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Abstract

In this note, we briefly review the manuscript
“Cryptographic Randomized Response Tech-
niques” by Ambainis, Jakobsson and Lipmaa.
Cryptographic details are omitted in this review,
and instead we focus on motivating the approach
taken in the paper and on giving necessary
background information for non-cryptographers.

1 Introduction

The paper discusses a setting where privacy is a
precondition for the exchange of information. Such
settings are encountered in e.g. elections and polls,
where the respondent is only willing to reveal her
personal information to a system if it can be guar-
anteed that it is not revealed to anybody. In an
election, the votes given by the respondents are
typically stored so that no connection can be made
between a specific vote and a respondent. Also,
the elections are typically organized by authorities
whom the respondents trust, and a decision to par-
ticipate in an election is not affected by concerns
of privacy. However, the situation is quite different
in a poll. The respondent typically has no specific
reason to trust to the organizing party; the practi-
cal situation involves interaction directly between
the respondent and the interviewer; the number
of respondents may be significantly smaller than
in an election, making it easier to draw conclu-
sions regarding individual respondents; statistical
estimates instead of exact counts are both suffi-
cient and desirable as poll results. For these rea-
sons, designing privacy preserving poll systems is
highly motivated, although a large literature exists
on election systems.

2 Randomized response tech-

niques

The approach to privacy preservation taken in the
paper is that of randomized response techniques
(RRT). In the original RRT, the interviewer has no
access to the actual opinion or private information
given by the respondent. It is assumed that the
question is posed as one for which a simple “yes/no”
answer suffices, such as “Do you belong to a stig-
matizing group A?”. The respondent is given e.g.
a biased coin and asked to tell the truth if the coin
gives heads, and lie otherwise. (The coin is biased
in such a way that the probability pct of telling
the truth is larger than 1/2.) The interviewer, of
course, cannot see the result of the coin toss, but by
knowing pct he can later estimate the proportion of
the population belonging to group A; this is often
sufficient in a poll. Let πA be the true proportion.
It is estimated as follows. The a prior probability
of answering “yes” is

pyes = pct · πA + (1− pct)(1− πA) (1)

and its unbiased estimator is p̂yes = L/N where L
respondents out of a total of N respondents answer
“yes”. Then the unbiased estimator for πA is

π̂A =
pct − 1

2pct − 1
+

L

N
· 1

2pct − 1
. (2)

We will say that a respondent is of type t = 1 if she
belongs to group A, and t = 0 otherwise.

Two alternative RRTs are also described in the
paper. In the innocuous question method, the re-
spondent is given two questions: the one of interest
in the poll, and another completely irrelevant that
does not include any privacy concerns. The form
of possible answers to both questions must be the
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same, e.g. “yes/no”. The respondent chooses be-
tween the two questions by a toss of a biased coin.
The second alternative, polychtomous RRT, in-
volves a question with multiple mutually exclusive
answers A1, . . . , Am, some of which are harmless
and some of which the respondent typically wants
to keep as a secret. A simple, but not only, solution
is to ask the respondent to answer truthfully with
a probability pct and answer Ai with a probability
pi, where all probabilities pct, p1, . . . , pm are fixed
in advance and sum to 1.

There is an inherent problem with the pure RRT.
A respondent may be willing to cheat by not ly-
ing even if asked to (or similarly, not telling the
truth when asked to), or by not answering certain
questions. There might be a philosophical reason
to this: a human being does not want to belong
to the minority. If a respondent learns (based on
other people’s answers) that she will belong to the
minority, she might be unwilling to reveal that, as
minorities are sometimes regarded as stigmatizing.
In an election, people are often willing to vote the
candidate who is leading the polls. Refusing to lie
means that the probability of telling the truth is
different from pct, which biases the estimation of
πA. Also, refusing to answer biases the estimate.
It would be therefore valuable to have a procedure
in which a respondent does not get any private in-
formation from the interviewer (such as the per-
centage of πA among other respondents, or the es-
timate of the answer computed by the interviewer
for this particular respondent), or a procedure in
which a respondent does not get extra benefit from
not obeying pct (such as biasing the estimate of
πA). For these reasons, the authors present crypto-
graphic versions of the RRT. We will discuss them
in the following section.

3 Cryptographic RRT

3.1 Privacy

The authors present Cryptographic RRT (CRRT)
whose procedure (1) guarantees the privacy of the
respondent, and (2) guarantees that the respon-
dent cannot determine the outcome of the protocol
before the end (otherwise she could refuse to an-
swer to certain questions and thus bias the poll);
so (2) can be interpreted as the privacy of the

interviewer. Also, the procedure should be cor-
rect, meaning that in the end of the protocol, I
either halts or receives his private output. The pa-
per presents both strongly secure protocols (which
are privacy-preserving for both parties and correct)
and weakly secure (which are privacy-preserving for
the respondent only and correct, but are simpler to
understand and construct).

A basic requirement is that at the end of the
protocol, the participants will have no information
about the private inputs and outputs of their part-
ners, except for what can be deduced from their
own private inputs and outputs. In particular, the
interviewer I will not learn the type tR of the re-
spondent R, and similarly R will not learn the out-
put rR computed by I.

As seen above, we denote by rR ∈ {0, 1} the out-
put that I computes for R. It is similar to the
“yes” answer in the basic RRT discussed in the be-
ginning of Section 2 of this survey: the interviewer
estimates πA using Formula (2) where L is now the
number of rR = 1 values in the population.

The authors also discuss related cryptographic
work (biased coin flipping, binary symmetric chan-
nels, oblibious transfer, oblivious function evalua-
tion, private information retrieval, data randomiza-
tion etc.) which we omit in this survey and in the
presentation.

3.2 Background for non-

cryptographers

As the audience of the seminar includes a few non-
cryptographers, some necessary background for the
cryptographic methods presented in the paper is
given here. (Taken from Goldwasser and Bellare:
Lecture Notes on Cryptography, link available from
the course web page)

A group is a set G together with some operation
∗ which obeys

1. If a, b ∈ G then a ∗ b ∈ G

2. (a ∗ b) ∗ c = a ∗ (b ∗ c)

3. There is an identity element I such that
I ∗ a = a ∗ I = a ∀a ∈ G

4. Every a ∈ G has an inverse a−1 such that
a ∗ a−1 = a−1 ∗ a = I

2



For example, for integers under addition, I = 0 and
a−1 = −a. For real numbers under multiplication,
I = 1 and a−1 = 1/a.

A subset S ⊆ G is called a subgroup if it is a
group in its own right, under the same operation ∗.

We will use Zp which is the set of integers modulo
an integer p: Zp = {0, . . . , p − 1}. In other words,
if we divide any integer by p then the remainder is
in Zp.

Let G be a group and g ∈ G. Let 〈g〉 = {gi : i ≥
0} be the set of the powers of g. We say that g is
a generator of G if 〈g〉 = G.

For example, consider G = {1, 2, 4, 5, 7, 8} ⊂ Z9.
2 is a generator of G:
〈2〉 = {20, 21, 22, 23, 24, 25, . . .} = {1, 2, 4, 8, 7, 5}

If g is a generator, then for any y ∈ G there is a
unique i ∈ {0, . . . , m− 1} (where m is the number
of elements in G) such that gi = y. This i equals
logg(y) and takes exponential time to find.

3.3 Protocol 1

Protocol 1 contains a variant of the Naor-Pinkas
1-out-of-n oblivious transfer and Pedersen’s com-
mitment scheme as subroutines. The protocol is
roughly as follows. First some basic properties:

• p and q are primes such that q divides p − 1.
The public key consists of g and h that are two
generators of G that is a unique subgroup of
Zp, of size q.

• The encryption is based on the fact that even
if g and h are known, their mutual logarithms
logg h and logh g are hard to compute in Zp.
Thus gµhv is hard to invert (here µ is the mes-
sage, and v is picked at random from Zq).

• n ∈ N is the size of an imaginary database that
is constructed in the protocol, and ` ∈ N such
that pct = `/n > 1/2.

Then the precomputation step:

• The respondentR prepares n random bits µi ∈
{0, 1} for i = 1, . . . , n, such that

∑
i µi = ` if

her type is t = 1 and
∑

i µi = n − ` if t = 0.
(Thus pct = `/n is the probability that a ran-
domly picked bit equals her type). Addition-
ally, she sets µn+1 ← t− 1.

• The interviewer I chooses σ ∈ {1, . . . , n}

And the interactive step:

• I picks a and b at random from Zq and sends
ga, gb and gab−σ+1 to R.

• R repeats the following for all i ∈ {1, . . . , n}:
Pick ri and si at random from Zq. (This
ri is not related to rR, I’s private output.)
Compute wi ← gri(ga)si = gri+asi and vi ←
(gb)ri(gab−σ+1gi−1)si = g(ri+asi)b+(i−σ)si , and
use vi as a key to encrypt the answer µi to yi

using yi ← gµihvi . Send wi and yi to I.

• I computes wb
σ (note that when i = σ above,

then the key vi is wb
i ) and thus gets the key

vσ to decrypt yσ by first computing gµσ ←
yσ/hwb

σ and then computing µσ from that.
(This is the only answer that I can decrypt.
With probability pct, this is 1, and he will con-
clude rR = 1; with probability 1− pct, this is
0 and rR = 0.)

• R must now prove that she created a correct
database {µ1, . . . , µn+1}. This can be done
very efficiently by using noninteractive zero-
knowledge arguments (details are seen in the
paper).

• I verifies the arguments, and halts if the veri-
fication fails.

3.4 Protocol 2

Protocol 2 is based on an idea that if µ, ν ∈
{0, 1, . . . , n−1} and i ∈ {0, 1, . . . , d−1} and ` ∈ N,
then at least one of the integers µ + η + i` mod n
must be in the interval [0, `− 1] and at least one of
them must be in [`, n− 1].

The basic properties to start with are quite simi-
lar to Protocol 1, except that pct = `/n might need
to have a very specific value, and d = d1/(1−pct)e.

The precomputation step is

• R chooses a random µ ∈ {0, 1, . . . , n− 1}.

• I chooses random ν ∈ {0, 1, . . . , n − 1} and
σ ∈ {0, 1, . . . , d− 1}.

The interactive step is

• R commits to t and µ and sends the commit-
ments to I.
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• I chooses a random ρ and commits to σ by
setting y ← CK(σ; ρ). He sends nu and y toR,
together with a zero-knowledge argument that
y is a commitment of some i ∈ {0, 1, . . . , d−1}.

• R verifies the argument. She computes for all
i ∈ {0, 1, . . . , d−1} a value µ′

i such that µ′

i = t
if and only if (µ + ν + i` mod n) < `. She
signs y and sends her signature together with
all µ′

i and a zero-knowledge argument

• I sets rR ← µ′
σ, accompanied with R’s signa-

ture on the commitment, so that both R and
third parties can verify it.

3.5 Quantum cryptographic RRT

The authors also present a quantum cryptographic
RRT protocol which allows using pct that is not a
rational number, and which provides a relaxed form
of information-theoretic security for both parties.
Lower bounds are given that restrict the benefit
that a cheater can obtain: even if R is dishonest,
her vote only counts as ≤

√
2 votes; and if I gets to

know R’s private input with some probability, he is
also caught cheating with another probability. The
authors claim that the protocol can implemented
using contemporary technology and no non-existing
quantum technology is needed.

In the end of the paper, the authors present pro-
tocols for other RRT’s and discuss extensions of
their approaches.

4 Conclusion

The paper describes cryptographic protocols for se-
cure polling. For a noncryptographic reader, the
paper is quite difficult to comprehend, as many
details, definitions and explanations are omitted.
The situation is analogous to cryptographers read-
ing data mining papers.

From a data mining point of view, the protocols
do not do any harm as long as the percentages of πA

in the population can still be computed, as seems
to be the case in this approach.

However, in a typical data mining situation one is
not interested in the mere πA but other behaviour
of people belonging to group A. For example, if
a person belongs to group A, then which products
she buys in the supermarket.

Also, the procedures described in the paper
might be slow if there are e.g. 106 respondents — a
figure not uncommon in data mining applications.
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