
T-79.511 Special Course on Cryptology /

Privacy-Preserving Data Mining:

Revealing Information while Preserving Privacy

Emilia Oikarinen

October 30, 2003

Abstract

This survey examines the tradeoff between privacy
and usability in statistical databases as discussed
by Irit Dinur and Kobbi Nissim in [4].

1 Introduction

In this survey we explore under which condi-
tions one can achieve statistical information from a
database and still preserve privacy for the individ-
ual entries. The discussion is based on an approach
presented by Dinur and Nissim [4]. Most of the ex-
plicit references to [4] are omitted and some parts
of [4] are covered only very briefly.

Consider a hospital database consisting of med-
ical history of a population. While the privacy of
individuals should be maintained, medical research
might advance if statistical information about the
database could be used. Thus the hospital needs
an access mechanism that allows statistical queries
without violating the privacy of any single patient.
One solution would involve removing all identifying
attributes (e.g. patient’s name and social security
number) from the database. This, however, does
not protect privacy. Usually it is rather easy to
identify patients indirectly from the attributes in
the database. Identification can be, e.g. based on
attributes such as patient’s approximate age, sex,
marital status and so on. Situation is even worse,
if the patient is known to have some rare attribute.

Dinur and Nissim [4] show that if a database of
size n is perturbed with random noise of magnitude
≤ E , there is a threshold phenomenon where an
adversary can reconstruct almost all the database

entries if E �
√

n, and if E �
√

n the adversary
can reconstruct none of them.

Organization of this survey is as follows. In Sec-
tion 2 we discuss the basic concepts of statistical
databases and what is meant by database privacy.
In Section 3 we present a lower bound on the per-
turbation needed to maintain any reasonable notion
of privacy. In Section 4 we see that if the adver-
sary’s complexity is further restricted than it is pos-
sible to achieve privacy using smaller perturbation.
We end this survey with conclusions in Section 5.

2 Basic Concepts

We start by presenting some notations.

• neg(n) — a function that is asymptotically
smaller than any inverse polynomial, i.e. for all
c > 0 and for all sufficiently large n, it holds
that neg(n) < 1/nc.

• dist(c, d) — the Hamming distance of two bi-
nary strings c, d ∈ {0, 1}n, i.e. dist(c, d) = |{i |
ci 6= di}|.

• Õ(T (n)) = O(T (n) logk(n)), for some k > 0.

• Let M be a Turing-machine. We denote by
MA an A-oracle Turing-machine, where M
has an access to algorithm A and each call to
A costs a unit time.

2.1 Model-Statistical Databases and
Statistical Queries

A statistical database is a query-response mecha-
nism that enables users to access its contents via

1

statistical queries. In this survey we consider bi-
nary databases, where the content is n binary (0/1)
entries. A statistical query specifies a subset of the
entries in the database and the answer to the query
is the number of entries within the specified entries
having the value 1.

Definition 1 Let d = (d1, . . . , dn) ∈ {0, 1}n. A
(statistical) query is a subset q ⊆ {1, . . . , n}. The
(exact) answer to a query q is the sum of all
database entries in q, i.e. aq =

∑
i∈q di.

Users issue statistical queries to the database and
the response to the queries is computed by a
database algorithm accessing the database content.
The database algorithm may also keep additional
information (in the form of an internal state) and
update its state whenever invoked.

Definition 2 A (statistical) database D = (d,A)
is a query-response mechanism. The response to a
query q is A(q, d, θ), where θ is the internal state of
the algorithm A. The computation may affect the
internal state.

We usually omit d and θ and write A(q) for
A(q, d, θ). We are not concerned with the specifics
of the database language or its indexing mecha-
nisms. Instead, we assume that the user is able
to specify any subset of the entries in the database.

2.2 Privacy Methods for Statistical
Databases

The privacy methods for statistical databases can
be divided into three main categories: (i) query
restriction, (ii) data perturbation and (iii) output
perturbation. Let us examine these categories.

In the query restriction approach, the queries
have to obey a special structure so that the query-
ing adversary is prevented from gaining too much
information about the database entries. The use-
fulness of this approach is limited since it allows
only a relatively small number of queries. Another
idea related to query restriction is query auditing
[3]. In query auditing, a log of queries is kept and
each new query is checked for a possible compro-
mise on the privacy. The query is allowed or dis-
allowed according to the result of the check. The
problem with query auditing is that the auditor’s

refusals together with the answers to valid queries
may leak information about the database.

In the data perturbation approach, the
database is first perturbed with some noise and the
queries are answered according to the perturbed
database. The methods for database perturba-
tion include swapping [6] and fixed perturbations [7].
When swapping is used, portions of the data are re-
placed by a data taken from the same distribution.
In fixed perturbation approach random perturba-
tion is added to each database entry.

In the output perturbation approach an exact
answer to the query is computed but a noisy ver-
sion of it is returned. Output perturbation meth-
ods include varying output perturbations [2] and ei-
ther deterministic [1] or probabilistic [5] rounding.
In varying output perturbations method a random
perturbation is added to each query answer with
an increasing variance for a repeated query.

In this survey, as in [4], we will consider the
perturbation methods. The problem is to find
a suitable perturbation level giving some privacy
and allowing gaining useful information from the
database. The quality of a database algorithm is
defined in terms of the magnitude of its perturba-
tion.

Definition 3 An answer A(q) is within E pertur-
bation if aq −A(q) ≤ E . An algorithm A is within
E perturbation if for all queries q ⊆ {1, . . . , n} the
answer A(q) is within E perturbation1.

2.3 Database Privacy

To achieve database privacy one has to balance two
set of functions: (i) private functions one wishes to
hide and (ii) information functions one wishes to
reveal. Based on this general view, it is possible to
define privacy in many ways. In most cases, single
entries of the database are taken as privacy func-
tions, i.e. {πi}i∈{1,...,n}, where πi(d1, . . . , dn) = di.
This captures the intuition that privacy is compro-
mised if an adversary is able to compute a confi-
dential attribute di from its identity i. In statisti-
cal database privacy the information functions are
usually the sums of subsets of the database entries,
i.e. {fq}q⊆{1,...,n}, where fq(d1, . . . , dn) =

∑
i∈q di.

1Note that it would be sufficient for most of the results
in this survey to assume that A(q) is within E perturbation
for all but a negligible fraction of the queries q.

2

Dinur and Nissim present a computational defini-
tion of privacy that asserts that it is computation-
ally infeasible to retrieve private information from
the database. Other measures of privacy used in
previous works include e.g. variance of query an-
swers and the estimator variance. These definitions
have some drawbacks. First it is not at all clear that
large variance provides privacy as can be seen from
the example below. Also, such definitions do not
allow us to capitalize the limits of an adversary.

Example 4 Consider di ∈ {0, 1} and an estimator
d̃i = di + Ee, where e ∈ {−1, 1} is selected at
random and E is a large even number. Although
variance of d̃i is very large, di can be computed
exactly from the last bit of just one sample d̃i. �

In cryptography privacy is often treated in a
complementary manner to the one Dinur and Nis-
sim present. Consider a secure function evalua-
tion. Several parties want to compute a function
F of their private inputs d1, . . . , dn. Privacy is
seen as protecting each party’s private input so
that other parties cannot deduce any information
that is already deducible from the function outcome
F (d1, . . . , dn). Thus F dictates which information
is to be revealed and the goal is not to leak any
information in addition to that. This privacy defi-
nition is implicit. Depending on function F a whole
lot of information about the private inputs can leak
and on the other hand F may be defined in such a
manner that no information is leaked.

Dinur and Nissim reverse the order. They define
first explicitly which information is not to be re-
vealed and then look for functions that reveal max-
imum information still possible. Thus instead of
implicit privacy, they want privacy definition to be
explicit. Instead of giving this explicit definition on
privacy first, they consider what privacy is not2 and
define the concept of non-privacy, a situation that
should not be allowed to occur in any reasonable
private database setting. They say that a database
in non-private, if a computationally-bounded ad-
versary can expose 1 − ε fraction of the database
entries for all constant ε > 0. Thus non-privacy
excludes even very weak notions of privacy.

Finally, in Section 4, we consider the definition
of privacy given by Dinur and Nissim. Privacy is
defined with respect to a bounded adversary with

2There are several definitions for privacy in databases,
none of which seems to be good for every possible situation.

no prior knowledge about the database. The defi-
nition tries to capture the fact that the adversary
should not be able to predict the ith bit regardless
of the content of the rest of the database. The ad-
versary is modeled by a two-phased game. First,
the adversary queries adaptively the database and
then outputs an index i it intends to guess. In
the second phase, the adversary is given the query-
response transcript of the first phase plus all but
the ith database entries. Privacy is preserved, if
with a high probability adversary fails to guess di.

3 Impossibility Results

The main result presented in this section is a lower
bound on the perturbation needed to maintain any
reasonable notion on privacy. Dinur and Nissim
show that whenever the perturbation magnitude
is smaller than

√
n, an adversary can construct a

good approximation of the entire database using
only polynomial number of queries.

As discussed in Section 2, we want to formal-
ize non-privacy. Intuitively, if a database is non-
private, an adversary can efficiently and very accu-
rately reconstruct the entire database.

Definition 5 (Non-privacy) A database D =
(d,A) is t(n)-non-private, if for every constant
ε > 0 there exists a probabilistic Turing-machine
M with time-complexity t(n) such that

Pr[MA(1n) outputs c s.t. dist(c, d) < εn]
≥ 1− neg(n),

the probability taken over coin tosses of A and M.

Note that Definition 5 bounds implicitly the num-
ber of queries the adversary can issue by t(n). Also,
from now on, we will restrict the adversary by mak-
ing the queries non-adaptive. Thus, the adversary
first specifies its set of queries and is then answered
by the database access algorithm.

Also, it is worth noticing that in the results to be
shown, the perturbation method can be either data
or output perturbation.The adversary’s algorithm
is oblivious of the perturbation method used.

3.1 Exponential Adversary

We consider first a very powerful adversary that
may issue all possible queries (thus the result pre-

3

sented here pertains only to very small databases).
Dinur and Nissim show that such an exponential
adversary can violate privacy even if the perturba-
tion magnitude is almost linear.

Theorem 6 Let D = (d,A) be a database where
A is within o(n) perturbation. Then D is exp(n)-
non-private.

Proof. Let A be within E = o(n) perturbation. Let
M be the following algorithm.

(i) (Query phase)
For all q ⊆ {1, . . . , n}, let ãq = A(q).

(ii) (Weeding phase)
For all c ∈ {0, 1}n, if |

∑
i∈q ci− ãq| ≤ E for all

q ⊆ {1, . . . , n}, then output c and halt.

The algorithm clearly runs in exponential time.
Also, M always halts and outputs a candidate c.
We show that c satisfies dist(d, c) ≤ 4E = o(n).
Assume the contrary, i.e. dist(d, c) > 4E . Let q0 =
{i | di = 1, ci = 0} and q1 = {i | di = 0, ci = 1}.
It holds |q0| + |q1| = dist(d, c) > 4E and q0 and q1

are disjoint. Therefore at least one of q0 and q1 has
2E+1 or more elements. Without loss of generality,
assume that |q1| > 2E . We have

∑
i∈q1

di = 0 and
thus ãq1 ≤ E . On the other hand

∑
i∈q1

ci = |q1| >
2E . Hence we get |

∑
i∈q1

ci − ãq1 | > E which is
contradictory to c surviving the weeding phase. 2

3.2 Polynomially Bounded
Adversary

Next, we consider a more realistic scenario where
the adversary is polynomially bounded. Dinur and
Nissim show that it is necessary to use a perturba-
tion level of Ω(

√
n) to achieve even weak privacy.

Thus they show that any database algorithm within
o(
√

n) perturbation is non-private.

Theorem 7 Let D = (d,A) be a database where A
is within o(

√
n) perturbation. Then D is poly(n)-

non-private.

To proof Theorem 7 we need to following lemma.

Lemma 8 (Disqualifying Lemma) Let x, d ∈
[0, 1]n and E = o(

√
n). If Pr

i

[
|xi − di| ≥ 1

3

]
> ε

then there exists a constant δ > 0 such that

Pr
q⊆{1,...,n}

[|
∑
i∈q

(xi − di)| > 2E + 1] > δ.

For proof, see [4, Appendix A]. Now, let us proof
Theorem 7.

Proof. Let A be within E = o(
√

n) perturbation.
Let M be the following algorithm.

(i) (Query phase)
Let t = n log2(n). For 1 ≤ j ≤ t, choose
uniformly at random qj ⊆ {1, . . . , n}, and set
ãqj

= A(qj).
(ii) (Weeding phase)

Solve the following linear program (LP) with
n unknowns c1, . . . , cn.

ãqj
− E ≤

∑
i∈qj

ci ≤ ãqj
+ E for 1 ≤ j ≤ t

0 ≤ ci ≤ 1 for 1 ≤ i ≤ n

(iii) (Rounding phase)
Let c′i = 1 if ci > 1/2 and c′i = 0 otherwise.
Output c′.

Clearly, the linear program in the algorithm always
has a solution (c = d is a feasible solution), and thus
the algorithm always has an output c′. Also, since
LP problem can be solved in polynomial time, the
algorithm runs in polynomial time.

Thus we need to show that dist(c′, d) < εn. We
use a probabilistic method to show that a random
choice of q1, . . . , qt weeds out all possible candidate
databases c that are far from the original one.

We fix a precision parameter k = n and de-
fine K = {0, 1

k , 2
k , . . . , k−1

k , 1}. For any x ∈ [0, 1]n

we denote by x ∈ Kn the vector obtained from x
by rounding each coordinate to the nearest integer
multiple of 1

k .
We apply the triangle inequality with the LP in

the weeding phase. We get for 1 ≤ j ≤ t,

|
∑

i∈qj
(ci − di)|

= |
∑

i∈qj
(ci + ci + ci − ãqj

+ ãqj
− di)|

≤ |
∑

i∈qj
(ci + ci)|+ |

∑
i∈qj

(ci − ãqj
)|

+|
∑

i∈qj
(ãqj − di)|

≤ |qj |
k + E + E

≤ 1 + 2E .

We say for any x ∈ [0, 1]n that a query q ⊆
{1, . . . , n} disqualifies x if |

∑
i∈q(xi−di)| > 2E+1.

If q is one of the queries of the algorithm, then x is
an invalid solution to the linear program.

We show that if x is far from d on many co-
ordinates, then x will be disqualified with a high

4

probability by at least one of the queries q1, . . . , qt.
We use Lemma 8 and define the set of discrete x’s
that are far from d as the set

X = {x ∈ Kn | Pr
i

[|xi − di| ≥
1
3
] > εn}.

Let us consider x ∈ X. By Lemma 8 there exists a
constant δ > 0 such that

Pr
q⊆{1,...,n}

[q disqualifies x] ≥ δ.

If we choose t independent random queries
q1, . . . , qt ⊆ {1, . . . , n}, at least one of them dis-
qualifies x with probability 1− (1− δ)t. Now tak-
ing union over X (note, |X| ≤ |K|n = (k + 1)n =
(n + 1)n), we get

Pr
q1,...,qt⊆R{1,...,n}

[∀x ∈ X ∃i s.t. qi disqualifies x]

≥ 1− (n + 1)n(1− δ)t

> 1− neg(n).

The last inequality holds if t is large enough. For
example t = n log2(n) suffices as,

(n + 1)n(1− δ)t = (n + 1)n(1− δ)n(log(n)

= ((n + 1)1/ log2(n)(1− δ))n log2(n) →
n→∞

0

To complete the proof, note that c is not dis-
qualified by any of the random subsets q1, . . . , qt ⊆
{1, . . . , n}, since c is obtained from the solution c
of the LP system by rounding it. Thus, if q1, . . . , qt

disqualify all x ∈ X, it must be that c 6∈ X and
therefore dist(c′, d) ≤ εn. 2

The proof for Theorem 7 relies on the fact that a
random subset of linear size deviates from the ex-
pectation by roughly

√
n. Also, the reconstruction

algorithm presented is oblivious of the perturbation
method used and the distribution of the database.

3.3 Tightness of the Impossibility
Results

Theorem 7 states that for any database distribu-
tion it is necessary to have a perturbation of mag-
nitude Ω(

√
n) to have even a weak notion of pri-

vacy. Dinur and Nissim show that this bound is in-
deed tight. They present a database algorithm that
is within Õ(

√
n) perturbation and private against

polynomial adversaries. The algorithm is such that,
if the database is queried by a polynomial-time ma-
chine, then with a very high probability it does not

reveal any information about the data. In the algo-
rithm it is assumed that the database is uniformly
distributed over all strings of n bits.

Let d ∈ {0, 1}n at random and set the perturba-
tion magnitude E =

√
n(log n)1+ε = Õ(

√
n). Let

us consider database D = (d,A) with algorithm A
defined as follows,

(i) For an input query q ⊆ {1, . . . , n}, compute
aq =

∑
i∈q di.

(ii) If |aq − |q|
2 | < E , return |q|

2 .

(iii) Otherwise, return aq.

Thus A uses output perturbation method.
Clearly, A is within E perturbation. Also, for
any probabilistic polynomial-time machine M, the
probability (taken over d and coin tosses ofM) that
A acts according to rule (iii) is negligible. Although
the above algorithm guarantees perturbation level
of Õ(

√
n), it makes the database effectively useless.

Users are extremely unlikely to obtain any nontriv-
ial information by querying the database. Hence,
must a private database be useless?

This is not necessarily the case as Dinur and Nis-
sim demonstrate by a database algorithm that has
some privacy combined with some usability. We
relax the requirements in Definition 3 and require
that A(q) is within E perturbation for most q, i.e.

Pr
q∈{1,...,n}

[A(q) is within E perturbation]

= 1− neg(n).

Theorem 7 holds for this relaxed definition, too.
Now, let DB be the uniform distribution over

{0, 1}n and select d ∈ DB at random. The database
algorithm A will use an internal state θ (recall Def-
inition 2) that is initialized upon the first call. The
internal state consists of n bits d′ = (d′1, . . . , d

′
n)

where d′i = di with probability 1/2 + δ and d′i =
1− di otherwise. On an input query q ⊆ {1, . . . , n}
algorithm A answers ãq =

∑
i∈q d′i. Now, A is

within Õ(
√

n) perturbation (according to the re-
laxed definition) and the database has some usabil-
ity. E.g. it is possible to compute S ⊆ {1, . . . , n}
such that significantly more than half of the entries
specified by S are set in 1 in the original database.
Notice that the algorithm is essentially the same as
in randomized response technique [8].

The above algorithm essentially creates a pri-
vate version of the database and the queries are

5

answered according to it. The user may retrieve
the whole database d′ by querying qi = {i} for
1 ≤ i ≤ n, and thereafter answer all other queries
by itself. This indicates that it is possible to achieve
some privacy in a CD model, where users get a pri-
vate version of the database, which they manipulate
(their queries are not restricted to be statistical).

4 Feasibility Results

In Section 3 we discussed perturbation level needed
when the adversary has an exponential or a poly-
nomial computational power. In this section we
briefly investigate whether privacy can be achieved
using a smaller perturbation level than

√
n if ad-

versary’s complexity is further restricted. This can
also be seen as considering an adversary having a
fixed power acting on bigger and bigger databases.
Dinur and Nissim present a database access algo-
rithm that preserves privacy with respect to an ad-
versary having running time limited to T (n) for an
arbitrary T . This algorithm uses a perturbation
magnitude of about

√
T (n).

First, we define what is meant by privacy (note
that so far we have only considered non-privacy).
In this privacy definition we have to make an as-
sumption regarding the adversary’s a-priori knowl-
edge about the database3. In the definition be-
low, the prior knowledge is modeled as having the
database drawn from an arbitrary distribution DB.

The definition of privacy we will be considering is
strong. It requires than even if the adversary learns
contents of the entire database except the ith bit, it
cannot still predict the ith bit with a good proba-
bility. The scenario is modeled by a two-phased ad-
versary: (1) The adversary adaptively queries the
database. At the end, the adversary commits a
challenge – an index i of the bit it intents to guess.
(2) All the database entries except the ith bit are
revealed to the adversary. The adversary succeeds
if it outputs di correctly. In the formal definition
below, the two phases are modeled by two Turing
machines M1 and M2 of which M1 has an access
to the database algorithm.

3Consider a situation in which it is known that d is either
1n or 0n in database D = (d,A). If the perturbation level
was less than n/2, a single query would reveal the entire
database.

Definition 9 (Privacy) Let DB be a distribution
over {0, 1}n and d is drawn according to DB. A
database D = (d,A) is (T (n), δ)-private, if for ev-
ery pair of probabilistic Turing machines M1 and
M2 having time-complexity T (n), it holds that

Pr
[
M1(1n) outputs (i, view);
M2(view, d−i) outputs di

]
<

1
2

+ δ,

where d−i = (d1, . . . , di−1, di+1, . . . , dn). The prob-
ability is taken over the choice of d from DB and
the coin tosses of all machines involved.

If it is assumed that the adversary has no prior in-
formation about the database (modeled by drawing
the database from the uniform distribution over n-
bit strings), we get the following theorem.

Theorem 10 Let T (n) > logk(n) and δ > 0. Let
DB be uniform distribution over {0, 1}n, and select
d ∈ DB at random. There exists a Õ(

√
T (n))-

perturbation algorithm A such that D = (d,A) is
(T (n), δ)-private.

For a lengthy and detailed proof, see [4].

5 Conclusions

We have explored the conditions under which a pri-
vacy preserving database access mechanism can ex-
ist for a statistical database based on discussion
by Dinur and Nissim [4]. It is shown that unless
the perturbation is as large as

√
n, almost all the

database entries can be recovered by a polynomi-
ally bounded adversary. Such database is, however,
practically almost useless. A bounded adversary
model is also briefly discussed. In such model some
level of privacy may be achieved.

References

[1] J. Achugbue and F. Chin. The Effectiveness
of Output Modification by Rounding for Pro-
tection of Statistical Databases, INFOR 17(3),
pp. 209–218, 1979.

[2] L. Beck, A Security Mechanism for Statisti-
cal Databases, ACM TODS, 5(3), pp. 316–338.
1980.

6

[3] F. Chin and G. Ozsoyoglu, Auditing and In-
ference Control in Statistical Databases, IEEE
Transactions in Software Engineering, SE-
8(6), pp. 113–139. 1982.

[4] I. Dinur and K. Nissim. Revealing Informa-
tion while Preserving Privacy. In Proc. of
22nd ACM SIGMOD-SIGACT-SIGART sym-
posium, pp. 202–210. ACM Press. USA, 2003.

[5] I. Fellegi, On the Question of Statistical Confi-
dentiality, Journal of the American Statistical
Association, pp. 7–18. 1972.

[6] S. Reiss,Practical Data Swapping: The First
Steps, ACM TODS, 9(1), pp. 20–37. 1984.

[7] J. Traub, Y. Jemini and H. Wozniakowski, The
Statistical Security of a Statistical Database,
ACM TODS, 9(4), pp. 672–679. 1984.

[8] S. Warner, Randomized Response: a Sur-
vey Technique for Eliminating Evasive Answer
Bias. The American Statistical Association,
60(309), pp. 63-69. 1965.

7

