
Private Information Retrieval

Aleksandr Grebennik

November 7, 2005

1 Introduction

Private Information Retrieval (PIR) schemes allow
a user to retrieve the ith bit of an n-bit database,
without revealing to the database the value of i.
The “trivial” solution is for user to retrieve the en-
tire database, but this approach may incur enor-
mous communication costs. A good PIR-scheme,
on the other hand, should have considerably lower
(certainly sub-linear) communication complexity.
Private Block Retrieval (PBR) is a natural and
more practical extension of PIR in which, instead
of retrieving only a single bit, the user retrieves a
d-bit block that begins at indexi.

Preliminaries

All logarithms in this paper will be on base 2, unless
explicitly mentioned.

In this paper, `m denotes the length of number
m in its binary representation, i.e. `m = dlog me.

A number z is said to be an M -th residue modulo
N if there exists a number y ∈ ZN such that z ≡
yM (mod N).

Let r and s be positive integers which are rela-
tively prime and let a and b be any two integers.
Chinese Remainder Theorem claims that there is
an integer N such that N ≡ a (mod r) and N ≡ b
(mod s) and that N is uniquely determined modulo
rs.

Group G of order m is cyclic if ∃g ∈ G : G =
{g, g2, . . . , gm−1, gm = g0}).

For a positive integer n, Euler’s totient function
φ(n) = |{x ∈ N : x ≤ n, gcd(x, n) = 1}|; if n
factorization is n = pa1

1 pa2
2 . . . pam

m , then φ(n) =∏m
i (pai

i − pai−1
i).

Baby-step giant-step algorithm refers to a series
of well defined steps to compute the discrete log-
arithm in a cyclic group G. The problem is to
find x in ax = b (mod n) where a, b and n are

given. The baby-step giant-step algorithm is based
on rewriting x as x = im + j with m = d

√
ne and

0 ≤ i, j < m. Therefore, we have: b(a−m)i = aj

(mod n). The algorithm precomputes aj mod n
for all 0 ≤ j < m and stores the pairs (j, aj) in a
table. Then it tries values of 0 ≤ i < m until the
congruence is satisfied with some of precomputed
aj .

2 First Single-Database PIR

Cachin, Micali and Stadler constructed the first
single-database PIR scheme with poly-logarithmic
communication complexity. The security of their
scheme (CMS) is based on “Φ-hiding” assumption
— roughly, that it is hard to distinguish which of
two primes divides φ(m) for composite modulus m.
Essentially, the scheme works as follows. Each in-
dex j ∈ [1, n] is mapped to a distinct prime pj .
To recover bit bi from database B = b1 . . . bn, the
user sends a composite (hard-to-factor) modulus m
such that pi divides φ(m) and a generator x ∈ Z∗

m

(|Z∗
m| = φ(m)). The server sends back r ≡ xP

(mod m) for P =
∏

j p
bj

j . The user concludes that
bi = 1 if r is a pi-residue modulo m; otherwise,
bi = 0. The communication complexity of (this
simplified version of) CMS is 3`m to recover 1 data-
base bit. The authors recommend the value of `m

to be in the order of O(log8 n).

3 Gentry-Ramzan Private
Block Retrieval Scheme

General description

The scheme has some public parameters known to
all users, including the database size n, an inte-
ger parameter `, a set of t = dn/`e (small) distinct

1

prime numbers p1, . . . , pt, and a set S = π1, . . . , πt

of prime powers πi = pci
i , where ci = d`/ log2 pie

(so that pci
i ≥ 2`). The server partitions the data-

base B into t blocks B = C1‖C2‖ . . . ‖Ct of size at
most `. In this scheme, the user will retrieve the
entire `-bit block that contains desired bit. Each
block Ci is associated to a prime power πi. Using
the Chinese Remainder Theorem, the server can
express the entire database B as an integer e that
satisfies e ≡ Ci (mod πi), where the `-bit block Ci

is treated as an integer satisfying 0 ≤ Ci < 2` ≤ πi.
Notice that to retrieve Ci, it suffices to retrieve e
mod πi.

Roughly speaking, to query the value of e
mod πi, the user generates an appropriate cyclic
group G = 〈g〉 with order |G| = qπi for some suit-
able integer q. He sends (G, g) to the server and
keeps q private. Notice that G contains a subgroup
H of order πi, and that h = gq is a generator of H.

The server responds with ge = ge ∈ G. The
user then obtains e mod πi by setting he = gq

e ∈
H (gq

e ∈ H because gq
e = (ge)q = (gq)e = he ∈

H) and performing a (tractable) discrete logarithm
computation: logh he ≡ e (mod πi) using Pohlig-
Hellman algorithm.

Let us describe this algorithm a little more in de-
tail. We are searching for x = Ci = loghhe in group
H (equality Ci = loghhe is proved in the Correct-
ness of Response Retrieval section below). As Ci is
a number modulo πi = pci

i , we can write x in base
pi: x = x0 +x1p+ . . .+xc−1p

c−1, 0 ≤ xi < p. Now,
define y := he. Notice that y|H|/p = hCi|H|/p =
hx|H|/p = h[x0|H|/p]+[(x1p+...+xc−1pc−1)|H|/p] =
hx0|H|/ph(x1+...+xc−1pc−2)|H| = hx0|H|/p. We can
now just try all 0 ≤ x0 < p candidates and thus
get first “digit” x0. This is feasible because p
is small due to the construction of this scheme.
Now, assume y1 := heh

−x0 and compute y
|H|/p2

1 ,
thus finding second “digit” x1. Next, define y2 :=
heh

−x0−x1p and compute y
|H|/p3

1 , thus finding third
“digit” x2. Repeat until all “digits” {x0, . . . , xc−1}
are found.

This discrete logarithm computation, which oc-
curs entirely in the subgroup H of order pci

i , can
actually be quite efficient if pi is small.

For some parameter choices, the user can select
G such that |G| is divisible by multiple πi’s. In
this case, the user can recover multiple `-bit blocks
(note that this does not contradict the security re-

quirements for PIR schemes).

Correctness of Response Retrieval

Let eπi
∈ [0, πi − 1] satisfy eπi

≡ e (mod πi);
observe that eπi

is equal to Ci. So, it suffices
to show that eπi is the discrete logarithm of he

with respect to base h. Write e = eπi + πiE, for
some E ∈ Z. Now: he = g

|〈g〉|/πi
e = ge|〈g〉|/πi =

geπi
|〈g〉|/πigE|〈g〉| = geπi

|〈g〉|/πi = heπi .

Computational Complexity

The dominant component of the querier’s computa-
tion is in computing the discrete logarithm of he for
base h. The authors state that the querier’s com-
putation is no more than 4

√
n` operations, where

` must be less than log |G|
The dominant component of the database’s com-

putation is in counting ge mod m. This requires
(roughly) log e group operations. Since e is a num-
ber modulo

∏t
i=1 πi, we have log e ≤

∑t
i=1 log πi.

Since, pi ≤ 2` for all i, πi = pci
i < 22` for all

ci = d`/ log pie. Thus, we have
∑t

i=1 log πi < 2`t =
2`dn/`e— i.e., the database needs Θ(n) operations.

Computational Assumption

This scheme’s computational assumption is roughly
that, given (π0, π1, G) and the promise that πb di-
vides |G| for one b ∈ {0, 1}, it is computationally
hard (if G is generated appropriately) to distinguish
the value of b, even if π0 and π1 are not “much
smaller” than |G|, and even if π0 and π1 are “spe-
cial” integers such as powers of small integers.

Communication Complexity

Suppose that the group G and any element of G can
be described in lG = Ω(log |G|) bits. (For example,
the group generated by g modulo m for composite
modulus m can be described in O(`m) bits.) Then,
the total communication complexity is 3`G. The
size of `G depends, in part, on security considera-
tions pertaining to the particular instantiation of
our general scheme. In terms of the scheme’s cor-
rectness , the only constraint on |G| is that it be
divisible by (and, hence, at least as large as) πi.

2

Instantiating Groups with Hidden
Smooth Subgroups

Up to this point, we have discussed our PIR scheme
and its performance and security properties in a
general way, without discussing in detail how to
instantiate the group G securely. One way to in-
stantiate G in using a composite modulus, as in
CMS scheme. For example, to construct a modu-
lus m that Φ-hides π, one may choose a random
“semi-safe” prime Q0 = 2q0π + 1 for prime q0 and
a random semi-safe prime Q1 = 2dq1 + 1 for prime
q1 and d chosen uniformly from a large interval,
and set m = Q0Q1. Then, π divides φ(m) because
φ(m) = φ(Q0Q1) = φ(Q0)φ(Q1) = (Q0 − 1)(Q1 −
1) = 4dπq0q1 Also, m should have good uniformity
properties, even modulo the primes dividing π.

4 Lipmaa Oblivious Transfer
Protocol with Log-Squared
Communication

I was not able to get into details of this scheme,
though in the article it was twice stated that this
protocol is “simple to understand and implement”.
The underlying crypto primitive in use is length-
flexible additively homomorphic public-key cryp-
tosystem that should be IND-CPA secure.

Additively homomorphic public-key
scheme

A length-flexible additively homomorphic
(LFAH) public-key cryptosystem is a tuple
Π = (Gen,Enc, Dec), where (a) Gen is a key
generation algorithm, that on input 1k returns
(sk, pk), where sk is a secret key and pk is a
public key, (b) Enc is an encryption algorithm,
that on input (pk, s, m, r), where s ∈ Z+ is a
length parameter, m is a plaintext and r is a
random coin, returns a ciphertext Encs

pk(m; r),
and (c) Dec is a description algorithm that on
input (sk, s, c), where s is a length parameter and
c is a ciphertext, returns a plaintext Decs

sk(c).
For any s ∈ Z+, Encs

pk : Ps × R → Cs and
Decs

pk : Cs → Ps, where Cs is the ciphertext
space and Ps is the plaintext space corresponding
to s, and R is the s-independent randomness

space. We require that for some positive integer
a, Cs ⊆ Ps+a for every s; we assume that ξ is the
minimal among such a’s. An LFAH public-key
cryptosystem Π is additively homomorphic if
for any key pair (sk, pk), any length parameter
s, any m,m′ ∈ Ps = Z|Ps|, and any r, r′ ∈ R,
Encs

pk(m; r) ·Encs
pk(m′; r′) = Encs

pk(m+m′; r◦r′),
where · is a multiplicative group operation in Cs, +
is addition in Z|Ps|, and ◦ is a groupoid operation
in R.

An example of IND-CPA secure LFAH public-
key cryptosystem is the Damg̊ard-Jurik protocol
named DJ01. Assume that N = p1p2 is an RSA
modulus. Here, for a fixed length parameter s,
Ps = ZNs , R = Z∗

N and Cs = Z∗
Ns+1 . Encryp-

tion is defined by Encs
pk(m; r) := (1 + N)m · rNs

mod Ns+1, where r ← Z∗
N . DJ01 is additively ho-

momorphic.

Communication complexity

Communication complexity for d-bit blocks is
stated as Θ(`m · log2 n + d · log n), where `m =
Ω(log3−o(1) n). Thus, Lipmaa’s scheme has a good
communication complexity to amount of bits tras-
ferred ratio, namely 1/(log n) for large blocks. For
Lipmaa’s scheme to achieve a good rate in practice,
n and d must be quite large (on the order of giga-
bits and megabits, respectively) before they begin
to offset the large one-time cost represented by the
`m · log2 n.

References

[1] H. Lipmaa. An Oblivious Transfer Protocol
with Log-Squared Communication. Cryptol-
ogy ePrint Archive, 2004/063.

[2] C. Gentry and Z. Ramzan. Single-Database
Private Information Retrieval with Constant
Communication Rate.

[3] S. Pohlig and M. Hellman. An Improved
Algorithm for Computing Algorithms over
GF (p) and its Cryptographic Significance.

3

