MTAT.07.006 Research Seminar in Cryptography

Single-Database Private Information Retrieval 07.11.2005

Aleksandr Grebennik

Tartu University

a_g@ut.ee

Single-Database Private Information Retrieval

Overview of the Lecture

- CMS first single database private information retrieval scheme
- Gentry-Ramzan PBR
- Lipmaa Oblivious Transfer Protocol with Log-Squared Communication

- PIR allows a user to retrieve the i^{th} bit of an *n*-bit database, without revealing the value of index *i* to the database.
- PBR natural and more practical extension of PIR in which, instead of retrieving only a single bit, the user retrieves a *i*th block with *d* bits in it.

CMS - first single-database PIR

- Proposed by Cachin, Micali and Stadler in 1999
- Based on " Φ hiding" assumption (that it is hard to distinguish which of two primes divide $\phi(m)$ for composite modulus m).
- Communication complexity is about $\mathcal{O}(\log^8 n)$ per bit.

CMS - first single-database PIR, slide 2

- Each index $j \in [1, n]$ is mapped to a distinct prime p_j .
- Query for bit b_i : hard-to-factor modulus m so that $p_i | \phi(m)$ and a generator $x \in \mathbb{Z}_m^*$.

• Server response:
$$r = x^P \mod m$$
, where $P = \prod_j p_j^{b_j}$

• Response retrieval: $\exists y : y^{p_i} \equiv r \pmod{m} \Leftrightarrow b_i = 1$

- Published in 2005
- Uses the fact that discrete logarithm computation is feasible in hidden subgroups of *smooth* order, while this task is still hard in general groups. (A number is called *smooth* if it has only *small* prime factors)

- The server partitions the *n*-bit database *B* into *t* blocks $B = C_1 ||C_2|| \dots ||C_t$ of size at most ℓ bits.
- $S = \{p_1, \ldots, p_t\}$ is a set of small distinct prime numbers.
- Each block C_i is associated to a prime power π_i ($\pi_i = p_i^{c_i}$, where c_i is the smallest integer so that $p_i^{c_i} \ge 2^{\ell}$)
- All parameters above are public.

- Server precomputes an integer *e* that satisfies $e \equiv C_i \pmod{\pi_i}$ using Chinese Remainder Theorem.
- To retrieve C_i it suffices to retrieve $e \mod \pi_i$.

- To query for block C_i, the user generates an appropriate cyclic group G = ⟨g⟩ with order |G| = qπ_i for some suitable integer q and sends (G,g) to server, keeping q private.
- Example: an \mathbb{Z}_m^* group, where m is constructed to Φ hide π_i .

* $m = Q_0Q_1$, where Q_0, Q_1 are safe primes: $Q_0 = 2q_0\pi_i + 1, Q_1 = 2q_1d + 1; q_0, q_1$ are primes.

• Notice that G contains a subgroup H of smooth order π_i , and that $h = g^q$ is a generator of H.

- Server responds with $g_e = g^e \in G$
- The user obtains $e \mod \pi_i$ by setting $h_e = g_e^q \in H$ and performing a (tractable) discrete logarithm computation $\log_h h_e$, which occurs entirely in the subgroup H of order $p_i^{c_i}$ and can be quite efficient if p_i is small.
- To prove that $\log_h h_e = C_i$, let's rewrite $e \equiv e_{\pi_i} \pmod{\pi_i}$ as $e = e_{\pi_i} + \pi_i \cdot E$, for some $E \in \mathbb{Z}$. Now:

•
$$h_e = g_e^q = g_e^{|\langle g \rangle|/\pi_i} = g^{e|\langle g \rangle|/\pi_i} = g^{e_{\pi_i}|\langle g \rangle|/\pi_i} g^{E|\langle g \rangle|} = g^{e_{\pi_i}|\langle g \rangle|/\pi_i} = h^{e_{\pi_i}}$$

Single-Database Private Information Retrieval

- Pohlig-Hellman algorithm
- let's write $C_i = \log_h h_e$ in base p_i (remember that C_i is a number modulo $p_i^{c_i}$): $C_i = x_0 + x_1 p + \ldots x_{c-1} p^{c-1}, 0 \le x_i < p$

- Computational complexity
 - * Querier side: no more than $4\sqrt{n\ell}$ group operations.
 - * Server side: $\Theta(n)$ group operations.
- Communication complexity
 - ★ Suppose that the group *G* and any element of *G* can be described in ℓ_G bits. Then the total complexity is $3\ell_G$ bits.

Lipmaa PIR protocol with log-squared communication

- first published in 2004
- Takes advantage of the concept of length-flexible additively homomorphic (LFAH) public-key cryptosystems.
 - * Length-flexible public-key cryptosystem has an additional length parameter $s \in \mathbb{Z}^+$. The encryption algorithm maps sk-bit plaintexts, for any s and for security parameter k, to $(s + \xi)k$ -bit ciphertexts for some small integer $\xi \ge q$.

Lipmaa PIR protocol with log-squared communication

- Communication complexity
 - $\star \Theta(k \log^2 n + \ell \log n)$
 - $\star k = \Omega(\log^{3-o(1)}n);$
- Computational complexity
 - * Sender's work is equivalent to $\Theta(nl) \cdot k^{2+o(1)}$ bit operations;
 - * Receiver's work is $\Theta((k \cdot \log n + l)^{2+o(1)})$

Lipmaa PIR protocol with log-squared communication

- Communication complexity
 - * The ratio of amount of bits transferred to the communication complexity is $1/(\log n)$
 - ★ to achieve a good rate in practice, n and ℓ must be quite large (on the order of gigabits and megabits, respectively), before they begin to offset the large one-time cost represented by the $k \log^2 n$ term.
- Computational complexity
 - * Sender's work is equivalent to $\Theta(nl) \cdot k^{2+o(1)}$ bit operations;
 - * Receiver's work is $\Theta((k \cdot \log n + l)^{2+o(1)})$