
Zero-Knowledge

Oleg Koshik

November 18, 2005

Introduction

When concerning any reasonably complex protocol, it is clear, that correct
behaivour of different parties plays an important role. Just imagine what could
happen if participants misbehave in electronic payment protocol. So becomes
obvious the need to enforce correct behaivour. But how? One idea is to make
participants prove that they behave correctly with verifying the proof after each
message of the protocol.

Considering proofs, it is natural to ask ”What does one learn from a proof?”
Very often in the protocols it is essential also to preserve privacy, i.e. the proof
must not reveal any extra knowledge on the secrets of a participant to another
one. By definition, upon verifying a proof, one should be convinced that the
assertion being proven is true. But a proof can actually reveal much more than
that. Indeed, proofs in mathematics are valued for providing a great deal of
insight in addition to validating a particular theorem. And, at a minimum, it
seems inherent in the notion of a proof that after verifying a proof, one leaves
not just with confidence that the assertion is true, but also with the ability to
present the same proof to others and convince them of the assertion.

Zero-knowledge proofs, introduced by Goldwasser, Micali, and Rackoff in 1985,
are fascinating constructs which somehow escape the confines of this intuition –
they are proofs which are convincing but reveal nothing other than the validity of
the assertion being proven. In particular, after verifying a zero-knowledge proof,
one does not gain the ability to convince someone else of the same statement!

The applicability of zero-knowledge proofs in the domain of cryptography is
vast; as already mentioned, they are typically used to force malicious parties
to behave according to a predetermined protocol. Also zero-knowledge proofs
serve as a good bench-mark for the study of various problems regarding cryp-
tographic protocols (e.g. the preservation of security under various forms of
protocol composition). In addition to their applicability in Cryptography, zero-
knowledge has served as a source of inspiration for complexity theory.

Preliminary Background

General problem statement is the following: let L be some language (some set
of words) and x some (encrypted value). The task is to prove that x ∈ L. For
example, x is prime, x is quadratic residue, x is a private key, corresponding to
your public key g.

1

We say that language L is in P iff there is a Turing machine (algorithm) that for
each x runs in time at most polynomial in |x| and accepts if and only if x ∈ L.

Randomized algorithms are obtained by allowing our algorithms the ability to
flip an unbiased ”coin” upon request. We say that algorithm runs in probabilistic
polynomial time, if it can flip coins runs in time polynomial in the length of the
input. BPP is a class of languages L for which there exists a probabilistic
polynomial time algorithm, that for each x correctly decides whether x ∈ L
with probability at least 2/3 over the coin tosses of the algorithm.

Polynomial and probabilistic polynomial time algorithms are usually considered
as ”efficient algorithms” and the classes of languages P and BPP are called
”easily computable”.

The complexity class NP consists of those languages possessing efficiently ver-
ifiable ”classical” proofs. That is, a language L is in NP iff there is an efficient
proof-verification algorithm (called a verifier) satisfying the following two con-
ditions:

• Completeness: For every valid assertion (i.e., every string in L), there
exists a proof (that we call NP-witness) that the verifier will accept.

• Soundness: For every invalid assertion (i.e., every string not in L), no
”proof” can make the verifier accept.

We consider such proofs ”classical” because the proof is a fixed, written string
given in its entirety to the verification algorithm which checks it deterministi-
cally.

We know that P ⊆ NP and P ⊆ BPP. We do not know if these containments
are strict although it is often conjectured to be the case.

Interactive Proofs

Interactive proofs, introduced by Goldwasser, Micali, and Rackoff serve the same
purpose as classical proofs – to convince a verifier with limited computational
power that some assertion is true. However, as mentioned above, this is no
longer accomplished by giving the verifier a fixed, written proof, but rather by
having the verifier to interact with a prover that has unbounded computational
power. After the parties exchange messages for some number of rounds, the
verifier decides whether to accept or reject. We still require that the verifier’s
computation time be polynomial in the length of the assertion, but now both
the prover and verifier may be randomized. The following two relaxations of the
classical notions of completeness and soundness guarantee that an interactive
proof is ”convincing”:

• Completeness: For every valid assertion, there is a prover strategy that
will make the verifier accept with high probability.

• Soundness: For every invalid assertion, the verifier will reject with high
probability, no matter what strategy the prover follows.

2

The complexity class IP is the class of languages possessing interactive proofs.
Clearly, every language that possesses a classical proof also possesses an interac-
tive proof (in which the prover simply sends the verifier the classical proof). But
the converse is not clear; interactive proofs are potentially much more expres-
sive than classical ones. In fact, it has been shown that many more languages
possess interactive proofs than classical ones. That is, IP is much larger than
NP (given widely believed complexity-theoretic assumptions).

Note that in general case there is no restriction to prover’s computational power.
One can replace the general soundness condition by the weaker computational
soundness condition, that only requires that it is infeasible (computationally
hard) to convince the verifier of the false statement. Protocols that satisfy
the computational soundness condition are called arguments. We mention that
argument systems may be more efficient than interactive proofs.

Now consider one simple example. We name Graph Isomorphism (or GI) a
language, that consists of pairs of isomorphic graphs. Graph Nonisomorphism

(or GNI) is the complement of GI.

It is easy to see that Graph Isomorphism is in NP; an easily verifiable proof
that two graphs are isomorphic is an isomorphism between them. In contrast,
no classical proofs are known for Graph Nonisomorphism. Nevertheless, Graph
Nonisomorphism does possess a very efficient interactive proof. The interactive
proof is based on two observations. First, if two graphs are nonisomorphic, then
their sets of isomorphic copies are disjoint. Second, if two graphs are isomorphic,
then a uniformly selected isomorphic copy of one graph is indistinguishable
from a uniformly selected isomorphic copy of the other. Thus, the interactive
proof, given in Protocol 1, tests whether the (omnipotent) prover can distinguish
uniformly selected isomorphic copies of the two graphs.

Protocol 1: Interactive proof (P ;V) for Graph Nonisomorphism

Input : Graphs G0 = (V0;E0) and G1 = (V1;E1)

1. V : Uniformly select b ∈ {0; 1}. Uniformly select a permutation π on Vb. Let
H = π(Gb). Send H to P .

2. P : If G0
∼= H, let c = 0. Else let c = 1. Send c to V .

3. V : If c = b, accept. Otherwise, reject.

Let’s convince in correctness of this protocol. If G0 and G1 are nonisomorphic,
then G0

∼= H if and only if b = 0. So the prover strategy specified above will
make the verifier accept with probability 1. Thus, completeness is satisfied.

On the other hand, if G0 and G1 are isomorphic, then H has the same distri-
bution when b = 0 as it does when b = 1. Thus, b is independent of H and
the prover has at most probability at most 1

2
of guessing b correctly no matter

what strategy it follows. This shows that the protocol is sound. Note that we
can reduce the cheating probability to (1

2
)k by repeating this protocol k times

and requiring that the prover succeeds in all k repetitions.

Zero-Knowledge Proofs

A zero-knowledge proof is an interactive proof in which the verifier learns noth-
ing from the interaction with the prover, other than the fact that the assertion

3

being proven is true. This is guaranteed by requiring that whatever the veri-
fier sees in the interaction with the prover is something it could have efficiently
generated on its own. That is, there should be a polynomial-time algorithm,
called a simulator, that ”simulates” the verifier’s view of the interaction with
the prover (i.e., concatenation of all the messages exchanged between the two
parties, prefixed with all random coin tosses of verifier). Recall that the inter-
action between the prover and verifier is probabilistic. Thus, the simulator is
also probabilistic, and we require that it generates an output distribution that
is ”close” to what the verifier sees when interacting with the prover (when the
assertion being proven is true). Intuitively, this means that the verifier learns
nothing because it can run the simulator instead of interacting with the prover.
Three different interpretations of ”close” were suggested and these lead to the
three forms of zero-knowledge commonly considered in the literature:

• Perfect zero-knowledge: Requires that the distributions are identical.1

• Statistical zero-knowledge: Requires that the distributions are statistically
close, i.e. statistical distance between two distributions is negligible. Even
omnipotent verifier cannot distinguish them.

• Computational zero-knowledge: Requires that the distributions cannot be
distinguished by any probabilistic polynomial-time algorithm.

PZK, SZK, and CZK are the classes of languages possessing perfect, statisti-
cal, and computational zero-knowledge proofs, respectively. Perfect and statis-
tical zero-knowledge capture much stronger requirements than computational
zero-knowledge, in that the zero-knowledge condition is meaningful regardless
of the computational power of the verifier.

Different classes of languages are related as follows:

BPP ⊆Believed that 6= PZK ⊆ SZK ⊆Believed that 6= CZK = IP

It is easy to see that BPP ⊆ PZK, because verifier can verify himself whether
x ∈ L and thus no interaction at all is needed.

Honest Verifier Zero-Knowledge

We call a party honest (nonmalicious) when he follows the protocol (though
tries to deduce new information from it). However, in general case we may
not expect the parties to follow the entire protocol correctly and thus general
zero-knowledge protocol must consider also (feasible) adversary strategies, that
means there must exist corresponding simulator for malicious verifier strategies.
We call the interactive proof (P ;V) a honest-verifier zero-knowledge if it is
zero-knowledge with respect only to honest verifier.

Consider once again Protocol 1. Note that it is not zero-knowledge in its general
notion. There is nothing to force a cheating verifier to select H by first picking

1Actually the simulator is allowed to fail (outputting a special symbol) with probability
≤ 1/2, and the output distribution is conditioned on its not failing.

4

one of the two input graphs and then permuting its vertices. So we have no rea-
son to believe that a cheating verifier ”already knows” whether H is isomorphic
to G0 or G1, thus verifier may gain new knowledge.

Now we will prove, that if the verifier follows the specified protocol, then he can
learn nothing, i.e. this proof system is honest verifier zero-knowledge. The only
message sent from the prover to the verifier is the guess c. We have already
shown that, when the graphs are nonisomorphic, the prover guesses correctly
with probability 1. That means that, with probability 1, c is simply equal to b,
which is a value the verifier already knows (since it chooses b itself)!

To formalize this intuitive proof, we must exhibit a simulator, as required by
the definition of zero-knowledge. The simulator must be an efficient probabilis-
tic algorithm whose output is similar to the verifier’s view of the interaction,
when given a pair of nonisomorphic graphs as input. The verifier’s view of the
interaction includes not just the messages exchanged between the verifier and
prover (H and c), but also includes the verifier’s random coin tosses (the per-
mutation π and the bit b). The simulator, given in Algorithm 2 simply mimics
the verifier’s protocol and assumes that the prover guesses correctly.

Algorithm 2: Simulator for Graph Nonisomorphism Proof System

Input : Graphs G0 = (V0;E0) and G1 = (V1;E1)

1. Uniformly select b ∈ {0; 1}. Uniformly select a permutation π on Vb. Let
H = π(Gb).

2. Let c = b.

3. Output (b;H; c;π)

From the fact that the prover guesses correctly with probability 1 in the protocol,
it follows immediately that the output distribution of the simulator is identical to
the verifier’s view of the interaction (when the input graphs are nonisomorphic
and the verifier follows the protocol). Thus, we have that Protocol 1 is an
honest-verifier perfect zero-knowledge proof system for Graph Nonisomorphism.

As mentioned before, the probability that the prover can convince the verifier to
accept when the graphs are isomorphic can be reduced by repeating the proof
system many times. Luckily, both forms repetition (parallel and sequential)
preserve honest-verifier perfect zero-knowledge; a simulator for the repeated
proof system can be obtained by running the original simulator many times.
With cheating verifiers, however, things are more subtle. Sequential repetition
preserves zero-knowledge against cheating verifiers, but parallel repetition does
not (in general case).

Although it could seem that respect only to honest verifier is quite a strong
restriction, there exist efficient transformation for turning certain classes of hon-
est verifier zero-knowledge protocols into zero-knowledge ones. One such class
is SZK, another one contains public-coin proofs, i.e. such proofs that verifier
tosses its coins publicly (note that in general case verifier doesn’t have to tell
prover his results of coin tosses).

Honest verifier zero-knowledge is for many applications sufficient. These pro-
tocols are also useful in terms of communication efficiency: for example, every
problem possessing an (honest verifier) statistical zero-knowledge proof also has
one, in which only two messages are exchanged and the error parameters are

5

exponentially small. General zero-knowledge protocols require more than three
rounds unless the underlying language is trivial (in BPP), although it is known
that for every language in IP there exists constant-round zero-knowledge pro-
tocol.

NP is in CZK

One important NP problem is Graph 3-Colorability, that means wether there
exists an coloring of the vertices of Graph G with 3 colors so that for no edge,
the vertices connected to this edge are colored with the same color.

It turns out that the language 3COL containing all 3-colorable graphs is NP-
complete. That means every NP-language can be reduced to 3COL (using
some standard reductions) i.e. in order to prove that every NP-language has
computational zero-knowledge proof it would be sufficient to prove that 3COL
has computational zero-knowledge proof.

The following protocol represents the corresponding proof:

Protocol 3: Computational zero-knowledge proof (P ;V) for Graph 3-Colorability

Common Input : A graph G(V; E). Suppose that V ≡ {1, . . . , n} for n := |V |.

Auxiliary Input (to the prover): A 3-coloring φ: V → {1, 2, 3}.

The following 4 steps are repeated t · |E| many times so to obtain soundness
error exp(-t).

1. P : Select uniformly a permutation π over {1, 2, 3}. For i = 1 to n, send
the verifier an encrypted (using a probabilistic public-key cryptosystem) value
π(φ(i)). For each vertex use different public key.

2. V : Select uniformly an edge e ∈ E and send it to the prover.

3. P : Upon receiving e = (i, j) ∈ E, send to V the decryption keys to the i-th
and j-th values sent in Step 1.

4. V : Check whether or not the decrypted values are different elements of
{1, 2, 3} and whether or not they match the encryptions received in Step 1.

Analyzing the Protocol 3. Let us consider a single execution of the main
loop. Clearly, the prescribed prover is implemented in probabilistic polynomial-
time, and always con- vinces the verifier (provided that it is given a valid 3-
coloring of the common input graph). In case the graph is not 3-colorable then,
no matter how the prover behaves, the verifier will reject with probability at
least 1/|E| (because at least one of the edges must be improperly colored by the
prover). We stress that the verifier selects uniformly which edge to inspect after
the prover has committed to the colors of all vertices. Thus, Protocol 3 depicts
an interactive proof system for Graph 3-Colorability. As can be expected, the
zero-knowledge property is the hardest to establish and we won’t bring it in this
short overview.

So, we can formulate the following theorem:

Every language L in NP has a computational zero-knowledge interactive proof.

Furthermore, the prescribed prover strategy can be implemented in probabilis-

tic polynomial-time, provided it is given as auxiliary-input an NP-witness for

membership of the common input in L.

6

Equality CZK = IP implies that containment NP ∈ CZK is strict.

It is not known, whether analogous containment for SZK holds (that NP ∈
SZK) but due to strong security guarantee of statistical zero-knowledge this is
believed not to be the case. However, SZK contains many important compu-
tational problems, such like Quadratic Residuosity and Nonresiduosity, Graph
Isomorphism and Nonisomorphism, a problem equivalent to Discrete Logarithm.
Statistical zero-knowledge proofs can and have been used in specific crypto-
graphic protocols.

Cryptographic Applications

In a typical cryptographic setting, a user referred to as U, has a secret and
is supposed to take some action depending on its secret. The question is how
can other users verify that U indeed took the correct action (as determined
by U’s secret and the publicly known information). Indeed, if U discloses its
secret then anybody can verify that U took the correct action. However, U
does not want to reveal its secret. Using zero-knowledge proofs we can satisfy
both conflicting requirements (i.e., having other users verify that U took the
correct action without violating U’s interest in not revealing its secrets). That
is, U can prove in zero-knowledge that it took the correct action. Note that
U’s claim to having taken the correct action is an NP-assertion (since U’s legal
action is determined as a polynomial-time function of its secret and the public
information), and that U has an NP-witness to its validity (i.e., the secret is
an NP-witness to the claim that the action fits the public information). Thus
it is possible for U to efficiently prove the correctness of its action without
yielding anything about its secret. Consequently, it is fair to ask U to prove (in
zero-knowledge) that it behaves properly, and so to force U to behave properly.
Indeed, ”forcing proper behavior” is the canonical application of zero-knowledge
proofs.

Another possible utility of zero-knowledge is the construction of identification
schemes, introduced by Feige, Fiat, and Shamir. The premise is that one party,
Alice, should be able to identify herself repeatedly to a second party, Bob. For
example, Bob can be thought of as an internet service provider or a remote
computer network on which Alice has an account. The most common solution
for this problem is for Alice to choose a password that Bob keeps stored in a
secure password file. When Alice wishes to identify herself to Bob, she simply
sends her password to Bob, who checks it against the file. The difficulty with
this solution is that an adversary can, by impersonating Bob, obtain Alice’s
password and later use this to misrepresent himself as Alice.

Zero-knowledge proofs provide an elegant solution to this problem. Instead
of choosing a password, Alice generates a true mathematical statement S for
which only she knows the proof (and such that it is difficult for an adversary
to come up with a proof for S). Bob stores this statement. When Alice wishes
to identify herself to Bob, she gives Bob a zero-knowledge proof that S is true.
This identifies Alice as the one who knows a proof for S, while Bob (or an
adversary impersonating Bob) does not learn the proof for S and hence cannot
later misrepresent himself as Alice. Some practical identification protocols have
been developed using this idea.

7

