MTAT.07.006 Research Seminar in Cryptography

IND-CCA2 secure cryptosystems

Dan Bogdanov
University of Tartu
db@ut.ee

Overview

- Notion of indistinguishability
- The Cramer-Shoup cryptosystem
- Newer results

Indistinguishability assumptions

Indistinguishability under a ...

- Chosen Plaintext Attack - (IND-CPA security)
- Chosen Ciphertext Attack - (IND-CCA security)
- Adaptive Chosen Ciphertext Attack - (IND-CCA2 security)

Who is the bad guy?

We are protecting ourselves from the evil \mathbf{A}, who

- is a probabilistic polynomial time Turing machine,
- has all the algorithms and
- has full access to communication media.

IND-CPA Definition - Startup

In the following game $E(P K, m)$ represents the encryption of a message m using the key $P K$.

1. The challenger generates a key pair $P K, S K$ based on the security parameter k (which can be the key size in bits), and publishes $P K$ to the adversary. The challenger retains $S K$.
2. The adversary may perform any number of encryptions or other operations.
3. Eventually, the adversary submits two distinct chosen plaintexts m_{0} and m_{1} to the challenger.

IND-CPA Definition - The Challenge

4. The challenger selects a bit $b \in\{0,1\}$ uniformly at random, and sends the challenge ciphertext $C=E\left(P K, m_{b}\right)$ back to the adversary.
5. The adversary is free to perform any number of additional computations or encryptions. Finally, it outputs a guess for the value of b.

IND-CPA Definition - The Result

- The adversary \mathbf{A} wins the game if it guesses the bit b.
- A cryptosystem is indistinguishable under chosen plaintext attack if no adversary can win the above game with probability p greater than $\frac{1}{2}+\epsilon$, where ϵ is a negligible function in the security parameter k.
- If $p>\frac{1}{2}$ then the difference $p-\frac{1}{2}$ is the advantage of the given adversary in distinguishing the ciphertext.

IND-CCA Definition - Startup

NEW: The adversary A gains access to a decryption oracle which decrypts arbitrary ciphertexts at the adversary's request, returning the plaintext.

1. The challenger generates a key pair $P K, S K$ based on some security parameter k (e.g., a key size in bits), and publishes $P K$ to the adversary. The challenger retains $S K$.
2. The adversary may perform any number of encryptions, calls to the decryption oracle based on arbitrary ciphertexts, or other operations.
3. Eventually, the adversary submits two distinct chosen plaintexts m_{0}, m_{1} to the challenger.

IND-CCA Definition - The Challenge

4. The challenger selects a bit $b \in\{0,1\}$ uniformly at random, and sends the "challenge" ciphertext $C=E\left(P K, m_{b}\right)$ back to the adversary. The adversary is free to perform any number of additional computations or encryptions.
(a) In the non-adaptive case (IND-CCA), the adversary may not make further calls to the decryption oracle before guessing.
(b) In the adaptive case (IND-CCA2), the adversary may make further calls to the decryption oracle, but may not submit the challenge ciphertext C.
5. In the end it will guess the value of b.

IND-CCA Definition - The Result

- Again, the adversary \mathbf{A} wins the game if it guesses the bit b.
- A cryptosystem is indistinguishable under chosen ciphertext attack if no adversary can win the above game with probability p greater than $\frac{1}{2}+\epsilon$, where ϵ is a negligible function in the security parameter k.
- If $p>\frac{1}{2}$ then the difference $p-\frac{1}{2}$ is the advantage of the given adversary in distinguishing the ciphertext.

The Cramer-Shoup cryptosystem

Published in:
R. Cramer, V. Shoup. "A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack". In Advances in Cryptology CRYPTO 1998, volume 1462 of LNCS, 1998.

- Provably secure against adaptive chosen ciphertext attacks.
- The first practical such cryptosystem.
- The security proof is based on the hardness of the Diffie-Hellman decision problem in the used group.

The Cramer-Shoup Scheme - Assumptions

- We assume that we have a group G of prime order q where q is large.
- The encrypted messages are elements of G.
- An universal family one-way family of hash functions that map long bit strings to elements of \mathbf{Z}_{q} is also required.

The Cramer-Shoup Scheme - Key Generation

1. We choose two random elements

$$
g_{1}, g_{2} \in G \text { and } x_{1}, x_{2}, y_{1}, y_{2}, z \in \mathbf{Z}_{q} .
$$

2. We calculate $c=g_{1}^{x_{1}} g_{2}^{x_{2}}, d=g_{1}^{y_{1}} g_{2}^{y_{2}}, h=g_{1}^{z}$.
3. We choose a hash function H from our family of universal one-way hash functions.
4. The public key is (g_{1}, g_{2}, c, d, h, H) and the secret key is $\left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)$.

The Cramer-Shoup Scheme - Encryption

1. To encrypt a message $m \in G$ we choose a random $r \in \mathbf{Z}_{q}$ and compute
(a) $u_{1}=g_{1}^{r}, u_{2}=g_{2}^{r}$
(b) $e=h^{r} m$
(c) $\alpha=H\left(u_{1}, u_{2}, e\right), v=c^{r} d^{r \alpha}$
2. The ciphertext for m is $\left(u_{1}, u_{2}, e, v\right)$.

The Cramer-Shoup Scheme - Encryption

1. Given a ciphertext $\left(u_{1}, u_{2}, e, v\right)$ we first compute $\alpha=H\left(u_{1}, u_{2}, e\right)$
2. Check if $u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha}=v$
(a) If the condition does not hold, we reject the ciphertext as invalid.
(b) Otherwise we decrypt the message $m=e / u_{1}^{z}$.

The Cramer-Shoup Scheme - Verification

To verify the scheme we have to check if we actually get our encrypted m back after decrypting. From key generation we know that $c=g_{1}^{x_{1}} g_{2}^{x_{2}}$ and from the encryption algorithm we know that $u_{1}=g_{1}^{r}, u_{2}=g_{2}^{r}$.

From this we get $u_{1}^{x_{1}} u_{2}^{x_{2}}=g_{1}^{r x_{1}} g_{2}^{r x_{2}}=c^{r}$. Also, $u_{1}^{y_{1}} u_{2}^{y_{2}}=d^{r}$ and $u_{1}^{z}=h^{r}$.

The decryption algorithm tests, if $u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha}=v$. From encryption we have $v=c^{r} d^{r \alpha}$. This gives us the left side of the test equation and so the test will go through. If it does, we can get the m by simply reversing the $e=h^{r} m$ computation from encryption.

The Cramer-Shoup generalisation

In 2001 Cramer and Shoup published a general approach to constructing IND-CCA2 secure cryptosystems.

- They introduce Universal Hash Proof Systems (UHPS) which is a kind of non-interactive zero-knowledge proof system for a language.
- They show that when given an efficient UHPS for a language with certain natural cryptographic indistinguishability properties, one can construct an efficient IND-CCA2 secure public-key encryption scheme.
- They construct two more systems and show that their original system is a case in their general theory.

The Oblivious Decryptors method

Proposed in 2002 by Elkind and Sahai.

- A unifying methodology for constructing IND-CCA2 secure schemes. Generalises the Cramer-Shoup scheme and other schemes (at the time of writing the article).
- Main construction: An encryption scheme satisfying Oblivious Decryptors can be extended with Simulation-Sound Non-Interactive ZeroKnowledge proof to produce an IND-CCA2 secure encryption system.

An Identity-Based IND-CCA2 secure cryptosystem

Bleeding-edge: proposed by Boyen, Mei and Waters in 2005.

- An Identity-Based Encryption (IBE) scheme is a key authentication system in which the public key of a user is some unique information about the identity of the user (eg. a user's email address).
- Build a compact IND-CCA2 encryption system based on the Waters identity-based encryption system.
- A fresh approach as it doesn't fall under previous unified models.
- The proposed cryptosystem is efficient and has short ciphertexts. This is due to integration with the underlying IBE.

End of talk

Thanks for listening!

Research Seminar in Cryptography, 31.10.2005

