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Abstract

This survey is predominantly based on the papers
written by Gertner et al. [2] and Kerenidis and
Wolf [4]. Private information retrieval schemes are
examined from classical and quantum information
theoretic point of view.

1 Introduction

Private Information Retrieval (PIR) schemes al-
low a user to retrieve information from a database
while maintaining his query private. We view the
database as a binary string z = x; ...z, of length
n. Identical copies of this string are stored by k > 2
servers. The user has some index 7, and he is inter-
ested in obtaining the value of the bit z;. To achieve
this goal, the user queries each of the servers and
gets replies from which the desired bit x; can be
computed. The query to each server is distributed
independently of i and therefore each server gains
no information about . [1]

Symmetrically Private Information Retrieval
(SPIR) guarantees also the privacy of the data, as
well as of the the user. This means that, in addition
to maintaining the privacy of the user, every invo-
cation of SPIR, in addition to maintaining the user
privacy, prevents the user (even a dishonest one)
from obtaining any information other than a single
physical bit of the data. Data privacy is a natural
and crucial requirement in many settings. For ex-
ample, consider a commercial database which sells
information, such as stock information, to users,
charging by the amount of data that the user re-
trieved. Here, both user privacy and database pri-
vacy are essential. [2]

In the end we will study the existence of SPIR

schemes in the quantum world, where user and
servers have quantum computers and can commu-
nicate qubits. The setting of SPIR was introduced
by Gertner et al. [2]. They showed that honest user
SPIRs without shared randomness are impossible
in the classical world. The necessity of shared ran-
domness for classical SPIR schemes is a significant
drawback, since information-theoretic security re-
quires new shared randomness for each application
of the scheme. This either requires a lot of extra
communication between the servers (if new shared
randomness is generated for each new application)
or much memory on the parts of the server (if ran-
domness is generated once for many applications,
each server needs to store this). [4]

2 Notation and Definitions

The following notations and conventions are used
throughout this survey. By [I] is denoted the set
1,2,...,1. For any sets S,S' C [l], we let S & S’
denote the symmetric difference between S and S’
(i.e., S® S = (S\9') U (5'\9)), and xg denotes
the characteristic vector of S: an l-bit binary string
whose j-th bit is equal to 1 iff j € S. To simplify
notation, S @ j and x; are used instead of S & {j}
and Xy}, respectively. {0,1}" means the set of
strings of length n with each letter being either zero
or one.[2]

By default, the terms “PIR scheme” and “SPIR
scheme” refer to 1-round, information theoretically
private schemes which means that no computa-
tional assumptions are made. Complexity is mea-
sured, by default, in terms of communication. PIR
scheme must satisfy the user privacy requirement:
under any two indices 4, 4', the communication seen
by any single database is indentically distributed.



The data privacy condition of SPIR schemes re-
quires that for any user (possibly a dishonest one,
not following the protocol) interacting with the
honest databases DBy, ..., DBy there exists an in-
dex i s.t. for every data strings z,2’ satisfying
z; = z} the distribution of communication is in-
dependent of the data strings  and z'. An honest-
user-SPIR scheme is a PIR scheme that satisfies the
data-privacy requirement with respect to an honest
(but curious) user, who follows the specification of
the scheme but may try to deduce extra informa-
tion from the communication. [2]

2.1 Very Short Introduction
Quantum Mechanics

to

A good understanding of quantum mechanics is
based on a good knowledge of elementary linear al-
gebra which is the study of vector spaces and of op-
erations on those vector spaces. The basic objects
of linear algebra are vector spaces. For us the vec-
tor space of most interest is C", the n-dimensional
complex vector space. Vectors are the elements of
a vector space. The standard quantum mechanical
notation for a vector in a vector space is,

¥)

where 1) is a label for the vector, mostly labels 1)
and ¢ are used. The |-} notation indicates that the
object is a column vector. The entire object |¢) is
also known as ket and its vector dual (a row vector)
(¢| is known as bra.

The most fundamental entity in information sci-
ence is the bit which is a system which carries ei-
ther 70” or ”1” value. The quantum analog of a bit
is qubit which is two- state system where the two
possible states are called |0) and |1). Basically any
quantum mechanical system which has at least two
states can be a qubit. When quantum states are
used to encode bits the most essential property of
them is the possibility of coherence and superposi-
tion. The general state is,

) = a|0) + B1)

where |a|? + |82 = 1. This means that qubit is in
a superposition of both states and when the qubit
is measured we will find it with probability |a|? to
carry value ”0” and with probability |3|? to carry

value ”1”. It is sufficient to think of qubits in ab-
stract terms, without reference to a specific realiza-
tion.

The tensor product is a way of putting vector
spaces together to from larger vector spaces. Sup-
pose V and W are vector spaces of dimension m
and n respectively. For convenience we also sup-
pose that V and W are Hilbert spaces. Then VW
(read 'V tensor W’) is an mn dimensional vector
space. The elements of V ® W are linear combi-
nations of tensor products’ |v) ® |w) of elements
|v) of V and |w) of W. Often is used abbreviated
notation |v)|w), |v,w) or even |vw) for the tensor
product |v) X |w). [5]

3 The PIR schemes

Here is reviewed an elementary PIR scheme in-
troduced by Chor et al. denoted by basic cube
scheme [1]. This scheme will be the basis for the
other shemes described later.

Basic d-dimensional Cube

Scheme

This is a PIR scheme for k¥ = 2? databases. As-
sume without loss of generality that the database
size is n = 1%, where d,l € Z,. The index set
[n] can then be identified with the d-dimensional
cube [I]¢, in which each index i € [n] can be nat-
urally identified with a d-tuple (iy,...,44). Tuple
is an ordered sequence and previous can also un-
derstood as a coordinate in d-dimensional space. A
d-dimensional subcube is a subset Sy X --- x S4 of
d-dimensional cube, where each S; is a subset of
[1]. Such a subcube is represented by the d-tuple
C = (S1,-..,54). The k databases will be indexed
by all binary strings of length d. The scheme pro-
ceeds as follows.

QUERIES: The user picks a random subcube
(59,...,59), where S?,...,59 are independent,
random subsets of [I]. Let St = S% @ ip (1 <
m < d). For each 0 = 0102...04 € {0,1}¢, the
user sends to database DB, the subcube C, =
(S7*,...,837), where each set S is presented by
its characteristic I-bit string.

ANSWERS: Each database DB,, o € {0,1}¢, com-
putes the exclusive-or of the data bits residing in
the subcube C,, and sends the resultant bit b, to

3.1



the user.
RECONSTRUCTION: The user computes xz; as
the exclusive-or of the k bits b, it has received. [2]
The correctness of the scheme can be proved
in the following way. Consider the contribution
of each bit z;,,. ;, of the database to the sum
computed by the user in reconstruction stage. This
contribution depends on the number of subcubes
(corresponding to the queries directed to the k
databases) that contain the position (ji,...,75q)-
It is not hard to see that (i1,...,iq) is the only
position that is contained in an odd number of
subcubes, more specific it appears in a single sub-
cube. This is because, for every ¢ € [d], the value
iy appears in exactly one of the sets SP,S}. Each
of the other positions (j1,...,7jq4) (# (i1,---,%q))
appears in an even number of subcubes: Suppose
j¢ # 13, then for every oq,...,04,

(J1r--+rJd) € ST x---x ST x S x Syt x- - - x 5
if and only if
- i) € S X ST X SEX ST X0+ X S5

Therefore, in the sum modulo 2 computed by
the user in reconstruction stage, the contribution
of these positions is cancelled and the only value
that remains is that of position (i1,...,44). [1]

The communication involved in the above scheme
consists of sending a sequence of d subsets in [{] to
each server, and receiving a single bit back. Hence
the total communication complexity is k-(d-1+1) =
2¢ . (d- Ym+1) = O(n'/%). [1]

3.2 The PIR Scheme B,

This scheme may be regarded as a 2-database im-
plementation of the 8-database 3-dimensional cube
scheme described above. Let I = n'/3, and then
let 4 = (41,42,43) be the index of the data bit being
retrieved. Each of two databases DBgge and DBi11
emulates the 4 databases DB,, o € {0,1}?, such
that the Hamming distance of ¢ from its index is at
most 1. This is done in the following way. The user
sends to DBgoo the subcube Cooo = (S7,S59,59)
and to DBi11 the subcube C111 = (57,55, 53) asin
the basic cube scheme. The database DBggo replies
with its own answer bit bggo along with 3 I-bit long
strings, each of which contains the answer bit of

the other databases it emulates. For instance, the
i1-th bit of the string emulating DBigo is obtained
by computing the exlusive-or of all data bits resid-
ing in the subcube (S @ i}, 59, S59), implying that
the 41-th bit in this string is equal to b1go. Sym-
metrically, DB11;1 sends the single bit by1; along
with 3 [-bit long strings, each of which corresponds
to the subcubes obtained from C71; by “masking”
the set S}, with all I possible values of 4/,. The
user receives 8 answer strings a,,o € {0,1}?, six of
which contain [ bits each, and the other two aggo
and aj;; contain single bits. In each of the [-bit
long strings, the index of the required answer bit
b, is either iy (for o = 100,011), i3 (o = 010, 101),
or i3 (o = 001,110). Since the user can locate all
8 bits b,,0 € {0,1}3, in the answer strings, it can
reconstruct x; by computing their exclusive-or. [2]

4 The SPIR Schemes

In this section, it will be first shown that the 2-
database scheme B, can be transformed into an
honest-user-SPIR scheme Bj of the same asymp-
totic complexity. That will be used as a basis for a
recursive construction of a k-database honest-user-
SPIR scheme Bj,. In order to do the transformation
we need the following tools.

4.1 Conditional Disclosure of Se-

crets

The model of conditional disclusure of secrets con-
sists of: the “condition” - a fixed Boolean func-
tion h: {0,1}" — {0,1} for some n; k players
Py,...,P;; and an external party Carol. Carol
holds an input string y € {0,1}", which is also par-
titioned between the k players in an arbitrary way
(i- e. each player holds some fixed subset of the bits
of y). All k players have access to a shared random
string, which is hidden from Carol. Finally, a se-
cret input s (single bit unless otherwise mentioned)
is known to at least one of the players, but is un-
known to Carol. Based on its share of y and on the
shared randomness, each player P; simultaneously
sends a message to Carol, s. t. (1) if h(y) = 1,
then Carol is able to reconstruct the secret s from
her input y and from the message she received; and
(2) if h(y) = 0, then Carol obtains no information
(in the information-theoretic sense) about s. [2]



4.2 Private Simultaneous Messages

In this model there are k players, each player P;
holding a private input string y;, and an external
referee called Carol. All players have access to a
shared random input, which is unknown to Carol.
Based on its private input y; and the shared ran-
dom input, each player P; simultaneously sends a
single message to Carol. From the message she re-
ceived, Carol should be able to compute some pre-
determined function f(yi,...,yx) of the inputs, but
should obtain no additional information on the in-
put other than what follows from the value of f.

The PSM complexity of f is the number of com-
munication bits needed to privately compute the
funtion f in such a way.Gertner et al. gives a gen-
eral claim that in principle PSM solution can be
applied to any PIR scheme and obtain a honest-
user-SPIR scheme, but if reconstruct function has
non-linear PSM complexity (even some of the sim-
plest Boolean functions are not known to have lin-
ear PSM complexity), this may result in consider-
able communication overhead. In the next subsec-
tion is shown how this problem can be solved for
schemes of a certain structure. [2]

4.3 SPIR Schemes Based on Condi-
tional Disclosure of Secrets and
PSM

The Theorem 3. from [2] claims that there exsits
a 2-database honest-user-SPIR schme, B, of com-
munication complexity O(n'/?). The proof for that
is given in the following. The reconstruction func-
tion of By may be viewed as a two-stage procedure:
(1) the user selects a single bit from each of 8 an-
swer strings, depending only on the index 4; and
(2) the user exclusive-ors the 8 bits it has selected
to obtain x;. Thus, if we let the honest user learn
only the exclusive-or of the 8 bits corresponding to
1, the data privacy requirement will be met. This
can be achieved by using the conditional disclosure
of secrets primitive on top of a PSM protocol com-
puting the exclusive-or of 8 bits. The scheme B},
an honest-user-SPIR version of Ba, proceeds as fol-
lows:

QUERIES: The user sends the subcube Cygo to
DBoggo and Ci11 to DBy11, as in the scheme By. In
addition, the user independently shares the char-
acteristic vectors x;,,, m = 1,2,3, among the two

databases. This is done by picking random [-bit
strings r%,, rl such that r, @ rl = y;,. and send-
ing the three strings r%, to DBy and the three
strings rl to DBii;.

ANSWERS: Each of the two databases computes 4
answer strings as in the Bs scheme. Denote by a,
the answer string emulating DB,, o € {0,1}*. The
databases treat each bit of a string a, as an input
to a PSM protocol computing the XOR of 8 bits,
and using their shared randomness they compute
the PSM message sent for each such bit. Under the
simple PSM protocol for XOR, each such message
consists of a single bit. Let w, denote the string
obtained by replacing each bit from a, by its cor-
responding PSM message bit. In this case, w, is
obtained by XOR-~ing every bit of a, with the same
random bit r,, where the bits {r,} are 8 random
bits whose XOR is 0. Finally, for every o € {0,1}?
and 1 < j < |w,|, the database use their shared
randomness to disclose to the user the j-th bit of
We, (ws);, subject to an appropriate condition. For
o = 100,011 the condition is (r{); & (r{); = 1,
for o = 010,101 it is (r3); & (r3); = 1, and for
o =001,110 it is (r9); ® (r3); = 1. The single bits
Wooo, W111 can be sent in a plain form.
RECONSTRUCTION: The user reconstructs the
eight PSM message bits corresponding to the in-
dex i (using the reconstruction function of the con-
ditional disclosure protocol), and computes their
exclusive-or to obtain z;.

The proof of correctness of the B} scheme and
user privacy as well as the data privacy require-
ment are not showed here. Required communica-
tion complexity O(n'/?) follows from the fact that
each of the O(n'/?) bits of the strings w; is ex-
pressed by a Boolean formula of a constant size
and then all such bits can be conditionally disclosed
with a total communication cost of O(n!/3). A
reader interested in knowing more about proofs is
advised to read [3]. However, the above scheme can
be generalized to any number of databases k > 2.
(see proof from [2], Appendix B)

Theorem 1 For every constant k > 2 there ex-
ist o k-database honest-user-SPIR scheme, B, of
communication complexity O(n'/2k—1)),



4.4 Cube Schemes with Respect to
Dishonest Users

The previous section dealt with the SPIR scheme
with an honest but curious user. Generally, a dis-
honest user can cheat in two ways in the previous
honest-user-SPIR, scheme: in sharing of its index,
and by sending invalid queries invalid queries in
the original PIR scheme. Here will be described
how the scheme from previous section can be made
resistant also to dishonest users.

SPIR
complezity

exist a 2-database
commaunication

Theorem 2 There
scheme, By, of
O(logn - n'/3).

Differences to the B) scheme are that the user
independently shares binary representation of the
index components i,,, m = 1,2,3 instead of shar-
ing characteristic vectors. This is done by pick-
ing random (log, [)-bit strings r%  rl such that
r% @ rl = bin(i,), where bin(i,,) denote the
(log, 1)-bit binary representation of i,, (I = n'/3
is assumed to be a power of 2).

The databases share in addition a random bit
s. The bit s is disclosed subject to the condi-
tion A% _,(S% @ SL, = {r% @rL}) which validates
the user’s queries. This condition can be verified
by a Boolean formula of size O(llogl). The bits
wooo D s and wq11 are sent in a plain form. The
each bit of the rest of the PSM message strings
w, (o # 000,111) is disclosed subject to the codi-
tion which is for o = 100,011, 7¢ & r] = bin(j), for
o = 010,101, r9®ri = bin(j), and for o = 001,110,
rd @& rl = bin(j). Each such condition can be veri-
fied by a Boolean formula of size O(logl).

In reconstruction stage the honest user can re-
construct s and the 8 bits corresponding to index
1 and compute their exclusive-or to obtain z;. The
scheme’s data privacy, relative to any user, follows
from the following observations. The user can only
obtain from each 6 [-bit strings w, a single bit
b, of w,, corresponding to the appropriate shared
index component. Thus the user can only learn
(8 ® booo (O] b111 D b), where b = @0,#000’111 ba’- If
the user’s queries are inconsistent, then the user ob-
tains no information on s, and hence (by previous
observation) no information at all.

From the sizes of the Boolean formulas used
as disclosure condition it follows that the scheme

meets the specified complexity bound O(logn -
n'/3). Theorem 2 is generalized by the following
theorem which is one of main results of Gertner et
al. (see proof from [2], Appendix B).

Theorem 3 For every constant k > 2 there exist
a k-database SPIR scheme, By, of communication
complezity O(logn - n'/ k1),

4.5 Necessity of Shared Randomness

Suppose that the databases are allowed to use pri-
vate randomness in answering the user’s queries,
but they are not allowed to interact without the
mediation of the user (and in particular they
are not allowed to share a random string un-
known to the user). In this setting is now argued
that (informatic-theoretic) SPIR cannot be imple-
mented at all, regardless of its complexity, even
when the user is honest.

Claim 1 There ezxist no (multi-round) k-database
SPIR scheme without interaction between the
databases, even if the databases are allowed to hold
private, independent random inputs, and the user
is honest.

The strong privacy requirement implies that any
single database DB; cannot respond to the user’s
queries in a way that depends on the data string .
Formally, at any round the distribution of DB;’s
answer given the previous communication cannot
depend on z. For otherwise, this answer distribu-
tion must either not follow from a single bit z;,
thus violating the data-privacy requirement, or al-
ternatively reveal to DB; the index ¢ on which it
depends, thus violating the user’s privacy. The in-
dependence of private random inputs held by dif-
ferent databases implies that given previous com-
munication the answers of different databases must
be independently distributed. Combining the ob-
servations made above we have that the joint dis-
tribution of all k answers given previous commu-
nication is independent of z. Fixing an index i, it
follows by induction on the number of rounds that
for any w > 0 the accumulated communication in
the first w rounds is distributed independently of z.
This implies that the user’s output cannot depend
on the value of z;, contradicting the correctness re-
quirement. [2]



5 Quantum Results

The main result of Kerenidis and Wolf [4] is
that honest-user quantum SPIR schemes exist even
in the case where the servers do not share any
randomness. As proved above, such honest-user
SPIRs without shared randomness are impossible
in the classical world. This gives another exam-
ple of a cryptographic task that can be performed
with information-theoretic security in the quantum
world but that is impossible classically (key dis-
tribution [6] is the main example of this). The
communication complexity of their k-server QSPIR,
schemes is of the same order as that of the best
known classical k-server PIR schemes.

5.1 The Quantum SPIR scheme

The honest-user QSPIR schemes introduced in [4]
work on top of the classical PIR schemes. They
have designed them to work particulary on top of
the PIR schemes developed by Beimel et al. [7], but
those PIR schemes work similarly as all the others
known, they just have the best known communi-
cation complexity. Here underlying classical PIR
scheme is considered as a black box.

The user picks a random string r, and depending
on index i and r, picks k queries qi, ..., q € {0,1}L.
In addition, he picks k& random strings r1,...,r; €
{0,1}2. The user also holds strings by,...,b; €
{0,1}® which are determined by ¢ and r in a way
that

k
Zaj . bj =x; (mod 2),
j=1

where aj,...,ar € {0,1}% are answer strings of
servers. The user defines r; = r; — b; and sets
up the following (1 + k(t 4+ a))-qubit state

1 1
ﬁ|0)|Q1;T1) cee |Qk;7‘k> + ﬁkhﬂ‘i) v |Qk;7‘§g>-

The user keeps the first qubit to himself, and sends
the other (¢t 4+ a) qubits to the respective servers.
The jth server sees a mixed state of |g;,r;) and
lgj,r;) which means that the state of that quan-
tum system is not completely known. The density
operator language would be right tool to describe

such a system but that is out of scope of this work.

The jth server performs the following unitary map-
ping
|qj7 T) — (_1)aj.T|Qj,T>7

which is done for adding phase of the system. Note
that server has to learn g;, r; and r} classically that
it can get the answer a; and perform the mapping.
The servers then send all the qubits they have back
to the user. The overall communication is then
2k(t + a) qubits. The user now has the state

(=" g, 1) (=D)* ™ |gr,Tr)

+

S-S

(=1)™ g, 1) (=1)™ "k |gi, 7%)-

The common factor (—1)2 %™ can be ignored be-
cause it is global phase and it has no observable
effects. Thus previous equals to

\/%|0)|q1,r1) |k, i)
+%|1)(—1)Z?=1‘“"’J‘Iql,r’ﬁ law, ) =

\/%|0)|q1,r1) |k, i)

+%|1)(—1)”“ a,r) lax, })-

The user can get |z;) from this by returning every-
thing except the first qubit to 0 by using zero opera-
tor which maps any vector to zero vector, and then
applying Hadamard transform to the first qubit.
Hadamard transform operator is
1 1 1
i=5(0 4)

Now the qubit |z;) needs to be measured in compu-
tational basis that the user can learn classical bit
z;. He can’t learn anything else, since various states
during the protocol never depend on any other z;.
Note also that nowhere in the protocol the servers
have shared randomness. Plugging this in the best
known classical PIR schemes, due to [7], gives

there exists
shared ran-
complexity

Theorem 4 For every k > 2,
a honest-user QSPIR (without

domness)  with  communication
nOloglog(k)/klog(k))



6 Conclusions

We have gone over some specific classical PIR
schemes and how they can be transformed into
honest-user SPIR schemes and finally how they can
be made resistant to any kind of user behaviour.
Classical information theoretic SPIR schemes were
proved to be impossible without shared random-
ness among servers. Allowing user and servers have
quantum computers and possibility to communi-
cate with quantum bits made honest-user SPIR
schemes possible without shared randomness.
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