MTAT.07.006 Research Seminar in Cryptography

Zero-Knowledge

Oleg Koshik University of Tartu oleg.koshik@ut.ee

T-79.514 Special Course in Cryptology, 21.11.2005

Motivation behind zero-knowledge

- Take any reasonably complex protocol
- What happens if the participants misbehave?
 - * Chaos and havoc! :-(
 - * Think of an electronic payment protocol ...
- Need to enforce correct behavior
- How?

Idea how to solve

- Participants prove that they behave correctly
- After every message, verify the proof
- Privacy: the proof must not reveal any extra knowledge on the secrets of a participant to another one

Traditional proofs

- ... can actually reveal much more than just validity of the assertion
- ... at least leaves the verifier with the ability to present the same proof to others and convince them of the assertion
- How to avoid this? Use zero-knowledge proofs!

General problem statement

- Let L be some language (set of words), let x be an (encrypted) value
- How to prove that x ∈ L without giving out any additional knowledge?
 ★ x is positive? x is a full square? x prime? x is a private key, corresponding to your public key g?
- Generally: How to prove that I know an x such that $x \in L$
- Bad solution: Send x to verifier. Verifier sees x and can test that x ∈ L; but this gives away more knowledge than is necessary.

Preliminaries: complexity class ${\cal P}$

L is in $\mathcal P$ iff \exists Turing Machine A such that for each x

- A accepts iff $x \in L$
- A runs in time polynomial in |x|

Preliminaries: complexity class \mathcal{BPP}

- Randomizing: algorithm can flip points upon request
- Probabilistic polynomial time algorithm: can flip coins and runs in polynomial time
- L is in \mathcal{BPP} iff \exists Turing Machine A such that for each x

* if $x \in L$ A accepts with prob. $\geq \frac{2}{3}$ * if $x \notin L$ A accepts with prob. $\leq \frac{1}{3}$ * A is PPT

Preliminaries: complexity class \mathcal{NP}

- Contains problems with "classical" proofs
- L is in NP iff ∃ efficient (polynomial or probabilistic polynomial time) proof-verification algorithm (called verifier):

* Completeness: For every valid assertion, \exists a proof (*NP*-witness) that the verifier will accept.

* Soundness: For every invalid assertion, no "proof" can make the verifier accept.

 It is known that P ⊆ NP and P ⊆ BPP. Containments are believed to be strict.

T-79.514 Special Course in Cryptology, 21.11.2005

Interactive proofs (I)

- Serve the same purpose as classical proofs to convince a verifier with limited computational power that some assertion is true
- We assume that prover is computationally unbounded, verifier's computation time must be polynomial (in interactive *arguments*, prover is also bounded)
- After the parties exchange messages for some number of rounds, the verifier decides whether to accept or reject
- Both prover and verifier may be randomized

T-79.514 Special Course in Cryptology, 21.11.2005

Interactive proofs (II)

- Completeness: For every valid assertion, there is a prover strategy that will make the verifier accept with high probability.
- Soundness: For every invalid assertion, the verifier will reject with high probability, no matter what strategy the prover follows.

 \star Probabilities are taken over the coin tosses of P, V

- Let \mathcal{IP} be the set of languages that have interactive proofs
- \mathcal{IP} is much larger than \mathcal{NP}

T-79.514 Special Course in Cryptology, 21.11.2005

Example: Graph Non-isomorphism

- Graph Isomorphism is in \mathcal{NP} . Efficient proof that two graphs are isomorphic is an isomorphism between them.
- It is not known whether $GNI \in \mathcal{NP}$
- We will show that $GNI \in IP$

Protocol 1: Interactive proof for GNI

Input: Graphs $G_0 = (V_0; E_0)$ and $G_1 = (V_1; E_1)$

1. V : Uniformly select $b \in \{0, 1\}$. Uniformly select a permutation π on V_b . Let $H = \pi(G_b)$. Send H to P.

2. P : If $G_0 \cong H$, let c = 0. Else let c = 1. Send c to V.

3. V : If c = b, accept. Otherwise, reject.

Correctness of IP system for GNI

• When $(G_0, G_1) \in GNI$:

* P can distinguish isomorphic copies of graph G_0 from isomorphic copies of G_1 ; then V accepts with probability 1

• When $(G_0, G_1) \notin GNI$:

* An isomorphic copy of G_0 is always an isomorphic copy of G_1 . Thus the best strategy for P is to toss a coin, and hence the cheating probability is $(1/2)^k$.

Zero-knowledge proofs

- ZK proof is an interactive proof with a zero-knowledge property
- Verifier learns nothing from the interaction with the prover, other than the fact that the assertion being proven is true
- Intuition: whatever the verifier sees in the interaction with the prover is something it could have efficiently generated on its own

Simulator

• A probabilistic polynomial-time algorithm that "simulates" the verifier's view of the interaction with the prover

★ View is a concatenation of all the messages exchanged between the two parties, prefixed with all random coin tosses of verifier

• Simulator generates an output distribution that is "close" to what the verifier sees when interacting with the prover (when the assertion being proven is true)

Interpretations of "close"

- *Perfect zero-knowledge*: Requires that the distributions are identical.
- Statistical zero-knowledge: Requires that the distributions are statistically close, i.e. statistical distance between two distributions is negligible. Even omnipotent verifier cannot distinguish them.
- Computational zero-knowledge: Requires that the distributions cannot be distinguished by any PPT algorithm.

Complexity classification

The classes of languages that have computational/statistical/perfect zeroknowledge proofs:

 $\mathcal{BPP} \subseteq_{\mathsf{Believed that}} \neq \mathcal{PZK} \subseteq \mathcal{SZK} \subseteq_{\mathsf{Believed that}} \neq \mathcal{CZK} = \mathcal{IP}$

 $\mathcal{BPP} \subseteq \mathcal{PZK}$: Trivial, uses no interaction. Verifier can verify by himself whether $x \in L$.

Honest Verifier ZK

- A party is honest/nonmalicious when he follows the protocol (though tries to deduce new information from it)
- (P, V) is honest verifier ZK if it is ZK with respect to honest V.
- No cheating strategies are considered

Example: Protocol 1 is HVZK

- Protocol 1 is not ZK: V can submit an arbitrary graph H not necessarily isomorphic to G_0 or to G_1 and thus get to know additional information
- What can V learn if he follows the protocol?
- Intuition: The only message from P to V is c. If graphs are nonisomorphic, then always c equals to b, which V already knows (since he chooses b himself).

Simulator for GNI Proof System

Input: Graphs $G_0 = (V_0; E_0)$ and $G_1 = (V_1; E_1)$

1. Uniformly select $b \in \{0; 1\}$. Uniformly select a permutation π on V_b . Let $H = \pi(G_b)$.

2. Let c = b.

- 3. Output (*b*; *H*; *c*; π)
 - Output distribution of the simulator is identical to the verifier's view of the interaction. Thus Protocol 1 is perfect HVZK.

T-79.514 Special Course in Cryptology, 21.11.2005

- For every language in \mathcal{IP} there exists constant-round ZK protocol
- ZK protocols require more than three rounds unless the underlying language is trivial (in \mathcal{BPP}).
- 2-round HVZK protocol exists for every language in SZK. HVZK is sufficient in many applications.
- There exist efficient transformation methods for turning certain classes of HVZK protocols into ZK ones.

T-79.514 Special Course in Cryptology, 21.11.2005

- To show that there are CZK proofs for every \mathcal{NP} -language, it is sufficient to show a proof for one concrete \mathcal{NP} -complete language
- A graph G is 3-colorable when there exists an coloring of the vertices of G with 3 colors so that for no edge, the vertices connected to this edge are colored with the same color
- 3COL: the set all 3-colorable graphs. Language 3COL is \mathcal{NP} -complete.

CZK proof for Graph 3-Colorability

Common Input: A graph G(V; E). Suppose that $V \equiv \{1, \ldots, n\}$ for n := |V|. P knows a 3-coloring ϕ : $V \rightarrow \{1, 2, 3\}$. The following 4 steps are repeated $|E|^2$ times

1. P : Select uniformly a permutation π over $\{1, 2, 3\}$. For i = 1 to n, send V an encrypted (using a probabilistic public-key cryptosystem) value $\pi(\phi(i))$. For each vertex use different public key.

2. V : Select uniformly an edge $e = (i, j) \in E$ and send it to P.

3. P : Send to V the decryption keys to the *i*-th and *j*-th values.

4. V : Check whether or not the decrypted values are different elements of $\{1, 2, 3\}$ and whether or not they match the encryptions received in Step 1.

Correctness of the protocol for 3COL

- If P knows the corresponding 3-coloring, V will never detect an incorrectly colored edge. Thus, V will accept with probability 1
- If G is not 3-colorable then π(φ(i)) = π(φ(j)) in all steps with probability ≥ |E|⁻¹. After |E|² steps the probability that V will accept is exponentially small

Every language L in **NP** has a computational zero-knowledge interactive proof. Furthermore, the prescribed prover strategy can be implemented in probabilistic polynomial-time, provided it is given as auxiliary-input an **NP**-witness for membership of the common input in L.

Application: forcing proper behaviour

- U has a secret and is supposed to take some action depending on its secret
- U's legal action is determined as a polynomial-time function of its secret and the public information
- U's claim to having taken the correct action is an NP-assertion. U's secret is an NP-witness to its validity
- Theorem implies that U is able to give a zero-knowledge proof of his correct behaviour

T-79.514 Special Course in Cryptology, 21.11.2005

Application: identification (I)

- Alice wonts to be able to identify herself repeatedly to Bob
- Common solution: Alice generates a password, Bob stores it. If Alice wants to identify herself, she sends password to Bob who checks wether it is correct
- A problem: Eve can impersonate Bob and obtain Alice's Password

Application: identification (II)

- Solution: use zero-knowledge
- Alice generates a true statement S, for which only she knows the proof. Bob stores the statement.
- To identify herself, Alice gives Bob a zero-knowledge proof of S.
- Eve is not be able to learn the proof for S.