
MTAT.07.006 Research Seminar in Cryptography

Designated Verifier Signature Schemes

Liina Kamm

October 03, 2005

Abstract

This survey gives an overview of the notion of Des-
ignated Verifier Signature (DVS) Schemes and the
security requirements posed to these schemes.

1 Introduction

The demand for designated verifier signature
schemes came from the need to make sure that
those and only those verifiers with proper rights
could be convinced by the validity of a proof. The
solution was first suggested in 1996 in the form
of designation of verifiers by Markus Jakobsson,
Kazue Sako and Russell Impagliazzo [5]. The no-
tion of undeniable signatures and trap-door com-
mitment schemes are used as a basis for the DVS
scheme.

In 2005 Helger Lipmaa, Guilin Wang and Feng
Bao showed that the signer can abuse the disavowal
protocol of the JSI DVS scheme. They define a
new security property - non-delegatability - that is
essential for designated verifier signatures. They
also propose a new conventional signature scheme,
DVS-KW, that is provably unforgeable under a
tight reduction to the Decisional Diffie-Hellman
problem in the non-programmable random oracle
[6]. It is stated in [6] that at this moment the
corrected JSI DVS scheme seems to be the most
efficient secure disavowable designated verifier sig-
nature scheme, while the most efficient secure des-
ignated verifier signature scheme seems to be the
DVS-KW scheme.

Also in 2005 Rui Zhang, Jun Furukawa, and
Hideki Imai proposed the first universal designated
verifier signature (UDVS) scheme whose security
can be proven without random oracles [12]. This is

based on a short signature scheme without random
oracles. Also new security definitions are given for
UDVS.

2 Preliminaries

In the following survey Alice is the signer, Bob is
the designated verifier, Cindy is the third party who
wants to gain access to the signed statement, and
Dave is a prover. All participants are assumed to
be polynomial-time limited and they have to know
their own secret keys. In addition, since the proto-
col is used for practical reasons, the case of Bob be-
ing physically or mentally controlled is not viewed,
since in that case the attacker has essentially be-
come Bob.

3 Cryptographic Background

In this section short explanations to the crypto-
graphic notions used in the text, are given.

3.1 Bilinear map

Definition 3.1 Let V andW be vector spaces over
the same field F . A linear transformation is a func-
tion T : V →W such that

1. T (v + w) = T (v) + T (w) for all v, w ∈ V

2. T (λv) = λT (v) for all v ∈ V and λ ∈ F .[8]

Definition 3.2 Let S and U be vector spaces over
a field K. A function B : S × U → K is called a
bilinear map if

1. x 7→ B(x, y) is linear for each y ∈ U

1

2. y 7→ B(x, y) is linear for each x ∈ S

That is, B is bilinear if it is linear in each parameter
taken separately.[9]

3.2 Decisional Diffie-Hellman As-

sumption

A group family G is a set of finite cyclic groups
G = {Gp} where p ranges over an infinite index
set. |p| denotes the size of binary representation
of p. In the following definition it is assumed that
there is a polynomial time (in |p|) algorithm that
given p and two elements in Gp outputs their sum.

An instance generator, IG, for G is a randomised
algorithm that given an integer n (in unary), runs
in polynomial time in n and outputs some random
index p and a generator g of Gp. For each n, the
instance generator induces a distribution on the set
of indices p.

Definition 3.3 Let G = {Gp} be a group family.
A Decisional Diffie Hellman (DDH) algorithm A
for G is a probabilistic polynomial time algorithm
satisfying, for some fixed α > 0 and sufficiently
large n:

|Pr[A(p, g, ga, gb, gab) = ”true”] −
Pr[A(p, g, ga, gb, gc) = ”true”]| > 1

nα

where g is a generator of Gp. The probability is
over the random choice of 〈p, g〉 according to the
distribution induced by IG(n), the random coice
of a, b, c in the range [1, |Gp|] and the random bits
used by A. The group family G satisfies the De-

cisional Diffie Hellman assumption if there is no
DDH algorithm for G. [1]

3.3 Random oracles

Informally, the random-oracle model for a hash-
function h is the model where h is replaced by a
uniformly random function. The rational behind
the random-oracle model is that by modeling prim-
itives as DES, MD5 or SHA using the strong as-
sumption that they (properly used/modified) be-
have like random functions, one can build efficient
and secure protocols based on these primitives.[7]

When a random oracle is given a query x it does
the following:

1. If the oracle has been given the query x before,
it responds with the same value it gave the last
time.

2. If the oracle hasn’t been given the query x
before, it generates a random response which
has uniform probability of being chosen from
anywhere in the oracle’s output domain [11]
(a uniformly random function H : {0, 1}k →
{0, 1}k [7]).

The non-programmable random oracle (NPRO)
is known to be strictly weaker than the random or-
acle (RO) model. In RO, the adversary does not
know the secret key, and therefore is forced to pro-
gram the random oracle to be able to answer suc-
cessfully to the signature queries. In NPRO, the
adversary knows Alice’s secret key, and knowing
this, can answer successfully to the signature and
simulation queries without a need to program the
random oracle. A conceptual difference between
the two models is that proofs in the RO model work
for the ”best case” (showing that for every forger
there exists a function Hq such that the signature
scheme is unforgeable), while proofs in the NPRO
model work for the ”average case” (showing that
the signature scheme is unforgeable for a randomly
chosen function Hq → Ωnpro, independent of the
forger).[6]

3.4 Undeniable signatures

Undeniable signature schemes are non-self-
authenticating signature schemes, where signa-
tures can only be verified with the signer’s consent.
However, if a signature is only verifiable with the
aid of a signer, a dishonest signer may refuse to
authenticate a genuine document. Undeniable
signatures solve this problem by adding a new
component called the disavowal protocol in addi-
tion to the normal components of signature and
verification. The probability that a dishonest
signer is able to successfully mislead the verifier in
either verification or disavowal is 1/p where p is
the prime number in the signer’s private key.[10]

A suitable group of prime order p and a primitive
element g are initially established and made public
for use by a set of signers. Consider a particular
signer S having a private key x and a corresponding
public key gx. A message m(6= 1) is signed by Alice
to form signature z, which should be equal to mx.

2

Bob, receiving z from Alice may wish to establish
its validity immediately.

The initial challenge is of the form za(gx)b, where
Bob chooses a and b independently and uniformly
from the group elements. The response should be
formed by Alice, raising the challenge to the multi-
plicative inverse of x mod p. When Bob computes
magb and finds it equal to the response, then he
knows that even if Alice were to have infinite com-
puting power, the probability of z being unequal to
mx (and hence invalid) is at most p−1.

When the value that Bob computes is unequal
to the response, the challenge/response protocol
should be repeated with independently chosen c
and d replacing a and b respectively. Then Bob
can use the two responses r1 and r2 to test whether
(r1g

−b)c = (r2g
−d)a. Equality means that Al-

ice is answering consistently and z is invalid, with
the same high probability as for signature va-
lidity; inequality means that Alice is answering
improperly.[2]

3.5 Zero Knowledge Proof of Knowl-

edge

An interactive proof system (P, V) for an NP lan-
guage L = {x : ∃w(x,w) ∈ R} (where R is a
polynomial time recognizable relation) is a proof of

knowledge if there exists a probabilistic polynomial
time algorithm K (the knowledge extractor) such
that for any x ∈ L, and possibly cheating prover
P ′, if (P ′, V (x)) makes V accept (with high prob-
ability), then K (given oracle access to P ′) out-
puts a w such that (x,w) ∈ R. Formally, we re-
quire that there be a negligible function m(.) and
a probabilistic polynomial time oracle machine K,
such that for every x,w and r, if P ′(x,w, r) makes
V accept with probability bigger than m(s), then
(x, (OutputK [K(x), P ′(x, y, r)])) ∈ R with proba-
bility at least 1−m(s).[3]

Definition 3.4 An interactive strategy A is zero-

knowledge on (inputs from) the set S if, for every
feasible (interactive) strategy B∗, there exists a fea-
sible (non-interactive) computation C∗ such that
the following two probability ensembles are com-
putationally indistinguishable:

1. {(A,B∗)(x)}x∈S - the output of B∗ after in-
teracting with A on common input x ∈ S;

2. {C∗(x)}x∈S - output of C∗ on input x ∈ S.[4]

4 Security Notions for Des-

ignated Verifier Signature

Schemes

In this section the security notions posed to DVS
schemes in [6] are brought out.

Secure disavowability - if the DVS scheme has a
disavowal protocol then Alice can prove to a third
party that a signature is hers and not a simulated
signature created by Bob, while she cannot disavow
her own signatures.

Non-delegatability - there exists an efficient
knowledge extractor that can extract either Alice’s
or Bob’s secret key, when given oracle access to an
adversary who can create valid signatures with a
high probability. Let κ ∈ [0, 1] be the knowledge er-
ror. We say that ∆ is (τ, κ)-non-delegatable if there
exists a black-box knowledge extractor K that,
for every algorithm F and for every valid signa-
ture σ, satisfies the following condition: For every
(pkA, skA) ← Generate, (pkB, skB) ← Generate
and message m, if F produces a valid signature on
m with probability ε > κ then, on input m and on
access to the oracle Fm, K produces either skA or
skB in expected time τ/(ε − κ) (without counting
the time to make the oracle queries).

Unforgeability - signatures are verifiable by the
designated verifier Bob who rejects it when the sig-
nature was not signed by himself or Alice. One can
construct conventional signature schemes whose
unforgeability is proven by giving a tight reduc-
tion to an underlying cryptographic problem; this
is achieved by specially avoiding the use of proofs
of knowledge.

Non-transferability- given a message-signature
pair (m,σ), that is accepted by the designated ver-
ifier, and without access to the secret key of the
signer, it is computationally infeasible to determine
whether the message was signed by the signer, or
the signature was simulated by the designated ver-
ifier.

Let ∆ = (Generate, Sign, Simulate, V erify)
be a designated-verifier signature scheme with
the message space M . We say that ∆ is
perfectly non-transferable if SignskA,pkB

(m) =
SimulateskB,pkA

(m) as distributions for every

3

(pkA, skA) ← Generate, (pkB , skB) ← Generate,
Hq ← Ω (Ω = Ωnpro or Ω = Ωro) and m ←
M . Analogously we can define statistically non-
transferable and computationally non-transferable
schemes.

5 The JSI Designated Verifier

Signature Scheme

This section gives a brief overview of the DVS
scheme introduced in [5].

Alice wants to prove to Bob that the statement
Θ is true. Let ΦBob be the statement ”I know Bob’s
secret key”. Alice will prove to Bob Θ∨ΦBob, who
will be convinced that Θ is true (or that his foreign
key has been compromised). Since Bob knows his
secret key, Cindy will not be convinced that Θ is
true, after seeing the proof of Θ ∨ ΦBob, even if
Bob reveals his secret key to her, since Bob is able
to produce such a proof himself, independently of
whether Θ is true or not.

The notion of undeniable signatures is used as
a basis for this DVS scheme. Trap-door commit-
ment schemes (chameleon commitment schemes)
are used to construct both interactive and non-
interactive designated verifier proofs for undeniable
signatures.

Definition 5.1 Let (PA, PB) be a protocol for Al-
ice to prove the truth of the statement Θ to Bob.
We say that Bob is a designated verifier if the fol-
lowing is true: For any protocol (PA, P

′

B, PC) in-
volving Alice, Bob and Cindy, in which Bob proves
the truth of ϑ to Cindy, there is another protocol
(P ′′

B , PC) such that Bob can perform the calcula-
tions of P ′′

B, and Cindy cannot distinguish tran-
scripts of (PA, P

′

B , PC) from those of (P ′′

B, PC).

Definition 5.2 Let c be a function with input
(yi, w, r), where yi is the public key of the user who
will be able to invert c. The secret key correspond-
ing to yi is xi, w ∈ W is the value committed to
and r a random string. We say that c is a trap-door

commitment scheme if and only if

1. no polynomial-time machine can, given yi,
find a collision (w1, r1), (w2, r2) such that
c(yi, w1, r1) = c(yi, w2, r2)

2. no polynomial-time machine can, given yi and
c(yi, w, r), output w.

3. there is a polynomial-time machine that
given any quadruple (xi, w1, r1, w2) in the
set of possible quadruples finds r2 such that
c(yi, w1, r1) = c(yi, w2, r2) for the public key
yi corresponding to the secret key xi.

5.1 Interactive Designated Verifier

Proof of Undeniable Signatures

The designated verifier scheme is based on the gen-
eralisation of the confirmation scheme for unde-
niable signatures (the commitment scheme is not
specified). The given scheme can be made desig-
nated verifier by letting c be a trap-door commit-
ment scheme, using the public key of the designated
verifier. Let p be a large prime, g a generator of Gq,
participant i’s secret key is xi and his public key
is yi = gximodp. If m is a message, participant i’s
signature on m will be s = mximodp. The used
confirmation scheme is the following:

1. Bob uniformly at random selects two numbers
a and b from Zq and calculates v = magbmodp.
Bob sends Alice v.

2. Alice calculates w = vxAmodp. She calculates
a commitment c to w and sends c to Bob.

3. Bob sends (m, s, a, b) to Alice, who verifies that
v is of the right form.

4. Alice decommits to c by sending w and any
possible random string r used for the commit-
ment to Bob. Bob verifies that w = sayb

Amodp
and that the commitment c was correctly
formed.

5.2 Non-interactive Designated Ver-

ifier Proofs

This scheme is a bridge between publicly verifiable
digital signatures and undeniable signatures - it
limits who can verify the signature without help
from the prover and without interaction. In con-
trast to publicly verifiable signatures that are made
designated verifier, they can be used for contracts,
etc., as their validity can be verified when the
prover agrees to this. A general method to trans-
form ordinary three-move zero-knowledge protocols

4

to non-interactive designated verifier proofs is given
below. The basis of the method is the Fiat-Shamir
technique for making an ordinary three-move zero-
knowledge protocol non-interactive, while preserv-
ing the security of the protocol in a practical man-
ner. The same denotation as in the previous section
is used to give a corresponding non-interactive des-
ignated verifier proof:

Constructing a proof. The prover, Alice, selects
w, r, t ∈u Zq and calculates c = gwyr

Bmodp, G =
gtmodp, M = mtmodp, h = hashq(c,G,M), d =
t + xA(h + w)modq, where hashq gives a hashed
value in Zq. The prover sends (w, r,G,M, d) to the
verifier, Bob.

Verifying a proof. The designated verifier cal-
culates c = gwyr

Bmodp, h = hashq(c,G,M).
And verifies that Gh+w

yA
= gdmodp and Mh+w

s =

mdmodp.

Simulating transcripts. The designated veri-
fier can simulate correct transcripts by select-
ing d, α, β ∈u Zq and calculate c = gαmodp,

G = gdy−β
A modp, M = mds−βmodp, h =

hashq(c,G,M), w = β − h mod q, r = (α −
w)x−1

B modq.

5.3 Extension to Multiple Desig-

nated Verifiers

If Alice wants to convince a set of n verifiers,
{Bobi}

n
i=1 but only these, the trivial approach

would be for Alice to convince each individual veri-
fier Bobi in an individual proof. The following solu-
tion is proposed as an alternative to the trivial case.
The previously described protocol is used with the
modification that c is a function that is one-way
to each coalition of less than n of the designated
verifiers, but invertible if they all cooperate. This
can be done by letting the secret key be distributed
among all the n designated verifiers so that they all
need to cooperate to calculate it. It is not neces-
sary for the designated verifiers to share a secret
in advance. Each designated verifier would be con-
vinced by the proof as long as he knows that his
share of the secret key has not been compromised.
No outsider Cindy would be able to receive con-
viction because the set of verifiers {Bob}ni=1 could
have cooperated to cheat her. They could do this
without revealing their personal shares of the secret
key to each other.

5.4 The Notion of Strong Desig-

nated Verifier

Definition 5.3 Let (PA, PB) be a protocol for
Alice to prove the truth of the statement Θ to
Bob. We say that Bob is a strong designated

verifier if the following is true: For any proto-
col (PA, PB, PD, PC) involving Alice, Bob, Dave
and Cindy in which Dave proves the truth of ϑ to
Cindy, there is another protocol (P ′

D, PC) such that
Dave can perform calculations of P ′

D and Cindy
cannot distinguish transcripts of (PA, PB, PD, PC)
from those of (P ′

D, PC).

This notion is necessary for an honest Bob. It
is generally assumed that Cindy will not believe
Θ ∨ ΦBob, as she knows that Bob could have pro-
duced such a transcript himself. If Bob is honest
then Cindy would be convinced that Θ is true upon
seeing a proof of Θ ∨ ΦBob. In order to make pro-
tocols strong designated verifier, transcripts can be
probabilistically encrypted using the public key of
the intended verifier. No ”honest” participant will
agree to decrypt this type of ciphertext. Since Dave
will not be able to present the decrypted transcripts
to Cindy, and she cannot distinguish encrypted
transcripts from random strings of the same length
and distribution, Dave will be able to produce tran-
scripts (PB , P

′

D, PC) that Cindy cannot distinguish
from transcripts of (PA, PB, PD, PC).

5.5 Attack on the JSI DVS Scheme

and the Corrected JSI Scheme

The proposed DVS scheme is open to a disavowa-
bility attack according to [6]. A malicious Alice
can generate signatures exactly from the same dis-
tribution as Bob. So the scheme is perfectly non-
transferable and thus also not disavowable.

Alice computes a signature (s;w, t,G,M, z) for
a message m, with s 6= mxA , as follows. She uni-
formly elects four random numbers w, t, r, r ∈ Zq

and then sets c = gwyt
Bmodp, G = grmodp, M =

mrmodp, h = Hq(c,G,M), z = r+(h+w)xAmodq
and s = mxA · m(r−r)/(h+w)modqmodp. Alice then
sends a message-signature pair (m, s) with σ =
(s, P = (w, t,G,M, z)) to Bob. Bob will believe
that s is Alice’s signature for message m. In later
disputes, Alice can convince a third party (e.g.,
a judge) that s was simulated by Bob, by us-

5

ing a standard disavowal protocol to show that
loggyA 6= logms.

It can be shown that this scheme is unforgeable,
non-delegatable, computationally non-transferable
and securely disavowable after a trivial fix of adding
some additional variables under the used hash
value, by following the usual proof of knowledge
methodology.

The first countermeasure is to force Alice to
provide an additional proof of knowledge that
logmM = loggG. This, however, increases the
signature length. The second possibility is to in-
clude s (together with pkA and pkB) to the input
of the hash function. This turns out to be suffi-
cient though it makes the scheme computationally
but not perfectly non-transferable.

6 The DVS Scheme with

Tight Reduction to the

Decisional Diffie-Hellman

Problem in the Non-

programmable Random

Oracle

A new DVS Scheme DVS-KW is proposed in [6],
where the signer presents a designated verifier proof
that his public key is a Decisional Diffie-Hellman
(DDH) tuple. The unforgeability of this scheme is
proved by providing a tight reduction to the un-
derlying cryptographic problem (DDH) in the non-
programmable random oracle (NPRO) model. This
scheme is also non-delegatable (though this proof
is in the programmable random oracle model and
has a larger security degradation due to the in-
volved proof-of-knowledge property), correct and
perfectly non-transferable, unforgeable in the non-
programmable random oracle model.

Let p, q be two large primes, such that q|(p− 1)
and Gq is a multiplicative subgroup of Z

∗

p. Let
g1, g2 ∈ Gq be two elements such that nobody
knows the mutual discrete logarithms of g1 and
g2. In the DVS-KW DVS scheme Alice proves
to Bob that (g1, g2, y1A, y2A) is a Decisional Diffie-
Hellman tuple, where xi ←r Zq is i’s private key
and pki = (g1, g2, y1i, y2i) is i’s public key with
y1i = gxi

1 and y2i = gxi

2 . This proof is made

designated-verifier by using the same trick as in
the JSI scheme and non-interactive by using a non-
programmable random oracleHq with outputs from
Zq. In particular, the random oracleHq can be cho-
sen at the same stage as other system parameters,
g1 and g2. The description of the full DVS-KW
scheme follows:
SignskA,pkB

(m): Alice generates ran-
dom r, w, t ← Zq, and sets a1 = gr

1modp,
a2 = gr

2modp,c = gw
1 y

t
1Bmodp, h =

Hq(pkA, pkB, a1, a2, c,m) and z = r + (h +
w)xAmodq. She outputs the signature
σ = (w, t, h, z).
SimulateskB,pkA

(m): By selecting three ran-
dom numbers z, α, β ←r Zq, Bob creates
σ = (w, t, h, z) for any message m as fol-

lows: (a1, a2) = (gz
1y

−β
1Amodp, g

z
2y

−β
2Amodp), h =

Hq(pkA, pkB, a1, a2, g
α
1modp,m), w = β − h mod

q, t = (α− w)x−1
B modq.

V erifypkA,pkB
(m;w, t, h, z): The verifier checks

whether h = Hq(pkA, pkB, g
z
1y

−(h+w)
1A mod

p, gz
2y

−(h+w)
2A mod p, gw

1 y
t
1Bmodp,m).

DVS-KW can be seen as a proof of concept,
showing how to design DVS schemes that have a
tight reduction in the unforgeability proof and are
still non-delegatable. DVS-KW is more efficient
than the JSI scheme, and it does not allow the
signer to disavow simulated signatures.

7 Universal Designated Veri-

fier Signature without Ran-

dom Oracles

A UDVS scheme without random oracles is pro-
posed in [12]. It is based on a short signature
scheme without random oracles. Also new security
notions have been given for UDVS.

7.1 Short Signature Scheme without

Random Oracles

This signature scheme is used as an important
building block of UDVS.

Let (G1, G2) be bilinear groups where |G1| =
|G2| = p for some large prime p m is the message
to be signed and is encoded as an element of Z

∗

p.
Generate: Pick a random generator g2 ∈ G2

and set g1 = ψ(g2). Pick x, y ← Z
∗

p, and com-

6

pute u = gx
2 and v = gy

2 . For fast verification, also
compute z = e(g1, g2) ∈ GT . The public key is
(g1, g2, u, v, z) and the secret key is (x, y).
Sign: Given a secret key (x, y) ∈ (Z∗

p)
2 and a

messagem ∈ Z
∗

p, pick r = Z
∗

p. If x+r+ym = 0 mod
p, try again with a different random r. Compute

σ = g
1/(x+r+ym)
1 ∈ G1. The signature is (σ, r).

V erify: Give the public key (g1, g2, u, v, z), a
message m ∈ Z

∗

p, and a signature (σ, r), accept if
e(σ, u · gr

2 · v
m) = z, otherwise, reject.

7.2 Model of UDVS

A universal designated verifier signature (UDVS)
scheme UDVS = (CPG, SKG,VKG, S, PV,DS,DV,
PKR).

1. Common Parameter Generation CPG - a prob-
abilistic algorithm, given a security parame-
ter k, outputs a string cp consisting of com-
mon scheme parameters (publicly shared by all
users).

2. Signer Key Generation SKG - a probabilis-
tic algorithm, on input a common parame-
ter string cp, outputs a secret/public key-pair
(ska, pka) for Alice.

3. Verifier Key Generation VKG - a probabilis-
tic algorithm, on input a common parame-
ter string cp, outputs a secret/public key-pair
(skb, pkb) for Bob.

4. Signing S - possibly a probabilistic algorithm,
on input Alice’s secret key ska and a message
m, outputs Alice’s public verifiable (PV) sig-
nature s.

5. Public Verification PV - a deterministic al-
gorithm, on input Alice’s public key pka

and message/PV-signature pair (m, s), out-
puts verification result d ∈ (acc, rej).

6. Designation DS - possibly a probabilistic algo-
rithm, on input Alice’s public key pka, Bob’s
public key pkb, and a message/PV-signature
pair (m, s), outputs Designated-Verifier (DV)
signature s.

7. Designated Verification DV - a determinis-
tic algorithm, on input Alice’s public key

pka, Bob’s secret key skb, and messge/DV-
signature pair (m, s), outputs verification de-
cision acc or rej.

8. Verifier Key-Registration PKR(KR,V) - a pro-
tocol between a Key Registration Authority
KR and a Verifier V. The verifier registers a
verifier’s public key. On common input cp, KR
and V interact with messages sent each other.
At the end of the protocol, KR outputs a pair
(pkb, Auth), where pkb is the public key of V
and Auth ∈ {acc, rej} indicates whether or not
the key-registration is successful.

7.3 Security Notions for UDVS

Strong DV-Unforgeability - There are two types of
unforgeability to consider: Public Verifiable sig-
nature unforgeability (PV-unforgeability), the se-
curity for the signer, which states that anyone
should not be able to forge a PV-signature of the
signer. Designated Verifier signature unforgeabil-
ity (DV-unforgeability), the security for the desig-
nated verifier, which states that for any message,
an adversary without a PV-signature should be
unable to convince a designated verifier of hold-
ing such a PV-signature. DV-unforgeability always
implies PV-unforgeability, because anyone able to
forge a PV-signature can transform it into a DV-
signature. Thus it is enough to consider only DV-
unforgeability.

Non-Transferability - A is an attacker that tries
to brag about its interaction with the signature
holder. S is a simulator that simulates the out-
put of A. S is able to access A as a black-box. D
is a distinguisher that tries to distinguish whether
a given output is of A or of S. We say a UDVS
scheme is unconditionally non-transferable against

adaptive chosen public key attack and chosen mes-

sage attack (NT-CPKMA), if there exists S such
that for every A, every computationally unbounded
D distinguishes outputs of A and S on any chal-
lenge message m∗ with only probability negl(k),
where the probability is taken over the coin toss
of key generation algorithms, S, A, S and D. A
is able to access to Designation oracle with respect
to any message (including the challenge message)
before the challenge message is determined. This
helps the adversary adaptively choose the challenge
message.

7

7.4 Model of UDVS without Ran-

dom Oracles

For simplicity, the verifier key registration protocol
is omitted, since in practice this is needed to run
only once.

1. Common Parameter Generation CPG: Choose
a bilinear group pair which is denoted by a
description string StrD : (G1, G2) of prime
order |G1| = |G2| = p with a bilinear map
e : G1 × G2 → GT and an isomorphism
ψ : G2 → G1. Choose a random generator
g2 ∈ G2 and compute g1 = ψ(g2) ∈ G1. Then
the common parameter is cp = (StrD, g1, g2).

2. Signer Key Generation SKG: Given cp, pick
random x1, y1 ← Z

∗

p, compute u1 = gx1

2 and
v1 = gy1

2 . Specially, for speeding up the verifi-
cation, one may also compute z ← e(g1, g2) ∈
GT . The public key is pka = (cp, u1, v1, z), the
secret key is ska = (x1, y1).

3. Verifier Key Generation VKG: Given cp, pick
random x3, y3 ← Z

∗

p. Compute u3 = gx3

2 and
v3 = gy3

2

4. The public key is pkb = (cp, u3, v3) and the
secret key is skb = (x3, y3).

5. Signing S: Given the signer’s secret key
(cp, x1, y1) and a message m, select r ← Z

∗

p.
If x1 + r +my1 = 0 mod p, restart. Compute

σ = g
1/(x1+r+my1)
1 and output s = (σ, r) as the

PV-signature.

6. Public Verification PV: Given the signer’s
public key (cp, u1, v1, z), and a message/PV-
signature pair (m, s), accept only if e(σ, u1 ·
gr
2 · v

m
1) = z; otherwise reject.

7. Designation DS: Given the signer’s pub-
lic key (cp, u1, v1), a verifier’s public key
(cp, u3, v3) and a message/PV-signature pair
(m, s), where s = (σ, r), let h = gr

2 and com-
pute d = e(ψ(u3), v

r
3) ∈ GT . Then the DV-

signature is s = (σ, h, d).

8. Designated Verification DV: Given a signer’s
public key (cp, u1, v1), a verifier’s secret
key (x3, y3), and message/DV-signature pair
(m, s), accept only if the following two equa-
tions hold simultaneously: z = e(σ, u1 · h · v

m
1)

and d = e(ψ(u3), h
y3). Otherwise, reject.

The scheme is correct, unforgeable against adap-
tive chosen public key attack and chosen message
attack for designated verifier, and unconditionally
non-transferable. It is, however, delegatable.

References

[1] D. Boneh. The decision Diffie-
Hellman problem, In Proceedings
of the Third Algorithmic Number
Theory Symposium, Lecture Notes
in Computer Science, Vol. 1423,
Springer-Verlag, pp. 48–63, 1998.
http://theory.stanford.edu/ dabo/
papers/DDH.ps.gz

[2] David Chaum, Hans van Antwer-
pen. Undeniable signatures, Ad-
vances in Cryptology - Crypto ’89,
Springer-Verlag (1990), 212-216.
http://dsns.csie.nctu.edu.tw/ re-
search/crypto/HTML/PDF/C89/212.PDF

[3] CSE208: Advanced cryptogra-
phy, Lecture 6: Zero Knowledge
Proofs of Knowledge, Fall 2002
http://www.cse.ucsd.edu/classes/
fa02/cse208/lec6.html

[4] Oded Goldreich. Zero-knowledge
twenty years after its inven-
tion. Technical Report 2002.
http://citeseer.ist.psu.edu/ goldre-
ich02zeroknowledge.html

[5] Markus Jakobsson, Kazue Sako
and Russell Impagliazzo. Designated
Verifier Proofs and Their Applica-
tions. Proc. Eurocrypt’96, p. 143–
154, Springer-Verlag, 1996.

[6] Helger Lipmaa, Guilin Wang and
Feng Bao. Designated Verifier Sig-
nature Schemes: Attacks, New Se-
curity Notions and A New Con-
struction. In Luis Caires, Guiseppe
F. Italiano, Luis Monteiro, Catus-
cia Palamidessi and Moti Yung, ed-
itors, The 32nd International Collo-
quium on Automata, Languages and
Programming, ICALP 2005, volume

8

3580 of Lecture Notes in Computer
Science, p. 459–471, Lisboa, Por-
tugal, July 11–15, 2005. Springer-
Verlag.

[7] Jesper Buus Nielsen. On Proto-
col Security in the Cryptographic
Model, BRICS Dissertation Series
DS-03-8 ISSN 1396-7002, De-
partment of Computer Science,
University of Aarhus, August
2003 http://citeseer.ist.psu.edu/
nielsen03protocol.html

[8] PlanetMath
http://planetmath.org/encyclopedia/
LinearTransformation.html

[9] PlanetMath
http://planetmath.org/encyclopedia/
BilinearForm.html

[10] RSA Laboratories, Home: Crypto
FAQ: Chapter 7 Miscellaneous
Topics, 7.8 What is an un-
deniable signature scheme?
http://www.rsasecurity.com/ rsal-
abs/node.asp?id=2344

[11] Random oracle From Wikipedia,
the free encyclopedia.
http://en.wikipedia.org/wiki/
Random oracle

[12] Rui Zhang, Jun Furukawa, and
Hideki Imai. Short Signature and
Universal Designated Verifier Signa-
ture Without Random Oracles. Ap-
plied Cryptography and Network Se-
curity, Third International Confer-
ence, ANCS 2005, volume 3531 of
Lecture Notes in Computer Science,
p. 483-498, New York, June 7-10,
2005. Springer-Verlag.

9

