Some slides glued together for the cryptology seminar 2008

Dan Bogdanov University of Tartu / Cybernetica

Motivation

 Personal data includes medical and financial records, beliefs and preferences

- Personal data includes medical and financial records, beliefs and preferences
- This information should not become public

- Personal data includes medical and financial records, beliefs and preferences
- This information should not become public
- Every database containing such values in an identifiable form is a risk to our privacy

- Personal data includes medical and financial records, beliefs and preferences
- This information should not become public
- Every database containing such values in an identifiable form is a risk to our privacy
- Our goal is to build a better database

• Information systems generally do not preserve privacy

- Information systems generally do not preserve privacy
- The standard solution is to password-protect the data

- Information systems generally do not preserve privacy
- The standard solution is to password-protect the data
 - The data analyst will still see all the details

- Information systems generally do not preserve privacy
- The standard solution is to password-protect the data
 - The data analyst will still see all the details
- Another idea is to introduce errors to the dataset

- Information systems generally do not preserve privacy
- The standard solution is to password-protect the data
 - The data analyst will still see all the details
- Another idea is to introduce errors to the dataset
 - The privacy provided by this method is not provable

- Information systems generally do not preserve privacy
- The standard solution is to password-protect the data
 - The data analyst will still see all the details
- Another idea is to introduce errors to the dataset
 - The privacy provided by this method is not provable
- Cryptographic techniques are looking promising

 Secret sharing is a method for distributing a secret value between several participants

- Secret sharing is a method for distributing a secret value between several participants
 - The original value cannot be constructed without access to all the pieces (called *shares*)

- Secret sharing is a method for distributing a secret value between several participants
 - The original value cannot be constructed without access to all the pieces (called shares)
- In share computing, the processed data is stored in a secret-shared form

- Secret sharing is a method for distributing a secret value between several participants
 - The original value cannot be constructed without access to all the pieces (called shares)
- In share computing, the processed data is stored in a secret-shared form
- Multi-party computation allows us to process shares

Intuition to secret sharing

the input secret

18

Intuition to secret sharing

the input secret

shares

Intuition to secret sharing

• Assume that we have secret-shared 18 and 103

- Assume that we have secret-shared 18 and 103
- The shown scheme is not good for computing

- Assume that we have secret-shared 18 and 103
- The shown scheme is not good for computing

eig ht een

- Assume that we have secret-shared 18 and 103
- The shown scheme is not good for computing

eig	ht	een
+ hundred	and	three

- Assume that we have secret-shared 18 and 103
- The shown scheme is not good for computing

- Assume that we have secret-shared 18 and 103
- The shown scheme is not good for computing

eig	ht	een
+ hundred	and	three

- Assume that we have secret-shared 18 and 103
- The shown scheme is not good for computing

eig	ht	een
+ hundred	and	three

eighundred

- Assume that we have secret-shared 18 and 103
- The shown scheme is not good for computing

eig	ht	een
+ hundred	and	three
eighundred	htand	

- Assume that we have secret-shared 18 and 103
- The shown scheme is not good for computing

eig	ht	een
+ hundred	and	three
eighundred	htand	eenthree

• The additive scheme is homomorphic

- The additive scheme is homomorphic
- 18 = 7 + 2 + 9 and 103 = 24 + 50 + 29

- The additive scheme is homomorphic
- 18 = 7 + 2 + 9 and 103 = 24 + 50 + 29

- The additive scheme is homomorphic
- 18 = 7 + 2 + 9 and 103 = 24 + 50 + 29

- The additive scheme is homomorphic
- 18 = 7 + 2 + 9 and 103 = 24 + 50 + 29

- The additive scheme is homomorphic
- 18 = 7 + 2 + 9 and 103 = 24 + 50 + 29

- The additive scheme is homomorphic
- 18 = 7 + 2 + 9 and 103 = 24 + 50 + 29

- The additive scheme is homomorphic
- 18 = 7 + 2 + 9 and 103 = 24 + 50 + 29

Introducing Sharemind

Sharemind is a distributed virtual processor

- Sharemind is a distributed virtual processor
- The processor performs share computing

- Sharemind is a distributed virtual processor
- The processor performs share computing
 - the data is stored using the additive scheme

- Sharemind is a distributed virtual processor
- The processor performs share computing
 - the data is stored using the additive scheme
 - multi-party computation protocols are applied

- Sharemind is a distributed virtual processor
- The processor performs share computing
 - the data is stored using the additive scheme
 - multi-party computation protocols are applied
- It is information-theoretically secure in a semi-honest model with three parties

• The main design goal of Sharemind is performance

- The main design goal of Sharemind is performance
 - Sharemind performs best with larger input vectors and single operations are relatively slower

- The main design goal of Sharemind is performance
 - Sharemind performs best with larger input vectors and single operations are relatively slower
 - This is due to extensive vectorisation

- The main design goal of Sharemind is performance
 - Sharemind performs best with larger input vectors and single operations are relatively slower
 - This is due to extensive vectorisation
- We also want it to be practically usable

- The main design goal of Sharemind is performance
 - Sharemind performs best with larger input vectors and single operations are relatively slower
 - This is due to extensive vectorisation
- We also want it to be practically usable
 - Writing Sharemind applications is relatively easy

• Sharemind can securely:

- Sharemind can securely:
 - add or multiply two values

- Sharemind can securely:
 - add or multiply two values
 - multiply a value by a constant

- Sharemind can securely:
 - add or multiply two values
 - multiply a value by a constant
 - extract bits from a value

- Sharemind can securely:
 - add or multiply two values
 - multiply a value by a constant
 - extract bits from a value
 - determine if two values are equal

- Sharemind can securely:
 - add or multiply two values
 - multiply a value by a constant
 - extract bits from a value
 - determine if two values are equal
 - determine the greater one of two values

What does it look like?

What does it look like?

Clients connect to miners

Client

Client

Client

Client

Client

Client

Client

 All protocols used to perform operations are universally composable

- All protocols used to perform operations are universally composable
- That is, we can run them one after the other or in parallel without losing security

- All protocols used to perform operations are universally composable
- That is, we can run them one after the other or in parallel without losing security
- It follows directly that we can write programs that run on this processor

What needs to be done

n-party protocols for Sharemind

n-party protocols for Sharemind

• Expand Sharemind to support more than three parties.

n-party protocols for Sharemind

- Expand Sharemind to support more than three parties.
- Listed on the webpage, but already taken.

• There is a protocol prover written by a NordSecMob student last year. An MSc thesis was written.

- There is a protocol prover written by a NordSecMob student last year. An MSc thesis was written.
- Improvements are needed. Requires:

- There is a protocol prover written by a NordSecMob student last year. An MSc thesis was written.
- Improvements are needed. Requires:
 - Java programming knowledge

- There is a protocol prover written by a NordSecMob student last year. An MSc thesis was written.
- Improvements are needed. Requires:
 - Java programming knowledge
 - an understanding of cryptographic protocols

- There is a protocol prover written by a NordSecMob student last year. An MSc thesis was written.
- Improvements are needed. Requires:
 - Java programming knowledge
 - an understanding of cryptographic protocols
- Not an MSc topic. Not too tough.

• Find out and write down, what kind of applications Sharemind is good for. What kind of security guarantees are achieved in real life?

- Find out and write down, what kind of applications Sharemind is good for. What kind of security guarantees are achieved in real life?
- Requires:

- Find out and write down, what kind of applications Sharemind is good for. What kind of security guarantees are achieved in real life?
- Requires:
 - understanding of security and privacy concerns

- Find out and write down, what kind of applications Sharemind is good for. What kind of security guarantees are achieved in real life?
- Requires:
 - understanding of security and privacy concerns
 - understanding how the world works :)

- Find out and write down, what kind of applications Sharemind is good for. What kind of security guarantees are achieved in real life?
- Requires:
 - understanding of security and privacy concerns
 - understanding how the world works :)
- Possibly an MSc topic. Less theory, but a lot of work.

• Sharemind can compute simple stuff. To make it practical we need to implement algorithms.

- Sharemind can compute simple stuff. To make it practical we need to implement algorithms.
- Choose, implement and profile some group of algorithms on Sharemind. Requires:

- Sharemind can compute simple stuff. To make it practical we need to implement algorithms.
- Choose, implement and profile some group of algorithms on Sharemind. Requires:
 - understanding of Sharemind

- Sharemind can compute simple stuff. To make it practical we need to implement algorithms.
- Choose, implement and profile some group of algorithms on Sharemind. Requires:
 - understanding of Sharemind
 - understanding of data mining algorithms

- Sharemind can compute simple stuff. To make it practical we need to implement algorithms.
- Choose, implement and profile some group of algorithms on Sharemind. Requires:
 - understanding of Sharemind
 - understanding of data mining algorithms
- A thesis topic, if reaaally needed. Moderately tough.

• There is an assembly language that runs on Sharemind. In the end of 2008, a high level language will appear.

- There is an assembly language that runs on Sharemind. In the end of 2008, a high level language will appear.
- It will contain private and public variables. We need an information flow analyzer that determines whether private information leaks during execution.

- There is an assembly language that runs on Sharemind. In the end of 2008, a high level language will appear.
- It will contain private and public variables. We need an information flow analyzer that determines whether private information leaks during execution.
- Requires understanding of programming languages and privacy. Also requires that you talk to Peeter.

- There is an assembly language that runs on Sharemind. In the end of 2008, a high level language will appear.
- It will contain private and public variables. We need an information flow analyzer that determines whether private information leaks during execution.
- Requires understanding of programming languages and privacy. Also requires that you talk to Peeter.
- Definitely an MSc topic. Moderately tough.
• Currently, Sharemind is secure in the honest-butcurious model.

- Currently, Sharemind is secure in the honest-butcurious model.
- Find out what needs to be done to make the framework secure in the malicious model. Requires:

- Currently, Sharemind is secure in the honest-butcurious model.
- Find out what needs to be done to make the framework secure in the malicious model. Requires:
 - Advanced knowledge of cryptography and protocols.

- Currently, Sharemind is secure in the honest-butcurious model.
- Find out what needs to be done to make the framework secure in the malicious model. Requires:
 - Advanced knowledge of cryptography and protocols.
 - C++ programming skills if you want to implement.

- Currently, Sharemind is secure in the honest-butcurious model.
- Find out what needs to be done to make the framework secure in the malicious model. Requires:
 - Advanced knowledge of cryptography and protocols.
 - C++ programming skills if you want to implement.
- Definitely an MSc topic. Quite hard work.

More info: http://sharemind.cs.ut.ee/

Contact me. db@ut.ee