
MTAT.07.006 Research Seminar in Cryptography

Zero-Knowledge

Oleg Koshik
University of Tartu

oleg.koshik@ut.ee

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

1

Motivation behind zero-knowledge

• Take any reasonably complex protocol

• What happens if the participants misbehave?
? Chaos and havoc! :-(
? Think of an electronic payment protocol . . .

• Need to enforce correct behavior

• How?

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

2

Idea how to solve

• Participants prove that they behave correctly

• After every message, verify the proof

• Privacy: the proof must not reveal any extra knowledge on the secrets
of a participant to another one

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

3

Traditional proofs

• . . . can actually reveal much more than just validity of the assertion

• . . . at least leaves the verifier with the ability to present the same proof
to others and convince them of the assertion

• How to avoid this? Use zero-knowledge proofs!

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

4

General problem statement

• Let L be some language (set of words), let x be an (encrypted) value

• How to prove that x ∈ L without giving out any additional knowledge?
? x is positive? x is a full square? x prime? x is a private key, corre-
sponding to your public key g?

• Generally: How to prove that I know an x such that x ∈ L

• Bad solution: Send x to verifier. Verifier sees x and can test that x ∈ L;
but this gives away more knowledge than is necessary.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

5

Preliminaries: complexity class P

L is in P iff ∃ Turing Machine A such that for each x

• A accepts iff x ∈ L

• A runs in time polynomial in |x|

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

6

Preliminaries: complexity class BPP

• Randomizing: algorithm can flip points upon request

• Probabilistic polynomial time algorithm: can flip coins and runs in poly-
nomial time

• L is in BPP iff ∃ Turing Machine A such that for each x
? if x ∈ L A accepts with prob. ≥ 2

3
? if x /∈ L A accepts with prob. ≤ 1

3
? A is PPT

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

7

Preliminaries: complexity class NP

• Contains problems with ”classical” proofs

• L is in NP iff ∃ efficient (polynomial or probabilistic polynomial time)
proof-verification algorithm (called verifier):
? Completeness: For every valid assertion, ∃ a proof (NP-witness) that
the verifier will accept.
? Soundness: For every invalid assertion, no ”proof” can make the
verifier accept.

• It is known that P ⊆ NP and P ⊆ BPP. Containments are believed
to be strict.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

8

Interactive proofs (I)

• Serve the same purpose as classical proofs – to convince a verifier
with limited computational power that some assertion is true

• We assume that prover is computationally unbounded, verifier’s com-
putation time must be polynomial (in interactive arguments, prover is
also bounded)

• After the parties exchange messages for some number of rounds, the
verifier decides whether to accept or reject

• Both prover and verifier may be randomized

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

9

Interactive proofs (II)

• Completeness: For every valid assertion, there is a prover strategy
that will make the verifier accept with high probability.

• Soundness: For every invalid assertion, the verifier will reject with high
probability, no matter what strategy the prover follows.

? Probabilities are taken over the coin tosses of P, V

• Let IP be the set of languages that have interactive proofs

• IP is much larger than NP

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

10

Example: Graph Non-isomorphism

• Graph Isomorphism is in NP . Efficient proof that two graphs are iso-
morphic is an isomorphism between them.

• It is not known whether GNI ∈ NP

• We will show that GNI ∈ IP

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

11

Protocol 1: Interactive proof for GNI

Input : Graphs G0 = (V0;E0) and G1 = (V1;E1)

1. V : Uniformly select b ∈ {0; 1}. Uniformly select a permutation π on Vb.
Let H = π(Gb). Send H to P .

2. P : If G0
∼= H, let c = 0. Else let c = 1. Send c to V .

3. V : If c = b, accept. Otherwise, reject.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

12

Correctness of IP system for GNI

• When (G0, G1) ∈ GNI):
? P can distinguish isomorphic copies of graph G0 from isomorphic
copies of G1; then V accepts with probability 1

• When (G0, G1) /∈ GNI):
? An isomorphic copy of G0 is always an isomorphic copy of G1. Thus
the best strategy for P is to toss a coin, and hence the cheating prob-
ability is (1/2)k.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

13

Zero-knowledge proofs

• ZK proof is an interactive proof with a zero-knowledge property

• Verifier learns nothing from the interaction with the prover, other than
the fact that the assertion being proven is true

• Intuition: whatever the verifier sees in the interaction with the prover is
something it could have efficiently generated on its own

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

14

Simulator

• A probabilistic polynomial-time algorithm that ”simulates” the verifier’s
view of the interaction with the prover

? View is a concatenation of all the messages exchanged between the
two parties, prefixed with all random coin tosses of verifier

• Simulator generates an output distribution that is ”close” to what the
verifier sees when interacting with the prover (when the assertion be-
ing proven is true)

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

15

Interpretations of ”close”

• Perfect zero-knowledge: Requires that the distributions are identical.

• Statistical zero-knowledge: Requires that the distributions are statisti-
cally close, i.e. statistical distance between two distributions is negligi-
ble. Even omnipotent verifier cannot distinguish them.

• Computational zero-knowledge: Requires that the distributions cannot
be distinguished by any PPT algorithm.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

16

Complexity classification

The classes of languages that have computational/statistical/perfect zero-
knowledge proofs:

BPP ⊆Believed that 6= PZK ⊆ SZK ⊆Believed that 6= CZK = IP

BPP ⊆ PZK: Trivial, uses no interaction. Verifier can verify by himself
whether x ∈ L.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

17

Honest Verifier ZK

• A party is honest/nonmalicious when he follows the protocol (though
tries to deduce new information from it)

• (P, V) is honest verifier ZK if it is ZK with respect to honest V .

• No cheating strategies are considered

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

18

Example: Protocol 1 is HVZK

• Protocol 1 is not ZK: V can submit an arbitrary graph H not necessarily
isomorphic to G0 or to G1 and thus get to know additional information

• What can V learn if he follows the protocol?

• Intuition: The only message from P to V is c. If graphs are non-
isomorphic, then always c equals to b, which V already knows (since
he chooses b himself).

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

19

Simulator for GNI Proof System

Input : Graphs G0 = (V0;E0) and G1 = (V1;E1)

1. Uniformly select b ∈ {0; 1}. Uniformly select a permutation π on Vb. Let
H = π(Gb).

2. Let c = b.

3. Output (b;H; c;π)

• Output distribution of the simulator is identical to the verifier’s view of
the interaction. Thus Protocol 1 is perfect HVZK.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

20

ZK vs HVZK

• For every language in IP there exists constant-round ZK protocol

• ZK protocols require more than three rounds unless the underlying
language is trivial (in BPP).

• 2-round HVZK protocol exists for every language in SZK. HVZK is
sufficient in many applications.

• There exist efficient transformation methods for turning certain classes
of HVZK protocols into ZK ones.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

21

NP ∈ CZK

• To show that there are CZK proofs for every NP-language, it is suffi-
cient to show a proof for one concrete NP-complete language

• A graph G is 3-colorable when there exists an coloring of the vertices
of G with 3 colors so that for no edge, the vertices connected to this
edge are colored with the same color

• 3COL: the set all 3-colorable graphs. Language 3COL is NP-
complete.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

22

CZK proof for Graph 3-Colorability

Common Input : A graph G(V; E). Suppose that V ≡ {1, . . . , n} for n :=
|V |. P knows a 3-coloring φ: V → {1,2,3}. The following 4 steps are
repeated |E|2 times

1. P : Select uniformly a permutation π over {1,2,3}. For i = 1 to n,
send V an encrypted (using a probabilistic public-key cryptosystem) value
π(φ(i)). For each vertex use different public key.

2. V : Select uniformly an edge e = (i, j) ∈ E and send it to P.

3. P : Send to V the decryption keys to the i-th and j-th values.

4. V : Check whether or not the decrypted values are different elements of
{1,2,3} and whether or not they match the encryptions received in Step
1.
T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

23

Correctness of the protocol for 3COL

• If P knows the corresponding 3-coloring, V will never detect an incor-
rectly colored edge. Thus, V will accept with probability 1

• If G is not 3-colorable then π(φ(i)) = π(φ(j)) in all steps with prob-
ability ≥ |E|−1. After |E|2 steps the probability that V will accept is
exponentially small

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

24

Theorem

Every language L in NP has a computational zero-knowledge interactive
proof. Furthermore, the prescribed prover strategy can be implemented
in probabilistic polynomial-time, provided it is given as auxiliary-input an
NP-witness for membership of the common input in L.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

25

Application: forcing proper behaviour

• U has a secret and is supposed to take some action depending on its
secret

• U’s legal action is determined as a polynomial-time function of its se-
cret and the public information

• U’s claim to having taken the correct action is an NP-assertion. U’s
secret is an NP-witness to its validity

• Theorem implies that U is able to give a zero-knowledge proof of his
correct behaviour

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

26

Application: identification (I)

• Alice wonts to be able to identify herself repeatedly to Bob

• Common solution: Alice generates a password, Bob stores it. If Al-
ice wants to identify herself, she sends password to Bob who checks
wether it is correct

• A problem: Eve can impersonate Bob and obtain Alice’s Password

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

27

Application: identification (II)

• Solution: use zero-knowledge

• Alice generates a true statement S, for which only she knows the proof.
Bob stores the statement.

• To identify herself, Alice gives Bob a zero-knowledge proof of S.

• Eve is not be able to learn the proof for S.

T-79.514 Special Course in Cryptology, 21.11.2005 Zero-Knowledge, Oleg Koshik

28

