza-
tion parameters we might not have enough data to
reach sufficient accuracy.

One way to find out a compromise between pri-
vacy and accuracy is to construct a situation that
is pessimistic enough. Evfimievski et al. propose
the situation when the item set and its subsets are
frequent.

3.3 Cut-and-paste Randomization

Cut-and-paste randomization is an implementation
of Uniform Randomization mentioned in Section
3.1. It is used to scramble the data set for the ex-
periments presented at the section 3.6. The method
is defined below:

Definition 3.3 A cut-and-paste randomization
operator is a special case of select-a-size operator
(which is presented on the paper [2]). For each
input transaction size m, it has two parameters:
pm ∈ (0, 1) (randomization level) and an integer
Km > 0 (the cut-off ). The operator takes each in-
put transaction ti independently and proceeds as
follows to obtain transaction t′i(here m = |ti|):

1. The operator chooses an integer j uniformly at
random between 0 and Kmj; if j > m it sets
j = m

2. The operator selects j items out of ti uniformly
at random (without replacement). These
items are placed into t′i

3. Each other item (including the rest of ti) is
placed into t′i with probability pm, indepen-
dently.

3.4 Support Recovery

Suppose we have a set I of n items: I =
{a1, a2, ..., an}. Let T be a sequence of N trans-
actions T = (t1, t2, ..., tN ) where each transaction
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ti is a subset of I. Let A be some subset of items (
that is, A ⊆ I).

Definition 3.4 The fraction of the transactions in
T that have intersection with A of size l among all
transactions in T is called partial support of A for
intersection size l:

suppT
l (A) :=

#{t ∈ T |#(A ∩ t) = l}
N

(3)

where support of A is suppT (A) = suppT
k (A) for

k = |A|.

Definition 3.5 Suppose that our randomiza-
tion operator is both per-transaction and item-
invariant. Consider a transaction t of size m and
an item set A ⊂ I of size k. After randomization,
transaction t becomes t’. We define

pm
k [l← l′] = p[l← l′] :=

P [#(t′ ∩A) = l′|#(t ∩A) = l]. (4)

where both l and l′ must be integers in 0, 1, ...k.

Let all transactions in T have the same size mi.
(If this is not so, we have to handle each transac-
tion size separately.) Let define following arrays for
partial supports:

~s := (s0, s1, ..., sk)T ,
~s′ := (s′0, s

′
1, ..., s

′
k)T

According the proof on the paper [2] the expected
value of the partial support of the scrambled data
is

E~s′ = P · ~s (5)

where P is the (k + 1) × (k + 1) matrix with
elements P(l′l) = p[l← l′].

Denote Q = P−1 (assume that it exists) and
solve the vector vecs.

~s = Q ·E~s′ (6)

We have thus obtained an unbiased estimator for
the original partial supports given randomized par-
tial supports:

~sest := Q · ~s′ (7)

The k-th coordinate (s̃)of the ~sest is in the special
interest because it can be use as an estimate of the

support s of the item set A in T . Denote q[l →
l′] := Qll′ .

s̃ =

kX
l′=0

s′
l′ · q[k ← l′] (8)

There are also formulas for variance and the un-
biased estimator of variance. Detailed proof can be
found from the paper [2].

V ars̃ =
1

N

kX
l=0

sl(
kX

l′=0

p[l → l
′]q[k ← l

′]2 − δl=k) (9)

(V ars̃)est =
1

N

kX
l′=0

s
′
l′ (q[k → l

′]2 − q[k ← l
′]) (10)

3.5 Discovering Associations

The associations are discovered by using the value
of the estimated support. The basic idea of the
discovery is to go through all item sets and select
them whose support is above smin. The algorithm
used is modified Apriori algorithm [3]:

1. Let k = 1, let ’candidate sets’ be all single-item
sets. Repeat the following until k is too large
for support recovery (or until no candidate sets
are left):

(a) Read the randomized data file and com-
pute the supports of all candidate sets,
separately for each unrandomized trans-
action size.

(b) Recover the predicted supports and sig-
mas for the candidate sets from the equa-
tions 8,10.

(c) Discard every candidate set whose sup-
port is below its candidate limits. A good
value for the candidate limit is smin − σ.

(d) Save for the output only those candidate
sets whose predicted support is at least
smin.

(e) Form all possible (k + 1)-item sets such
that all their k-subsets are among the re-
maining candidates. Let these item sets
be the new candidate sets.

(f) Let k = k + 1.

2. Output all the saved item sets.
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3.6 Experiments of Association Dis-
covery

The association discovery is experimented with two
’real life’ data sets. Because it is not possible
to make long transactions breach-safe and still do
some data mining they were removed from the data
sets. Cut-and-paste randomization were used with
the cut-off of 7. The privacy breach level is 50%.

The soccer data set is generated from the click-
stream log of the 1998 world cup web site. There
were 6 525 879 transactions after removing all
transactions of size ≥ 10.

The mail-order data set is from the mail order
company and consists of items ordered by a
customer in a single mail order. Originally there
were 2.9 million transactions and 15,836 items.
But only a few item sets had reasonable high
support like there were only two 2-itemsets with
support higher than 0.2%. The situation was
corrected by replacing all items by their parents in
the taxonomy. After that the number of items was
reduced to 96. Also all transactions of size ≥ 8
were removed.

The experiment shows that the estimation of
the support works quite well. There were only
comparatively few false positives(item sets wrongly
included into the output) and even fewer false
drops (item sets wrongly omitted).

4 Classification of Disguise
Data

Classification is one of the forms of data analysis
that can be used to extract models describing im-
portant data classes or predict future data.

Classification is a two-step process:

1. A model is built from the input of training data
set which is composed of data tuples described
by attributes. Each tuple is assumed to belong
to a predefined class described by one of the
attributes, called the class label attribute.

2. The predictive accuracy of the model (or clas-
sifier) is estimated. The estimation is usually
done by classifying a test data set (that is not
used for training) and comparing the results to
the class labels.

Du et al. provide a classification method for dis-
guised data. The randomization technique is de-
scribed in Section 4.1. The step one of the classifi-
cation method is described in Section 4.2. And the
step two in Section 4.3.

4.1 Multivariate Randomized Re-
sponse

Multivariate Randomized Response presented by
W. Du et al. [1] extends the randomized response
technique so that instead of one question a set of
questions is presented to the responder. The re-
sponder is supposed to either answer all the ques-
tions truthfully (with probability θ) or lie to all of
them (with probability 1− θ).

There is also other solution for questions that
contain multiple questions [6]. According Du et
al. the solution presented is not efficient enough to
be extended to data mining. That’s why the new
method is proposed.

Suppose that there are N attributes and the data
mining is base on these. Attributes are A1,A2,..AN .
Let E represent any logical expression based on
those attributes. Let P ∗(E) be the proportion of
the records in the whole disguised data set that sat-
isfy E = true. Let P (E) be the proportion of the
records in the whole undisguised data set fulfilling
the expression.

By using the randomized response technique
with Related-Question Model, we can get the fol-
lowing equations.

P ∗(E) = P (E) · θ + P (E) · (1− θ) (11)
P ∗(E) = P (E) · θ + P (E) · (1− θ) (12)

where E is the complement of E, where each at-
tribute separately is given a complement value. An
example of E and E:

E = (A1 = 1) ∩ (A2 = 1) ∩ (A3 = 0)
E = (A1 = 0) ∩ (A2 = 0) ∩ (A3 = 1)

4.2 Modified ID3 algorithm

In the paper [1] modified ID3 algorithm is presented
to build decision tree based on disguised data. The
difference to the original ID3 algorithm [4] is how
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the information gain is calculated and especially
how the P (E) is calculated.

The attribute with the highest gain is selected
to partition the training sample S. When there
is only leaf-nodes left, the partitioning is stopped.
The information gain for any candidate attribute
Ak if it used to partition S is:

Gain(S, Ak) = Entropy(S) −
X

v∈Ak

(
|Sv|

|S|
Entropy(Sv)) (13)

where v represents any possible value of attribute
Ak, Sv is the subset of S for which attribute Ak has
value v, |Sv| is the number of elements in Sv, |S| is
the number of elements in S.

The entropy of S is

Entropy(S) = −
mX

j=i

Qj log Qj (14)

where Qj is the relative frequency of class j in S
and m is the number of classes in the training set.

Because we are using disguised data we
have to use estimates for |S|, Entropy(S) and
Entropy(Sv). Du et al. present an example how to
calculate the estimates in practice.

Example 4.1 We want to know the information
gain for a node V that satisfies Ai = 0 and Aj = 1.
Let S be the training data set consisting of the
samples that belong to node V .

To compute |S|, the number of elements in S, let

E = (Ai = 1) ∩ (Aj = 0)

E = (Ai = 0) ∩ (Aj = 1)

We can compute P (E) as mentioned previously.
Hence |S| = P (E) ∗ n, where n is the number of
records in the whole training set.

It is assumed that the class label is binary. Class
label can be randomized also. Then the comple-
mentary class is used for the randomized data set.
Let

Ec = (Ai = 1) ∩ (Aj = 1) ∩ (Class = 0)

Ec = (Ai = 0) ∩ (Aj = 0) ∩ (Class = 1)

We can compute P (Ec) directly from P ∗(Ec) and
P ∗(Ec). Therefore, Q0 = P (Ec)∗n

|S| , Q1 = 1−Q0 and

Entropy(S) can be computed. Note that results for
P (E) and P (Ec) are different.

We still need values for |SAk=1|, |SAk=0|,
Entropy(SAk=0) and Entropy(SAk=1). These can
be similarly computed. For example, |SAk=1| can
be computed by letting

E = (Ai = 1) ∩ (Aj = 1) ∩ (Ak = 1)

E = (Ai = 0) ∩ (Aj = 0) ∩ (Ak = 0)

Then we solve P (E) using P ∗(E) and P ∗(E),
and getting |SAk=1| = P (E) ∗ n.

4.3 Accuracy score

To avoid over-fitting in decision tree building, data
set for testing is needed. This data set is used to
determine how accurate the decision tree is. For
disguised data this is not a trivial task.

Du et al. offer an example how the accuracy
score can be calculated in their situation.

Example 4.2 Assume the number of attributes is
5 and the probability θ = 0.7. One of the test
records is 01101. It and its’ complement 10010 are
fed to the decision tree. If both prediction results
are correct (incorrect) we can make an accurate
conclusion about the testing results. On other sit-
uation we can make a conclusion with 0.7 certain-
ties.

If number of testing data is large we can calculate
P (correct) by solving following equations.

P
∗(correct) = P (correct) · θ + P (correct) · (1 − θ) (15)

P
∗(correct) = P (correct) · θ + P (correct) · (1 − θ) (16)

where P ∗(correct) is the proportion of correct pre-
dictions from testing data set S. P

∗
(correct) is the

proportion of correct predictions from testing data
set S. P (correct) is the proportion of correct pre-
dictions from testing data set U. P (correct) is the
proportion of correct predictions from testing data
set U .

S is the disguised data set and S is calculated
from it by reversing the values from 0 to 1 and 1 to
0. U is the non-existing undisguised data set and
U is non-existing undisguised reversed data set
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4.4 Classification Experiments

The data set used for experiment was from UCI
Machine Learning Repository. It contains 48842
instances with 14 attributes ( 6 continues and 8
nominal) and a label describing the salary level.
Prediction task is to determine whether a person’s
income exceeds $50k/year. First 1000 instances are
used in this experiment.

First the data was binarized so that the values
of each attribute are split from the median point.
After that the data was divided to training data
set and testing data set. The testing data set was
not used for tree pruning during the tree building
phase.

Data set was randomized using θ = 0.1, 0.2,
0.3, 0.4, 0.45, 0.51, 0.55, 0.6, 0.7, 0.8, 0.9, 1.0.
Randomization was done 50 times for every value.
For every randomization the decision tree was
build up and accuracy score calculated. For every
θ the mean and the variance of the accuracy score
was calculated.

The experiment shows that with θ in ranges
[0, 0.4] and [0.6, 1] the method can still achieve
very high accuracy. When θ is close to 0.5 the
data for a single attribute become uniformly
distributed. On the other hand, when θ=0, all true
information about the original data set is revealed.
When θ is moving toward 0.5 the privacy level is
enhancing.

5 Conclusions

Both papers are based on randomized response.
Evfimievski et al. [2] propose an approach to do
privacy preserving association rule mining so that
each attribute is independently disguised. They de-
fine 10 as a maximum size for the attribute vector.
Longer vectors, when disguised properly, cannot be
utilized for data mining. Attributes contain cate-
gorical data such as books customer has bought.

Du et al. [1] propose an approach to do privacy
preserving classification. Their randomization
function isn’t item-invariant and they do not offer
any maximum size for the attribute vector. The
attributes are assumed to be binary valued.

In both approaches the randomization is done

before the data are sent to the server. The
transaction protocol isn’t defined. Du et al. does
not randomize the size of the attribute vector.

The randomization method of Evfimievski et al.
is suitable for short transactions of categorical data
such as the books bought together.

The randomization method of Du et al. is
suitable for fixed size attribute vectors such as
demographic profiles. They offer methods for
binary data but in the future they are going to
extend the solution to non binary data also.

The proofing of the equations and the de-
tailed description of the experiments are scoped
out of this survey. The support recovery (3.4) and
the calculation of the information gain (4.2) are
presented more detailed as an example.
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