University of Tartu, Cryptography Research Seminar

Additive Conditional Disclosure of Secrets And Applications

Sven Laur Helsinki University of Technology, Finland

Helger Lipmaa

Cybernetica AS and University of Tartu, Estonia

Tartu/Crypto Seminar, 01.08.2005

Additive CDS, Sven Laur and Helger Lipmaa

<u>Outline</u>

- Motivation
- Previous Work
- New Construction
- Conclusions

Some Well-Known Public-Key Cryptosystems

- The old one: RSA
 - ★ Best known, most used
 - ★ Problems with security proofs, has only one instantiation, slow, lacks algebraic clarity
- The almost-as-old one: ElGamal
 - ★ Clear security proofs, many instantiations (e.g., ECC), some instantiations are relatively efficient
 - * Nice algebraic properties

ElGamal: Description

- Let G be a finite multiplicative group, and H be its subgroup of prime order, s.t. Decisional Diffie-Hellman Problem in H is difficult
 - $\begin{array}{ll} \star \mbox{ For example: } G = \mathbb{Z}_p, \ |p| = 1024, \ g \in \mathbb{Z}_p \ \mbox{s.t. } \ \log_2 \sharp \langle g \rangle \approx 160; \\ H := \langle g \rangle. \mbox{ Define } q := \sharp H \end{array}$
- $\bullet\,$ Fix a generator g of H as the system parameter
- \bullet Receiver generates a random secret key $sk_R \leftarrow \mathbb{Z}_q,$ and sets $pk_R \leftarrow g^{sk_R}$
- Encryption: $E_{pk_R}(m;r) = (m \cdot pk_R^r, g^r)$ where $r \leftarrow \mathbb{Z}_q$
- Decryption: given $E_{pk_R}(m;r)=(u,v)=(m\cdot pk_R^r,g^r)$ and sk_R , compute $u/v^{sk_R}=m$

Indistinguishability against Chosen Plaintext Attacks

- Choose a random key pair (sk, pk), give pk to Adversary
- Adversary generates two plaintexts m_0, m_1 and gives them to Bob
- Bob tosses a coin, $b \leftarrow \{0,1\}$, chooses a random $r \leftarrow \mathbb{Z}_q$, and sends $E_{pk}(m_b;r)$ to Adversary
- Adversary outputs b'
- Adversary (τ, ε) -breaks IND-CPA security if it works in time τ and $\Pr[\mathbf{b} = \mathbf{b}'] \ge \varepsilon$
- Fact: ElGamal is IND-CPA secure (given DDH assumption)

ElGamal Is Homomorphic

• A pkc is multiplicatively homomorphic if

 $E_{pk}(m_0;r_0) \cdot E_{pk}(m_1;r_1) = E_{pk}(m_0m_1;\cdot)$

• ElGamal is multiplicatively homomorphic: given

 $\mathbf{E}_{\mathbf{pk}}(\mathbf{m}_0;\mathbf{r}_0) = (\mathbf{m}_0 \cdot \mathbf{pk}^{\mathbf{r}_0}, \mathbf{g}^{\mathbf{r}_0})$

and

$$E_{pk}(m_1;r_1) = (m_1 \cdot pk^{r_1},g^{r_1})$$
,

 $E_{pk}(m_0;r_0)E_{pk}(m_1;r_1) = (m_0m_1 \cdot pk^{r_0+r_1},g^{r_0+r_1}) = E_{pk}(m_0m_1;r_0+r_1)$

Why Does Homomorphism Help?

- 1. Receiver sends $E_{pk_R}(\varrho; \mathbf{r})$ to Sender, who returns $E_{pk_R}(\varrho; \mathbf{r})^{\sigma} = E_{pk_R}(\varrho^{\sigma}; \cdot)$, Receiver gets back ϱ^{σ} without knowing σ
- 2. Receiver sends $(E_{pk_R}(\varrho_i; r_i))_{i \in [N]}$ to Sender, who returns $\prod E_{pk_R}(\varrho_i; r_i)^{\sigma_i} = E_{pk_R}(\prod \varrho_i^{\sigma_i}; \cdot)$
- 3. Receiver sends $E_{pk_R}(\varrho; \mathbf{r})$ to Sender, who returns (* is a random element)

$$\begin{split} (\mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\varrho;\mathbf{r})/\mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\sigma;\mathbf{anything}))^* \cdot \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(1;*) &= \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}((\varrho/\sigma)^*;*) \\ &= \begin{cases} \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(1;*) \ , \ \varrho = \sigma \\ \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(*;*) \ , \ \varrho \neq \sigma \end{cases}. \end{split}$$

⇒ In general, Receiver and Sender can compute on ciphertexts

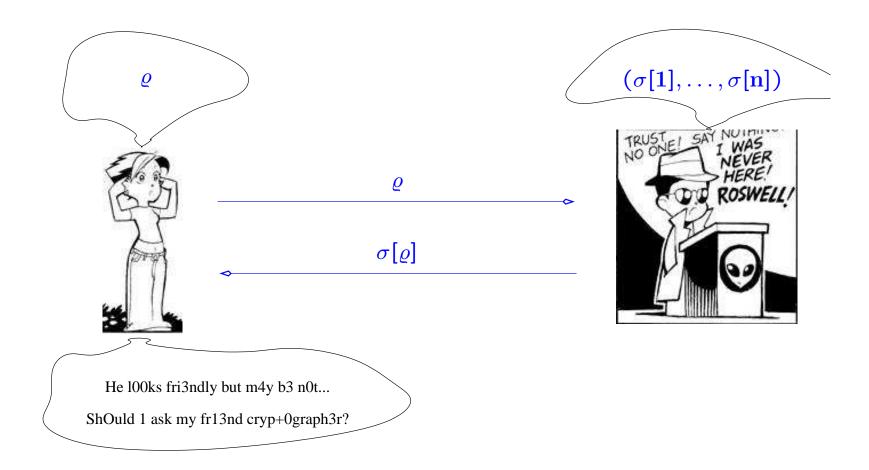
Oblivious Transfer: Vots Dat?

* Parental advisory: this is not the only application of OT. Stay tuned!

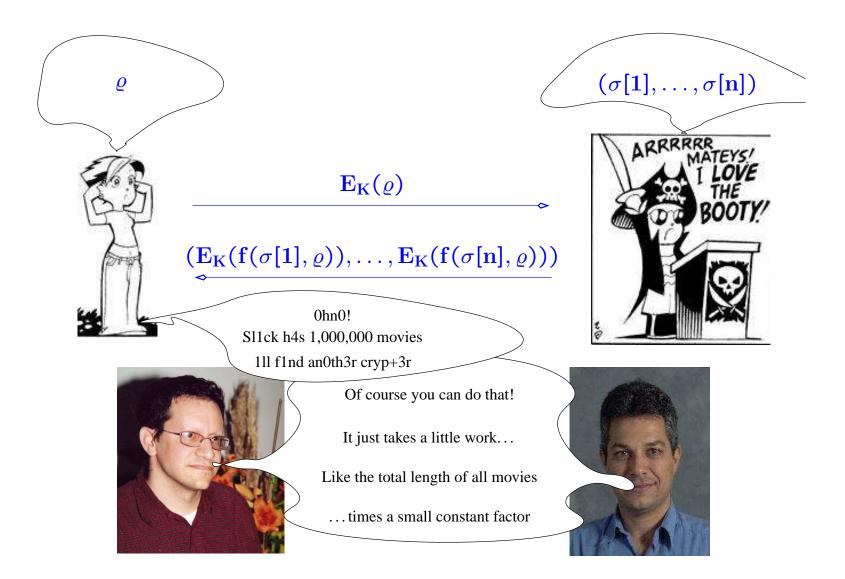
Tartu/Crypto Seminar, 01.08.2005

Additive CDS, Sven Laur and Helger Lipmaa

Oblivious Transfer: Vots Dat?



Oblivious Transfer: Vots Dat?



Additive CDS, Sven Laur and Helger Lipmaa

AIR Oblivious Transfer Protocol

 OT: Receiver has input *ρ* ∈ [N], Sender has input *σ* = (*σ*[1],...,*σ*[N]). Receiver obtains *σ*[*ρ*] without getting *any extra* information on *σ*; Sender gets *no* information about *ρ*

AIR Oblivious Transfer Protocol

- OT: Receiver has input $\varrho \in [N]$, Sender has input $\sigma = (\sigma[1], \ldots, \sigma[N])$.
- Receiver sends $E_{pk_{R}}(\varrho; r)$ to Sender
- For any $j \in [N]$, Sender returns

$$\begin{split} \mathbf{c_j} \leftarrow (\mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\varrho;\mathbf{r})/\mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\mathbf{j};\mathbf{anything}))^* \cdot \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\sigma[\mathbf{j}];*) \\ = \begin{cases} \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\sigma[\mathbf{j}];*) \ , & \varrho = \mathbf{j} \\ \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(*;*) \ , & \varrho \neq \mathbf{j} \end{cases} \end{split}$$

- Receiver decrypts \mathbf{c}_{ϱ} , obtaining $\sigma[\varrho]$
- Note that if $\varrho \not\in [N]$ then $D_{sk_R}(c_j)$ is a random element of H for all $j \in [N]$

Need More!

- Consider scalar product computation: answer = $\sum_{i} \rho_i \sigma_i$
- Recall a previous protocol:
 - \star Receiver sends $(E_{pk_R}(\varrho_i;r_i))_{i\in[N]}$ to Sender
 - * Sender returns $\prod E_{pk_R}(\varrho_i; r_i)^{\sigma_i} = E_{pk_R}(\prod \varrho_i^{\sigma_i}; \cdot)$
- Not yet SP but close but no cigar...

Need More!

- Receiver sends $(E_{pk_R}(g^{\varrho_i}; r_i))_{i \in [N]}$ to Sender Sender returns $\prod E_{pk_R}(g^{\varrho_i}; r_i)^{\sigma_i} = E_{pk_R}(g^{\sum \varrho_i \sigma_i}; \cdot)$
- Receiver obtains SP by computing discrete logarithm of $\mathbf{g}^{\sum \varrho_{\mathbf{i}} \sigma_{\mathbf{i}}}$
- Might be useful if $\sum \rho_i \sigma_i$ is *small* which is the case *sometimes*
- DL is a lift from a multiplicative group H to an additive group \mathbb{Z}_q
- We often need a cryptosystem that is *additively homomorphic*: $E_{pk}(m_0; r_0)E_{pk}(m_1; r_1) = E_{pk}(m_0 + m_1; \cdot)$, i.e., that works directly in \mathbb{Z}_q (without a lift)

Paillier Cryptosystem

- For random large primes p and q, set n ← pq. n is public key, (p,q) is secret key.
- Encryption: $c = E_{pk}(m; r) := (1 + mn)r^n \mod n^2$
- Additive homomorphism:

 $\begin{array}{l} (1+m_0n)(1+m_1n)r_0^nr_1^n \\ \qquad = (1+(m_0+m_1)n)(r_0r_1)^n \mod n^2 \end{array}$

• Paillier PKC is IND-CPA secure if given a random $y\in\mathbb{Z}_{n^2}$ it is hard to decide if y is an nth residue (DCRP)

Scalar Product With Additive Homomorphism

- Consider scalar product computation: answer = $\sum_{i} \varrho_i \sigma_i$
- Multiplicative homomorphism: Receiver sends $(E_{pk_R}(\varrho_i; r_i))_{i \in [N]}$ to Sender Sender returns $\prod E_{pk_R}(\varrho_i; r_i)^{\sigma_i} = E_{pk_R}(\prod \varrho_i^{\sigma_i}; \cdot)$
- Additive homomorphism: Receiver sends $(E_{pk_R}(\varrho_i; r_i))_{i \in [N]}$ to Sender Sender returns $\prod E_{pk_R}(\varrho_i; r_i)^{\sigma_i} = E_{pk_R}(\sum \varrho_i \sigma_i; \cdot)$
- Receiver recovers $\sum \rho_i \sigma_i$ by decrypting the result
- Security?

- Sender only sees random encryptions of some elements
- Thus, if Sender can break Receiver's privacy (guess which elements he sees) then he can also break IND-CPA security of PKC
- ⇒ Protocol is computationally Receiver-private, if PKC is IND-CPA secure
 - What about Sender's privacy?

SP: Sender's Privacy

• If we are computing SP of Boolean values, then Sender's privacy is protected given that Receiver inputs correct values

★ If $\varrho_i \in \{0, 1\}$ then the only value Receiver sees is $\sum \varrho_i \sigma_i$, the scalar product

• If $\varrho_i \notin \{0, 1\}$ then Receiver recovers more information:

$$\star$$
 Take $arrho_{\mathbf{i}} \leftarrow \mathbf{2^{i-1}}$

* $1\sigma_1 + 2\sigma_2 + 4\sigma_3 + \dots$ reveals Sender's input!

SP: Security (2)

- We established: Sender's privacy is guaranteed if Receiver's inputs belong to valid input sets, *ρ*_i ∈ Valid(i)
- Standard way to guarantee Sender's privacy: Receiver proves in zeroknowledge that her inputs are correct

 \star E.g., Receiver proves that $\varrho_i \in \{0,1\}$ for all $i \in [N]$

- Unfortunately, zero-knowledge protocols take 3+ rounds
- Non-interactive zero-knowledge requires non-standard assumptions (random oracle, ...)
- We would like to stick to the minimum assumption that PKC is IND-CPA secure *and* have a one-round protocol

Recall: AIR Oblivious Transfer Protocol

- OT: Receiver has input $\varrho \in [N]$, Sender has input $\sigma = (\sigma[1], \ldots, \sigma[N])$.
- Receiver sends $E_{pk_{R}}(\varrho; r)$ to Sender // pkc is mult. homomorphic
- For any $j \in [N]$, Sender returns

$$\begin{split} \mathbf{c_j} \leftarrow (\mathbf{E}_{pk_R}(\varrho; \mathbf{r}) / \mathbf{E}_{pk_R}(\mathbf{j}; \mathbf{anything}))^* \cdot \mathbf{E}_{pk_R}(\sigma[\mathbf{j}]; *) \\ = \begin{cases} \mathbf{E}_{pk_R}(\sigma[\mathbf{j}]; *) \ , & \varrho = \mathbf{j} \\ \mathbf{E}_{pk_R}(*; *) \ , & \varrho \neq \mathbf{j} \end{cases} . \end{split}$$

- Receiver decrypts c_j , obtaining $\sigma[j]$
- Note that if $\varrho \notin [N]$ then $D_{sk_{R}}(c_{j})$ is a random element of H

AIR Protocol for Arbitrary Index Ranges

- OT: Receiver has input *ρ* ∈ S, Sender has input *σ* = (*σ*[j])_{j∈S}. Receiver obtains *σ*[*ρ*] without getting any extra information on *σ*; Sender gets no information about *ρ*
- Receiver sends $E_{pk_{R}}(\varrho; r)$ to Sender // pkc is mult. homomorphic
- For any $\mathbf{j} \in \mathbf{S}$, Sender returns $\mathbf{c_j} \leftarrow (\mathbf{E_{pk_R}}(\varrho; \mathbf{r}) / \mathbf{E_{pk_R}}(\mathbf{j}; \mathbf{anything}))^* \cdot \mathbf{E_{pk_R}}(\sigma[\mathbf{j}]; *)$ $= \begin{cases} \mathbf{E_{pk_R}}(\sigma[\mathbf{j}]; *) , & \varrho = \mathbf{j} \\ \mathbf{E_{pk_R}}(*; *) , & \varrho \neq \mathbf{j} \end{cases}$.
- Receiver decrypts c_j , obtaining $\sigma[j]$
- Note that if $\varrho \not\in S$ then $D_{sk_{R}}(c_{j})$ is a random element of H

Conditional Disclosure of Secrets: Idea

- Any AH one-round protocol: Receiver has inputs $(\varrho_1, \ldots, \varrho_M) \in Valid(1)$ $\times \cdots \times Valid(M)$, Sender has input $(S[1], \ldots, S[N])$. Receiver obtains $(f_1(\varrho, S), \ldots, f_L(\varrho, S))$ without getting any extra information on S; Sender gets no information about ϱ
- Protocol goal:
 - * For any $j \in [M]$, Receiver sends $E_{pk_{R}}(\varrho_{j}; r)$ to Sender

$$\star \text{ For any } \mathbf{j} \in [\mathbf{L}], \text{ Sender returns } \mathbf{c_j} = \begin{cases} \mathbf{E_{pk_R}}(\mathbf{f_j}(\varrho, \mathbf{S}); \ast), & \varrho_\mathbf{j} \in \mathbf{Valid}(\mathbf{j}) \\ \mathbf{E_{pk_R}}(\ast; \ast), & \varrho_\mathbf{j} \notin \mathbf{Valid}(\mathbf{j}) \end{cases}$$

* For any $j \in [L]$, Receiver decrypts c_j , obtaining $f_j(\varrho, S)$

• But how to construct such a protocol?

CDS: La Technique

- For any $j \in [M]$, Receiver sends $E_{pk_R}(\varrho_j; r)$ to Sender
- For any $i \in [M]$, $j \in [L]$: Sender generates a new random string t_{ij} , and performs AIR OT on a database S_{ij} , where $S_{ij}[k] = t_{ij}$ for $k \in Valid(i)$. Receiver gets back encryptions of t_{ij} , $j \in [L]$, iff $\varrho_i \in Valid(i)$
- For any $j \in [L]$, Sender computes c_j , a random encryption of $f_j(\varrho, \sigma)$. Sender sends $c'_j \leftarrow c_j \cdot E_{pk_R}(\sum_{i \in [M]} t_{ij}; *)$ to Receiver.
- If Receiver's *all* inputs were valid then she knows all values $\sum t_{ij}$ and thus can obtain $f_i(\varrho, \sigma)$ for *all* j. If *any* input was invalid, she obtains *no* answer
- Thus, this compound protocol is Sender-private!

Done? Not Yet!

- AIR OT uses multiplicatively homomorphic PKC not important, can work with an additive one
- AIR OT runs in a group H of prime order, while Paillier plaintexts belong to Zpq! — problem
- Thus, CDS-transformed protocols are Sender-private if
 - * AIR OT is secure (=EIGamal is IND-CPA secure=DDH is hard) and
 - ★ Paillier is IND-CPA secure (=DCRP is hard)
- $\bullet\,$ Can we use AIR over a composite modulus ${\bf n}?$

Recall: AIR Oblivious Transfer Protocol

- OT: Receiver has input *ρ* ∈ [N], Sender has input *σ* = (*σ*[1],...,*σ*[N]). Receiver obtains *σ*[*ρ*] without getting any extra information on *σ*; Sender gets no information about *ρ*
- Receiver sends $E_{pk_{R}}(\varrho; r)$ to Sender // Additively homomorphic pkc
- For any $\mathbf{j} \in [\mathbf{N}]$, Sender generates $\mathbf{r}_{\mathbf{j}} \leftarrow \mathbb{Z}_{\mathbf{q}}$ and returns $\mathbf{c}_{\mathbf{j}} \leftarrow (\mathbf{E}_{\mathbf{pk}_{R}}(\varrho; \mathbf{r}) / \mathbf{E}_{\mathbf{pk}_{R}}(\mathbf{j}; \mathbf{0}))^{\mathbf{r}_{\mathbf{j}}} \cdot \mathbf{E}_{\mathbf{pk}_{R}}(\sigma[\mathbf{j}]; *)$ $= \begin{cases} \mathbf{E}_{\mathbf{pk}_{R}}(\sigma[\mathbf{j}]; *), & \varrho = \mathbf{j} \\ \mathbf{E}_{\mathbf{pk}_{R}}(*; *), & \varrho \neq \mathbf{j} \end{cases}$.
- Receiver decrypts c_j , obtaining $\sigma[j]$
- Wrong! **n** is composite, and Sender does not know **q**!

AIR Oblivious Transfer Protocol with Composite Modulus?

- OT: Receiver has input *ρ* ∈ [N], Sender has input *σ* = (*σ*[1],...,*σ*[N]). Receiver obtains *σ*[*ρ*] without getting any extra information on *σ*; Sender gets no information about *ρ*
- Receiver sends $E_{pk_{R}}(\varrho; r)$ to Sender // Additively homomorphic pkc
- For any $\mathbf{j} \in [\mathbf{N}]$, Sender generates $\mathbf{r_j} \leftarrow \mathbb{Z}_{\mathbf{n}}$ and returns $\mathbf{c_j} \leftarrow (\mathbf{E}_{pk_R}(\varrho; \mathbf{r}) / \mathbf{E}_{pk_R}(\mathbf{j}; \mathbf{0}))^{\mathbf{r_j}} \cdot \mathbf{E}_{pk_R}(\sigma[\mathbf{j}]; *)$ $= \begin{cases} \mathbf{E}_{pk_R}(\sigma[\mathbf{j}]; *), & \varrho = \mathbf{j} \\ \mathbf{E}_{pk_P}(*; *), & \varrho \neq \mathbf{j} \end{cases}$.
- Receiver decrypts c_j , obtaining $\sigma[j]$
- Better?

Still Wrong!

• For any $j \in [N],$ Sender generates $r_j \leftarrow \mathbb{Z}_n$ and returns

$$\begin{split} \mathbf{c_j} \leftarrow (\mathbf{E}_{\mathbf{pk_R}}(\varrho;\mathbf{r})/\mathbf{E}_{\mathbf{pk_R}}(\mathbf{j};\mathbf{0}))^{\mathbf{r_j}} \cdot \mathbf{E}_{\mathbf{pk_R}}(\sigma[\mathbf{j}];*) \\ = \begin{cases} \mathbf{E}_{\mathbf{pk_R}}(\sigma[\mathbf{j}];*), & \varrho = \mathbf{j} \\ \mathbf{E}_{\mathbf{pk_R}}(*;*), & \varrho \neq \mathbf{j} \end{cases} \end{split}$$

- Attack: Suppose ϱ is such that $\varrho \equiv i_1 \pmod{p}$ and $\varrho \equiv i_2 \pmod{q}$, for $i_1 \neq i_2 \in [N]$
- Receiver obtains $\mathbf{b}_1 \leftarrow (\mathbf{i}_1 \varrho)^{\mathbf{r}_{i_1}} + \sigma[\mathbf{i}_1] \mod \mathbf{pq}$ and $\mathbf{b}_2 \leftarrow (\mathbf{i}_2 \varrho)^{\mathbf{r}_{i_2}} + \sigma[\mathbf{i}_2] \mod \mathbf{pq}$
- Now, $\mathbf{b_1} \equiv \sigma[\mathbf{i_1}] \mod \mathbf{p}$ and $\mathbf{b_2} \equiv \sigma[\mathbf{i_2}] \mod \mathbf{q}$, thus Receiver got information about both $\sigma[\mathbf{i_1}]$ and $\sigma[\mathbf{i_2}]!$

New OT Protocol

- Fix "suitable" $\ell \ (\ell \approx 433$ is sufficient)
- Receiver sends $E_{pk_R}(\varrho; r)$ to Sender // Additively homomorphic pkc
- For any $j \in [N]$, Sender generates $r_j \leftarrow \mathbb{Z}_n$ and returns

$$\begin{split} \mathbf{c}_{\mathbf{j}} &\leftarrow (\mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\varrho;\mathbf{r})/\mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\mathbf{j};\mathbf{0}))^{\mathbf{r}_{\mathbf{j}}} \cdot \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\sigma[\mathbf{j}]+2^{\ell}\cdot *;*) \\ &= \begin{cases} \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\sigma[\mathbf{j}];*), & \varrho=\mathbf{j} \\ \mathbf{E}_{\mathbf{pk}_{\mathbf{R}}}(\mathbf{almost}\; *;*), & \varrho\neq\mathbf{j} \end{cases}. \end{split}$$

- Receiver decrypts c_j , obtaining $\sigma[j]$
- Note that if $\varrho \notin [N]$ then $D_{sk_{R}}(c_{j})$ is an almost random element of H

Applications I: Private SP

- Consider scalar product computation: answer = $\sum_{i} \varrho_i \sigma_i$
- Receiver sends $(E_{pk_R}(\varrho_i; r_i))_{i \in [N]}$ to Sender Sender returns $\prod E_{pk_R}(\varrho_i; r_i)^{\sigma_i} = E_{pk_R}(\sum \varrho_i \sigma_i; \cdot)$
- Receiver recovers $\sum \rho_i \sigma_i$ by decrypting the result
- If Receiver is malicious, then this is not Sender-private
- Private SP protocol is very popular in PPDM, see [GLLM04]
- Many other similar protocols (linear algebra, PPDM)

Scalar Product With Additive Homomorphism + CDS

- Consider scalar product computation: answer = $\sum_{i} \varrho_i \sigma_i$
- Receiver sends $(E_{pk_R}(\varrho_i; r_i))_{i \in [N]}$ to Sender Sender returns $\prod E_{pk_R}(\varrho_i; r_i)^{\sigma_i} = E_{pk_R}(\sum \varrho_i \sigma_i; \cdot)$
- Receiver recovers $\sum \rho_i \sigma_i$ by decrypting the result
- Add CDS: Receiver recovers $\sum \varrho_i \sigma_i$ only if her inputs were from correct sets
- Thus, we get Sender-privacy! (without any computational assumptions)

Applications II: Communication-Efficient OT

CPIR: Receiver has input *ρ* ∈ [N], Sender has input σ = (σ[1],...,σ[N]).
 Receiver obtains σ[*ρ*] with possibly getting more information about σ;

Sender gets no information about ϱ

• Lipmaa's CPIR [2005]: based on AH PKC, one round, secure if PKC is IND-CPA secure, communication $\Theta(\log^2 N)$

Applications II: Communication-Efficient OT

$\textbf{CPIR} \rightarrow \textbf{OT:}$

(1) Receiver sends first message of CPIR to Sender, (1') Receiver sends first message of the new OT to Sender
(2) Sender applies the new OT protocol to σ, getting database c = (c₁,..., c_N), *but does not send* c *to Receiver*. Instead, (2') Sender applies the CPIR protocol to c, sending some values back to Receiver

- Receiver obtains some ciphertexts, and recovers $\sigma[\varrho]$. In the original CPIR she also might have obtained more information, but due to use of the OT protocol "inside", this additional information will be gargage
- Result: OT protocol, based on AH PKC, one round, secure if PKC is IND-CPA secure, communication $\Theta(\log^2 N)$

Applications III: Millionaire's Problem

Receiver has 0 ≤ ρ < 2^ℓ, Sender has 0 ≤ σ < 2^ℓ. Receiver gets only to know if ρ > σ, Sender obtains no information

• Write
$$\varrho = \sum_{k=0}^{\ell-1} \varrho_k 2^k$$
, $\sigma = \sum_{k=0}^{\ell-1} \sigma_k 2^k$. Then $\varrho > \sigma$ iff

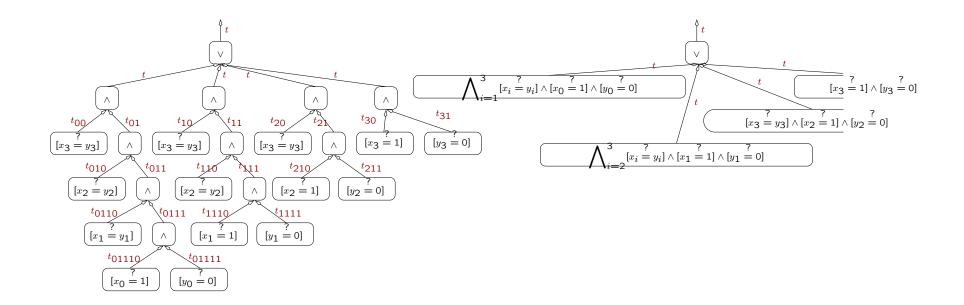
$$\begin{bmatrix} \varrho_{\ell-1} = 1 \land \sigma_{\ell-1} = 0 \end{bmatrix} \lor \\ ([\varrho_{\ell-1} = \sigma_{\ell-1}] \land [\varrho_{\ell-2} = 1 \land \sigma_{\ell-2} = 0]) \lor \\ \dots \\ ([\varrho_{\ell-1} = \sigma_{\ell-1}] \land [\varrho_1 = \sigma_1] \land [\varrho_0 = 1 \land \sigma_0 = 0]) .$$

- Write down a circuit where internal nodes correspond to ∨ and ∧ gates and leaves correspond to affine equality tests ∑ γ_{ij} ρ_i + δ_i = 0
- Use CDS on circuits; Receiver gets answer if some Boolean formula holds on her inputs

Applications III: Circuit Evaluation

- Assign a random secret to the output wire of the circuit
- $\forall \lor$ gate ψ : assign the output secret \mathbf{t}_{ψ} of ψ to every input wire of ψ
- $\forall \land$ gate ψ : Generate random t_1 and t_2 s.t. $t_1 + t_2 = t_{\psi}$, assign t_1 and t_2 to input wires
- Receiver transfers $E_K(\varrho_j; \cdot)$ for $j \in [\ell]$, Sender sends back $E_K(value_{\psi}; \cdot)$ for every conjunctive affine equality test
- Receiver obtains secrets, corresponding to tests that are consistent with her inputs
- Receiver recursively obtains inner secrets, finally receiving the output secret of the secret if her inputs were correct

Applications III: Circuit Evaluation



- Circuit on the left: protocol with communication $\Theta(\ell^2)$
- Circuit on the right: protocol with communication $\Theta(\ell)$

Conclusions

- CDS is a powerful tool, especially when coupled with AH PKC
- Goal 1: Popularise CDS
- Goal 2 (and a mean for goal 1): Propose efficient protocols for specific interesting problems
- OT, millionaire's, scalar product: can find efficient protocols for others, too
- All protocols are one-round, private if PKC is IND-CPA secure, and quite efficient

Any questions?

Caveat: This presentation is based on a draft version of the paper! Paper will be available in 1-2 weeks

Tartu/Crypto Seminar, 01.08.2005

Additive CDS, Sven Laur and Helger Lipmaa