
Designated Verifier Signature Schemes - An Overview

Liina Kamm

October 10, 2005

Structure

• The Jakobsson-Sako-Impagliazzo Scheme

• Security notions for DVS schemes

• DVS Scheme with tight reduction to DDH in NPRO

• Universal Designated Verifier Signature Scheme Without RO

• Security notions for UDVS

1

Problem statement

• Alice wants to prove Θ to Bob.

• Alice wants to prove Θ only to Bob.

• Cindy cannot know what was proved by Alice.

• Alice will prove Θ ∨ ΦBob to Bob.

• Cindy?

2

The Jakobsson-Sako-Impagliazzo (JSI) DVS scheme

• Undeniable signatures

• Trap-door commitment schemes

• Interactive and non-interactive designated verifier proofs

• Extension to multiple designated verifiers

• Strong designated verifier

3

Undeniable signatures

The challenge/response protocol:

• x, gx, z = mx

• Initial challenge za(gx)b

• Response equalsmagb?

• Choose c and d.

• Response (r1g
−b)c = (r2g

−d)a

• Probability p−1

4

Trap-door commitment schemes

Definition 1. Let c be a function with input (yi, w, r), where yi is the public key of

the user who will be able to invert c. The secret key corresponding to yi is xi,

w ∈W is the value committed to and r a random string. We say that c is a

trap-door commitment scheme if and only if

1. no polynomial-time machine can, given yi, find a collision (w1, r1), (w2, r2)

such that c(yi, w1, r1) = c(yi, w2, r2)

2. no polynomial-time machine can, given yi and c(yi, w, r), output w.

3. there is a polynomial-time machine that given any quadruple (xi, w1, r1, w2)

in the set of possible quadruples finds r2 such that

c(yi, w1, r1) = c(yi, w2, r2) for the public key yi corresponding to the secret

key xi.

5

Designated Verifier

Definition 2. Let (PA, PB) be a protocol for Alice to prove the truth of the

statement Θ to Bob. We say that Bob is a designated verifier if the following is true:

For any protocol (PA, P
′

B, PC) involving Alice, Bob and Cindy, in which Bob

proves the truth of ϑ to Cindy, there is another protocol (P ′′

B, PC) such that Bob

can perform the calculations of P ′′

B , and Cindy cannot distinguish transcripts of

(PA, P
′

B, PC) from those of (P ′′

B, PC).

6

Interactive designated verifier proof of undeniable

signatures

• Based on the generalisation of the confirmation scheme for undeniable

signatures

• p, g generator of Gq , participant i’s secret key xi, public key yi = gxi mod p.

m, participant i’s signature on m: s = mximodp.

7

• The used confirmation scheme is the following:

1. Bob uniformly at random selects two numbers a and b from Zq and calculates

v = magbmodp. Bob sends Alice v.

2. Alice calculates w = vxAmodp. She calculates a commitment c to w and

sends c to Bob.

3. Bob sends (m, s, a, b) to Alice, who verifies that v is of the right form.

4. Alice decommits to c by sending w and any possible random string r used for

the commitment to Bob. Bob verifies that w = sayb
Amodp and that the

commitment c was correctly formed.

8

Non- interactive designated verifier proofs

Constructing a proof

1. Alice, selects w, r, t ∈u Zq

2. Alice calculates

c = gwyr
Bmodp

G = gtmodp

M = mtmodp

h = hashq(c,G,M) (a hashed value in Zq)

d = t+ xA(h+ w)modq

3. Alice sends (w, r,G,M, d) to Bob

9

Verifying a proof

1. Bob calculates

c = gwyr
Bmodp

h = hashq(c,G,M)

2. Bob verifies that

Gh+w
yA

= gdmodp

Mh+w
s = mdmodp

10

Simulating transcripts

1. Bob selects d, α, β ∈u Zq

2. Bob calculates

c = gαmodp

G = gdy−β
A modp

M = mds−βmodp

h = hashq(c,G,M)

w = β − h mod q

r = (α− w)x−1
B modq.

11

Extension to Multiple Designated Verifiers

• Convincing a set of verifiers {Bobi}
n
i=1

• Convince each individualBobi?

• Proposed solution: c is is one-way to each coalition of less than n of the

designated verifiers, but invertible if they all cooperate.

• Distributing the secret key among the n designated verifiers.

• Cindy?

12

Strong designated verifier

Definition 3. Let (PA, PB) be a protocol for Alice to prove the truth of the

statement Θ to Bob. We say that Bob is a strong designated verifier if the following

is true: For any protocol (PA, PB, PD, PC) involving Alice, Bob, Dave and Cindy

in which Dave proves the truth of ϑ to Cindy, there is another protocol (P ′

D, PC)

such that Dave can perform calculations of P ′

D and Cindy cannot distinguish

transcripts of (PA, PB, PD, PC) from those of (P ′

D, PC).

• An honest Bob

• Transcripts can be probabilistically encrypted using the public key of the

intended verifier

• Dave will not be able to present the decrypted transcripts to Cindy

• Cindy cannot distinguish encrypted transcripts from random strings of the same

length and distribution

13

Security notions for DVS schemes

• Secure disavowability

• Unforgeability

• Non-delegatability

• Non-transferability

14

Secure disavowability and unforgeability

• Secure disavowability

– Alice can prove that the signature was not simulated by Bob

– Alice cannot disavow her own signatures

• Unforgeability

– Signatures are verifiable by the designated verifier Bob

– Bob rejects a signature when it was not signed by himself or Alice

15

Non-delegatability

Let κ ∈ [0, 1] be the knowledge error. We say that ∆ is (τ, κ)-non-delegatable if

there exists a black-box knowledge extractorK that, for every algorithm F and for

every valid signature σ, satisfies the following condition:

For every (pkA, skA)← Generate, (pkB, skB)← Generate and message

m, if F produces a valid signature on m with probability ε > κ then, on input m

and on access to the oracle Fm, K produces either skA or skB in expected time

τ/(ε− κ)

16

Non-transferability

• For an accepted message-signature pair (m,σ), and without access to the

secret key of the signer, it is computationally infeasible to determine whether the

message was signed by the signer, or the signature was simulated by the

designated verifier.

• Let ∆ = (Generate, Sign, Simulate, V erify) be a designated-verifier

signature scheme with the message spaceM . We say that ∆ is perfectly

non-transferable if SignskA,pkB
(m) = SimulateskB ,pkA

(m) as

distributions for every (pkA, skA)← Generate,

(pkB, skB)← Generate, Hq ← Ω (Ω = Ωnpro or Ω = Ωro) and

m←M .

• Analogously defined: statistically non-transferable and computationally

non-transferable schemes.

17

Disavowability attack on the JSI DVS scheme

• A malicious Alice can generate signatures exactly from the same distribution as

Bob

• Alice computes a signature (s;w, t,G,M, z) for a messagem, with

s 6= mxA , as follows

1. She uniformly elects four random numbersw, t, r, r ∈ Zq

2. She sets c = gwyt
Bmodp

G = grmodp

M = mrmodp

h = Hq(c,G,M)

z = r + (h+ w)xAmodq

s = mxA ·m(r−r)/(h+w)modqmodp

18

3. She sends a message-signature pair (m, s) with

σ = (s, P = (w, t,G,M, z)) to Bob

4. Bob will believe that s is Alice’s signature for messagem

5. In later disputes, Alice can convince a third party that s was simulated by

Bob, by using a standard disavowal protocol to show that loggyA 6= logms.

19

Corrected JSI Scheme

• Solution 1

– Alice must provide an additional proof of knowledge that logmM = loggG

– This, however, increases the signature length

• Solution 2

– Alice includes s (together with pkA and pkB) to the input of the hash

function.

• The scheme is now unforgeable, non-delegatable, computationally

non-transferable and securely disavowable

20

The DVS scheme with tight reduction to the DDH

problem in the NPRO

• The Decisional Diffie-Hellman (DDH) assumption

• Random Oracles

• The DVS scheme (DVS-KW)

21

The Decisional Diffie-Hellman assumption

• A group family G is a set of finite cyclic groupsG = {Gp} where p ranges

over an infinite index set.

• An instance generator , IG, for G is a randomised algorithm that given an

integer n (in unary), runs in polynomial time in n and outputs some random

index p and a generator g of Gp

22

Definition 4. LetG = {Gp} be a group family. A Decisional Diffie Hellman (DDH)

algorithm A for G is a probabilistic polynomial time algorithm satisfying, for some

fixed α > 0 and sufficiently large n:

|Pr[A(p, g, ga, gb, gab) = ”true”]− Pr[A(p, g, ga, gb, gc) = ”true”]| >
1

nα

where g is a generator of Gp. The probability is over the random choice of 〈p, g〉

according to the distribution induced by IG(n), the random coice of a, b, c in the

range [1, |Gp|] and the random bits used by A. The group family G satisfies the

Decisional Diffie Hellman assumption if there is no DDH algorithm for G.

23

Random Oracles

• The random-oracle model for a hash-function h is the model where h is

replaced by a uniformly random function

• When a random oracle is given a query x it does the following:

1. If the oracle has been given the query x before, it responds with the same

value it gave the last time.

2. If the oracle hasn’t been given the query x before, it generates a random

response which has uniform probability of being chosen from anywhere in

the oracle’s output domain.

24

NPRO and RO

• Random Oracle

– The adversary does not know the secret key

– The adversary is forced to program the random oracle to be able to answer

successfully to the signature queries

• Non-programmable random oracle

– The adversary knows Alice’s secret key

– The adversary can answer successfully to the signature and simulation

queries without a need to program the random oracle.

25

• The NPRO is known to be strictly weaker than the RO model

• Proofs in the RO model work for the "best case" (showing that for every forger

there exists a functionHq such that the signature scheme is unforgeable)

• Proofs in the NPRO model work for the "average case" (showing that the

signature scheme is unforgeable for a randomly chosen function Hq → Ωnpro,

independent of the forger)

26

DVS-KW

• The signer presents a designated verifier proof that his public key is a

Decisional Diffie-Hellman (DDH) tuple

• The unforgeability of this scheme is proved by providing a tight reduction to the

underlying cryptographic problem (DDH) in the non-programmable random

oracle (NPRO) model.

• This scheme is non-delegatable, correct and perfectly non-transferable,

unforgeable in the non-programmable random oracle model.

• Proof of concept: has a tight reduction in the unforgeability proof and isstill

non-delegatable

• More efficient than the JSI scheme

27

The scheme

• p, q (q|(p− 1))

• Gq is a multiplicative subgroup of Z
∗

p

• g1, g2 ∈ Gq

• Alice proves to Bob that (g1, g2, y1A, y2A) is a Decisional Diffie-Hellman tuple

• xi ←r Zq is i’s private key, pki = (g1, g2, y1i, y2i) is i’s public key with

y1i = gxi

1 and y2i = gxi

2 .

• Making the scheme designated-verifier

• Non-interactive - using a non-programmable random oracleHq with outputs

from Zq

28

Generating a proof SignskA,pkB
(m):

1. Alice generates random r, w, t← Zq

2. She sets

a1 = gr
1modp

a2 = gr
2modp

c = gw
1 y

t
1Bmodp

h = Hq(pkA, pkB, a1, a2, c,m)

z = r + (h+ w)xAmodq

3. She outputs the signature σ = (w, t, h, z).

29

Simulating a signature SimulateskB ,pkA
(m):

1. Bob selects three random numbers z, α, β ←r Zq

2. Bob calculates

(a1, a2) = (gz
1y

−β
1Amodp, gz

2y
−β
2Amodp)

h = Hq(pkA, pkB, a1, a2, g
α
1modp,m)

w = β − h mod q

t = (α− w)x−1
B modq

Verifying a proof V erifypkA,pkB
(m;w, t, h, z):

1. Bob checks whether

h = Hq(pkA, pkB, g
z
1y

−(h+w)
1A mod p, gz

2y
−(h+w)
2A mod

p, gw
1 y

t
1Bmodp,m).

30

Universal designated verifier signature without

random oracles

• Bilinear groups

• A short signature scheme without random oracles

• Model of UDVS

• Security Notions for UDVS

• Model of UDVS without Random Oracles

31

Bilinear groups

Definition 5. Let V and W be vector spaces over the same field F . A linear

transformation is a function T : V →W such that

1. T (v + w) = T (v) + T (w) for all v, w ∈ V

2. T (λv) = λT (v) for all v ∈ V and λ ∈ F .

Definition 6. Let S and U be vector spaces over a field K . A function

B : S × U → K is called a bilinear map if

1. x 7→ B(x, y) is linear for each y ∈ U

2. y 7→ B(x, y) is linear for each x ∈ S

That is, B is bilinear if it is linear in each parameter taken separately.

32

Short signature scheme without random oracles

• Let (G1, G2) be bilinear groups, |G1| = |G2| = p for some large prime p

• m ∈ Z
∗

p is the message

Generating the keys

1. Pick a random generator g2 ∈ G2 and set g1 = ψ(g2), pick x, y ← Z
∗

p

2. Compute u = gx
2

v = gy
2

3. For fast verification, also compute z = e(g1, g2) ∈ GT

The public key is (g1, g2, u, v, z) and the secret key is (x, y).

33

Signing

1. Pick r = Z
∗

p

2. If x+ r + ym = 0 mod p, try again with a different random r

3. Compute σ = g
1/(x+r+ym)
1 ∈ G1

The signature is (σ, r).

Verifying

1. Given the public key (g1, g2, u, v, z), a messagem ∈ Z
∗

p, and a signature

(σ, r) accept if e(σ, u · gr
2 · v

m) = z, otherwise, reject.

34

Model of UDVS

UDVS = (CPG, SKG,VKG, S, PV,DS,DV, PKR).

1. Common Parameter Generation CPG

2. Signer Key Generation SKG

3. Verifier Key Generation VKG

4. Signing S

5. Public Verification PV

6. Designation DS

7. Designated Verification DV

8. Verifier Key-Registration PKR(KR,V)

35

Security notions for UDVS

• Strong DV-unforgeability

– Public Verifiable signature unforgeability - security of the signer

– Designated Verifier signature unforgeability - security for the designated

verifier

• Non-transferability

– Unconditionally non-transferable against adaptive chosen public key attack

and chosen message attack (NT-CPKMA)

– ∃S: for every A, every computationally unboundedD distinguishes outputs

of A and S on any challenge messagem∗ with only probability negl(k)

– A is able to access to Designation oracle with respect to any message

before the challenge message is determined

– This helps the adversary adaptively choose the challenge message

36

Model of UDVS without random oracles

1. Common Parameter Generation CPG

• StrD : (G1, G2) of prime order |G1| = |G2| = p

• Bilinear map e : G1 ×G2 → GT

• Isomorphism ψ : G2 → G1

• Choose a random generator g2 ∈ G2

• Compute g1 = ψ(g2) ∈ G1.

• The common parameter is cp = (StrD, g1, g2).

37

2. Signer Key Generation SKG

• Given cp, pick random x1, y1 ← Z
∗

p

• Compute u1 = gx1

2 and v1 = gy1

2

• For speeding up the verification, compute z ← e(g1, g2) ∈ GT

• The public key is pka = (cp, u1, v1, z)

• The secret key is ska = (x1, y1)

3. Verifier Key Generation VKG

• Given cp, pick random x3, y3 ← Z
∗

p

• Compute u3 = gx3

2 and v3 = gy3

2

• The public key is pkb = (cp, u3, v3)

• The secret key is skb = (x3, y3)

38

4. Signing S

• Given the signer’s secret key (cp, x1, y1) and a messagem, select r ← Z
∗

p

• If x1 + r +my1 = 0 mod p, restart

• Compute σ = g
1/(x1+r+my1)
1

• Output s = (σ, r) as the PV-signature

5. Public Verification PV

• Given the signer’s public key (cp, u1, v1, z), and a message/PV-signature pair

(m, s)

• Accept only if e(σ, u1 · g
r
2 · v

m
1) = z

• Otherwise reject

39

6. Designation DS

• Given the signer’s public key (cp, u1, v1), a verifier’s public key (cp, u3, v3)

and a message/PV-signature pair (m, s), where s = (σ, r), let h = gr
2

• Compute d = e(ψ(u3), v
r
3) ∈ GT

• The DV-signature is s = (σ, h, d).

7. Designated Verification DV

• Given a signer’s public key (cp, u1, v1), a verifier’s secret key (x3, y3), and

message/DV-signature pair (m, s)

• Accept only if the following two equations hold simultaneously:

z = e(σ, u1 · h · v
m
1)

d = e(ψ(u3), h
y3)

• Otherwise reject

40

Properties of UDVS

The scheme is

• Correct

• Unforgeable against adaptive chosen public key attack and chosen message

attack for designated verifier

• Unconditionally non-transferable

41

