Do Collisions Affect the Security of Time-Stamping?

Ahto Buldas

University of Tartu / Tallinn University of Technology / Cybernetica AS

Collisions and Collision-Resistance

 $\ell(k)$ – *polynomial parameter*, i.e. polynomially bounded ($\ell(k) = k^{O(1)}$) and poly-time computable function.

Let $h = \{h_k: \{0, 1\}^{\ell(k)} \to \{0, 1\}^k\}_{k \in \mathbb{N}}$ be a poly-time computable family of functions that is chosen according to a distribution \mathfrak{F} .

Collision-Resistance: For every poly-time adversary A:

$$\Pr[h \leftarrow \mathfrak{F}, (x_1, x_2) \leftarrow \mathsf{A}(1^k, h): \ x_1 \neq x_2, \ h(x_1) = h(x_2)] = k^{-\omega(1)}$$

Second Preimage Resistance

Sec – 2nd preimage resistance: For every poly-time A: $\Pr[X \underset{\mathcal{U}}{\leftarrow} \{0, 1\}^{\ell(k)}, X' \leftarrow \mathsf{A}(X): X' \neq X, h(X') = h(X)] = k^{-\omega(1)}.$

eSec – everywhere 2nd preimage resistance: For every poly-time A:

$$\max_{x \in \{0,1\}^{\ell(k)}} \Pr[X' \leftarrow \mathsf{A}(1^k): X' \neq x, h(X') = h(x)] = k^{-\omega(1)}$$

Rogaway and Shrimpton (2004): almost exhaustive study about "classical" security conditions of hash functions.

Recent Success in Finding Collisions ...

Eurocrypt 2005: Wang et al presented efficient collision-finding attacks for most of the known practical hash functions.

What does this mean for the numerous applications in which hash functions are used as a building block?

Does it mean that "broken" hash functions cannot be used in time-stamping schemes?

We show that *neither collision resistance nor 2nd pre-image resistance is necessary for secure time-stamping*.

Time-Stamping with Hash Functions

Verifying a certificate: Compute $y_2 = F_h(x_2; c_2) = h(h(x_1, x_2), z_1)$, obtain r_t , and check if $y_2 = r_t$.

Back-Dating Attack and Chain-Resistance

Chain – *chain-Resistance (of h)*: For every poly-time $A = (A_1, A_2)$ and for every unpredictable (poly-sampleable) distribution family $\{D_k\}_{k \in \mathbb{N}}$:

$$\Pr[(r,a) \leftarrow A_1(1^k), x \leftarrow \mathcal{D}_k, c \leftarrow A_2(x,a): F_h(x,c) = r] = k^{-\omega(1)}.$$

Client-Side Hash Functions

 $H: \{0,1\}^{\ell(k)} \rightarrow \{0,1\}^k$ a hash function.

Secure (H, h)-time stamping: For every poly-time $A = (A_1, A_2)$ and for every unpredictable distribution family \mathcal{D}_k on $\{0, 1\}^{\ell(k)}$:

 $\Pr[(r,a) \leftarrow \mathsf{A}_1(1^k), X \leftarrow \mathcal{D}_k, c \leftarrow \mathsf{A}_2(x,a): F_h(H(x),c) = r] = k^{-\omega(1)}.$

Chain-resistance of h is *necessary* for secure (H, h)-time-stamping, but it is not known whether it is *sufficient* (if H is collision-resistant).

Buldas, Saarepera (2004): If H and h are collision-resistant then a (H, h)-time-stamping is secure in the "restricted chain model".

Buldas, Laud, Saarepera, Willemson (2005): If H and h are collision-resistant then a (H, h)-time-stamping scheme with an *additional audit func-tionality* is secure.

Chain-Resistance vs Collision-Resistance

Buldas, Saarepera (2004): "*h* is collision-resistant $\Rightarrow h$ is chain-resistant" cannot be proved in a (conventional) black-box way.

It is still not known whether chain-resistant functions can be constructed from collision-resistant ones.

(Unpublished result) Collision-resistance and "shortcut-freedom" together imply chain-resistance.

Does chain-resistance imply collision-resistance, i.e. is collision-resistance of h (and of H) necessary for secure time-stamping ?

Shortcuts of the Previous Security Definitions

Chain-resistance of h and collision-resistance of H do not imply secure (H, h)-time-stamping scheme.

The back-dating component A_2 of the adversary does not "communicate" with \mathcal{D} , which is not necessarily true in practice – During the choice $x \leftarrow \mathcal{D}$, the adversary may store some extra information about x, which may be useful for A_2 in back-dating x.

New Results

New security condition for (H, h)-time-stamping schemes that gives more power to the adversary.

New stronger condition eChain – everywhere chain resistance – (for h), which is sufficient for time-stamping.

New weaker (everywhere) 2nd pre-image resistance condition ueSec, which is necessary for both h and H, and sufficient for H (if h is eChain).

We prove that collision-resistance as well as 2nd preimage resistance are unnecessary for the security of time-stamping:

- We prove that ueSec does not imply 2nd preimage resistance
- We show that eChain probably does not imply 2nd preimage resistance

New Security Definition

 $FPU_{\ell(k)}$ – class of all poly-sampleable distribution families $\{A_k\}_{k\in\mathbb{N}}$ on $\{0,1\}^{\ell(k)} \times \{0,1\}^*$, the first component of which is unpredictable.

Secure (H, h)-time-stamping system – $\forall A_k \in FPU_{\ell(k)}$:

$$\varepsilon(k) = \max_{r \in \{0,1\}^k} \Pr[(X,c) \leftarrow \mathcal{A}_k: F_h(H(X);c) = r] = k^{-\omega(1)}$$

New condition implies the old one: Let $(A_1, A_2) \in FP$ have success

$$\delta(k) = \Pr[(r, a) \leftarrow A_1(1^k), X \leftarrow \mathcal{D}, c \leftarrow A_2(X, r, a): F_h(H(X); c) = r] .$$

Define \mathcal{A}_k so that after simulating (A_1, A_2) it outputs (X, c). Then we have \mathcal{A}_k with $\varepsilon(k) \geq \delta(k)$. \Box

Unpredictability Preservation

 $H: \{0, 1\}^{\ell(k)} \to \{0, 1\}^k$ is *unpredictability preserving*, if for every $\mathcal{D}_k \in FPU_{\ell(k)}$, the distribution $H(\mathcal{D})$ is unpredictable.

Polynomial sampleability of \mathcal{D}_k is crucial:

Proposition: For every hash function H_k : $\{0, 1\}^{\ell(k)} \to \{0, 1\}^k$ with $\ell(k) = k + \omega(\log k)$ there exists a distribution family \mathcal{D}_k with Rényi entropy $H_2[\mathcal{D}_k] = \omega(\log k)$, such that $H_2[H(\mathcal{D}_k)] = 0$.

Indeed, there exists $y \in \{0, 1\}^k$ for which

$$|H^{-1}(y)| = \frac{2^{k+\omega(\log k)}}{2^k} = k^{\omega(1)}$$

Define \mathcal{D}_k as the uniform distribution on $H^{-1}(y)$. \Box

Unpredictability Preservation Is Necessary for H

Theorem 1: In every secure (H, h)-time-stamping system, the client-side hash function H is unpredictability-preserving. *Proof.* If Π is a predictor for $H(\mathcal{D})$ with success

$$\pi(k) = \Pr[X' \leftarrow \Pi(1^k), X \leftarrow \mathcal{D}: X' = H(X)] .$$

Define $A_1(1^k) \equiv \Pi(1^k)$ and $(\mathcal{D}, ||) \leftarrow A_2(...)$. The success of (A_1, A_2) is $\pi(k)$. \Box

Every collision-resistant function is unpredictability-preserving.

2nd preimage resistance does not imply unpredictability-preservation.

Insufficiency of 2nd Pre-Image Resistance

Let $H: \{0, 1\}^{\ell(k)} \to \{0, 1\}^k$ be 2nd preimage resistant hash function $(\ell(k) = k + \omega(\log k)).$

We construct a function $H': \{0,1\}^{\ell'(k)} \to \{0,1\}^k$ which is 2nd preimage resistant but not unpredictability-preserving.

Let
$$\ell'(k) = \ell(k-1)$$
 for all $k > 1$, and for every $X \in \{0, 1\}^{\ell'(k)}$:

$$H'_k(X) = \begin{cases} 0^k & \text{if } X = 0^{k-1} ||X_1 \text{ for an } X_1 \in \{0, 1\}^{\ell(k)-k} \\ 1 ||H_{k-1}(X) & \text{otherwise.} \end{cases}$$

Define \mathcal{D} on $\ell'(k)$, so that $\mathcal{D}_k = 0^{k-1} || \mathcal{U}_{\ell(k-1)-k+1}$. \mathcal{D} is unpredictable, because it has Rényi entropy $H_2(\mathcal{D}_k) = \ell(k-1) - k + 1 = \omega(\log k)$.

Everywhere Chain-Resistance and Security

eChain – everywhere chain-resistance – $\forall A_k \in FPU_k$:

$$\varepsilon(k) = \max_{r \in \{0,1\}^k} \Pr[(x,c) \leftarrow \mathcal{A}_k: F_h(x;c) = r] = k^{-\omega(1)}$$

Theorem 2: For secure (in the new sense) (H, h)-time-stamping, it is sufficient that *h*-is everywhere chain-resistant and *H* is unpredictability-preserving.

Proof. Let $A_k \in FPU_{\ell(k)}$, such that

$$\epsilon(k) = \max_{r \in \{0,1\}^k} \Pr[(X,c) \leftarrow \mathcal{A}_k: F_h(H(X);c) = r] \neq k^{-\omega(1)}$$

Define \mathcal{A}'_k so that $(H(x), c) \leftarrow \mathcal{A}'_k$ iff $(x, c) \leftarrow \mathcal{A}_k$. We have $\mathcal{A}'_k \in FPU_k$, because H is unpredictability preserving. Obviously, \mathcal{A}_k breaks h in the sense of eChain with success $\epsilon(k)$. \Box

Weak Everywhere 2nd Preimage Resistance

ueSec – weak everywhere 2nd preimage resistance: For every distribution family $A_k \in FPU_{\ell(k)}$:

$$\max_{X \in \{0,1\}^{\ell(k)}} \Pr[X' \leftarrow \mathcal{A}_k: X' \neq X, H(X') = H(X)] = k^{-\omega(1)}$$

We show that:

- ueSec is weaker than 2nd preimage resistance.
- ueSec is equivalent to unpredictability preservation (uPre).

ueSec Is Weaker Than 2nd Preimage Resistance

Theorem 3: If there are hash functions that are ueSec then there are hash functions which are ueSec but not 2nd preimage resistant.

Let $H: \{0, 1\}^{\ell(k)} \to \{0, 1\}^k$ be ueSec-secure. Define H'(X) = H(X or 1). Obviously, H' is not 2nd preimage resistant. To show that H' is ueSec, let $\mathcal{A}_k \in \mathsf{FPU}_{\ell(k)}$ and $X \in \{0, 1\}^{\ell(k)}$, so that

$$\delta(k) = \Pr[X' \leftarrow \mathcal{A}_k: X' \neq X, H'(X') = H'(X)] = p_{\Pi} + p_C ,$$

where $p_{\Pi} = \Pr[X' \text{ or } 1 = X \text{ or } 1] = k^{-\omega(1)} (\mathcal{A}_k \text{ is uPre}) \text{ and } 1$

where $p_{\Pi} = \Pr_{X' \leftarrow \mathcal{A}_k} [X' \text{ or } 1 = X \text{ or } 1] = k^{-\omega(1)} (\mathcal{A}_k \text{ is uPre}) \text{ and }$

$$p_C = \Pr_{X' \leftarrow \mathcal{A}_k} [X' \text{ or } 1 \neq X \text{ or } 1, H(X' \text{ or } 1) = H(X \text{ or } 1)] = k^{-\omega(1)} ,$$

because otherwise $\mathcal{A}'_k = (\mathcal{A}_k \text{ or } 1)$ breaks H in terms of ueSec (take X or 1 instead of X). Therefore, $\delta(k) = k^{-\omega(1)}$. \Box

ueSec vs Unpredictability-Preservation

ueSec \Rightarrow uPre: Let \mathcal{D}_k be unpredictable and Π be a predictor for $H(\mathcal{D}_k)$ with success $\pi(k) = \Pr[y \leftarrow \Pi(1^k), X' \leftarrow \mathcal{D}_k: y = H(X')] \neq k^{-\omega(1)}$. Therefore,

$$\max_{X \in \{0,1\}^{\ell(k)}} \Pr[X' \leftarrow \mathcal{D}_k: H(X') = H(X)] \ge \pi(k) \neq k^{-\omega(1)} .$$

$$\Pr_{\substack{X' \leftarrow \mathcal{D}_k}} [H(X') = H(X)] = \prod_{\substack{X' \leftarrow \mathcal{D}_k}} [X' = X] + \Pr_{\substack{X' \leftarrow \mathcal{D}_k}} [X' \neq X, H(X') = H(X)] .$$

As the first probability is negligible (\mathcal{D}_k is unpredictable), the second one is non-negligible and hence \mathcal{D}_k breaks H in the sense of ueSec. \Box

ueSec vs Unpredictability-Preservation

uPre \Rightarrow ueSec: Let $\mathcal{A}_k \in FPU_{\ell(k)}$ and $X \in \{0, 1\}^{\ell(k)}$ so that

$$\delta(k) = \Pr_{X' \leftarrow \mathcal{A}_k} [X' \neq X, H(X') = H(X)] \neq k^{-\omega(1)}$$

Therefore, $\Pr_{X' \leftarrow \mathcal{A}_k} [H(X') = H(X)] \ge \delta(k) \neq k^{-\omega(1)}$ and we can define a predictor $\Pi(1^k)$ for $H(\mathcal{A}_k)$ with output distribution $H(\mathcal{A}_k)$. This predictor has success:

$$\pi(k) = \Pr[X' \leftarrow \mathcal{A}_k, X'' \leftarrow \mathcal{A}_k: H(X'') = H(X')] \ge \delta^2(k) \neq k^{-\omega(1)}$$

Hence, H is not unpredictability-preserving. \Box

h Is Not Necessarily Collision-Resistant

Theorem 4: For every secure (H, h)-time-stamping scheme, there is a secure (H, h')-time-stamping, where h' is not collision-resistant.

Define h', which behaves as h, except that $h'(0^k 1^k) = 0^k = h'(1^k 0^k)$. Let $\mathcal{A}_k \in FPU_{\ell(k)}$ be an adversary with success

$$\varepsilon(k) = \max_{r \in \{0,1\}^k} \Pr[(X,c) \leftarrow \mathcal{A}_k: F_{h'}(H(X);c) = r] \neq k^{-\omega(1)}$$

Let S be the event that \mathcal{A}_k is successful and c comprises 0^k or 1^k as intermediate values. \mathcal{A}'_k simulates $(X, c) \leftarrow \mathcal{A}_k$ and outputs (X, c'), where c' is the left segment of c until the first 0^k or 1^k .

If $\Pr[S] \neq k^{-\omega(1)}$ then \mathcal{A}'_k breaks (H, h)-time-stamping (for $r \in \{0^k, 1^k\}$). If $\Pr[S] = k^{-\omega(1)}$ then \mathcal{A}_k breaks (H, h)-time-stamping. A contradiction.

h Is Not Necessarily 2nd Preimage Resistant

We are unable to show this explicitly – hard to find a specific h' (as above). We use *oracle separation*.

Define h as a randomly chosen function. Let \mathcal{O}_h be an oracle which on input $x \in \{0, 1\}^{2k}$ outputs (x', y), where y = h(x) and $x' \underset{\mathcal{U}}{\leftarrow} h^{-1}(y)$.

We show that, relative to random \mathcal{O}_h , the function h (computed by calling $(x', y) \leftarrow \mathcal{O}(x)$ and returning y) is everywhere chain-resistant.

We use a counting argument to show that this remains so for a fixed (non-random) oracle \mathcal{O} .

There exist no 'generic attacks' that break (H, h)-time-stamping schemes by using arbitrary 2nd pre-image finders for h (when h is viewed as a blackbox).