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Abstract

This survey gives an overview of some of the ad-
versary structures used in the analysis of network
communication. It is based mostly on the work of
Desmedt, Wang and Burmester [3].

1 Introduction

In network applications connections are made be-
tween nodes to exchange data. The need for se-
cure data transfer is common to all communication
models and network structures. In real life situa-
tions the nodes are usually not directly connected
with secure channels. Intermediate nodes are used
to route traffic between nodes.

The protocols must be designed in such a way,
that multiparty communication can be carried out
in the presence of faults at intermediate nodes.
Models are being researched to determine restric-
tions for these networks and their nodes in order to
fulfil these requirements.

2 General Terms and Previ-

ous Results

A Byzantine fault is any failure that can happen
during the execution of an algorithm in a dis-
tributed system (communication network). The
name is inspired by the Byzantine Generals’ Prob-
lem. In the scenario, generals of the Byzantine
army must unanimously decide, which enemy army
to attack. Generals and armies are scattered over
land and envoys are relaying messages between
them.

If the generals fail to reach the same conclusion,
the attack will be a failure, because the combined
strength of all armies is required to defeat the en-
emy. Envoys might get lost or bribed by the enemy
- these are examples of Byzantine faults. The same
scenario can be applied to real-life systems (for ex-
ample, peer-to-peer networks).

Let G = G(V,E) be a graph. If we can choose
and remove any k - 1 edges from this graph and the
graph remains connected, the graph is k-connected.

Some of the first results regarding security in
communication networks were achieved by Dolev,
Dwork, Waarts and Yung [1]. In the case of k
Byzantine faults:

1. If all communications links (edges in a graph)
are two-way, reliable and private communica-
tion is achievable if and only if the communi-
cation network is 2k + 1 connected.

2. If all communications links are one-way (and
there is no feedback), then 3k + 1 connectiv-
ity is necessary and sufficient for reliable and
private communications.

An advancement in the area came with the pro-
posal of the adversary structure by Hirt and Maurer
[2]. The adversary is characterized by a structure
of subsets of the set of parties. These subsets con-
tain nodes, which the adversary can corrupt. The
model reflects the real world, because in the real
world adversaries such as viruses and trojans can
gain control of many nodes who share the same
platform/operating system.

The goal of the research in this area is to reduce
the requirements to network connectivity. The re-
sults described in this survey were proposed by
Desmedt, Wang and Burmester [3].
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3 The Network Model

3.1 The Adversary

3.1.1 Definitions

We model the adversary by the adversary structure.
Let P be the set of parties in the network. Let ΓP

be a subset of the power set of P . We call such a
ΓP ⊂ 2P an access structure on P.

An access structure is monotone if and only if
∅ /∈ ΓP and ∀A if A ∈ ΓP , A ⊆ A′ ⊆ 2P then
A′ ∈ ΓP .

Example: Let P = {A, B, C}. Then:

ΓP = {{A, B, C}, {A, B}, {B, C}, {B}}

is an access structure, but

ΓP
′ = {{A, B, C}, {A, B}, {B, C}, {B}, {C}}

is not, because {C} ⊂ {A, C} and {A, C} 6⊂ ΓP
′.

We call Z ⊂ 2P an adversary structure, if
Zc = 2P \Z is a monotone access structure.

Example: Given the set of parties P and the ac-
cess structure ΓP from the previous example, a le-
gal adversary structure would be

ZP = 2P \ΓP = {{A, C}, {A}, {C} {∅}}.

3.1.2 Properties

If Z1 and Z2 are adversary structures, then

Z1 + Z2 = {z1 ∪ z2 : z1 ∈ Z1, z2 ∈ Z2}

is also an adversary structure.

Example: Given the previously defined adversary
structure ZP and another adversary structure

ZP ′ = {{A, B}, {A}, {B}, {∅}}

we see that

ZP + ZP ′ = {{A, B, C}, {A, B}, {B, C}, {A, C},

{A}, {B}, {C}, {∅}}.

To prove, that it is an adversary structure, we
check if the complement is a monotone access struc-
ture.

Zc = 2P \ZP = ∅.

Zc is a monotone access structure, because it sat-
isfies the necessary conditions.

We define 2Z = Z + Z and 3Z = Z + Z + Z.

A set of parties z ∈ Z is maximal if
z′ ⊃ z ⇒ z′ 6∈ Z.

Example: The maximal set of parties for ZP is

PP = {A, B, C} ∈ ZP .

There are two types of adversaries: passive and
active. A passive adversary reads all the traffic of
parties in Z. An active adversary is computation-
ally unbounded and can both read the traffic from
and control the parties in Z. Both kinds of adver-
saries have complete knowledge of the protocol, the
message space and structure of the network. The
described model considers only static adversaries
i.e. ones, who select the set of parties to corrupt
before the start of the protocol.

3.2 The Communication Network

The communication network is modelled by using
a directed graph G = G(V, E). Each node v ∈ G
is a communication party. Each edge (u, v) ∈ E
is a point-to-point private reliable communication
channel between the two parties.

3.3 Message Transmission Protocols

Let π be a message transmission protocol, let A be
the sender and B the receiver (A, B ∈ P ). Let Z
be an adversary structure. The sender A selects a
mA drawn from a message space M with a certain
probability distribution.

At the beginning of the protocol the adversary
randomly chooses a subset of Z (determines,
which nodes to corrupt). At the end of the
protocol π the receiver B outputs a message
mB ∈ M . For any message transmission pro-
tocol adv(M, r) is the view when mA = m and
r is the sequence of coin flips used by the adversary.

Definition 1: Let π be a transmission protocol.
Let mA be the message selected by A and mB the
message output by B. Let Z be an adversary struc-
ture.
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1. We say that π is Z-reliable, if B outputs mB =
mA with probability 1 (taken over the choices
of mA and the coin flips of all parties).

2. We say that π is perfectly Z-private if for any
two messages m0, m1 and for any coin tosses r,
we have Pr[adv(m0, r) = c] = Pr[adv(m1, r) =
c]. The probabilities is taken over the coin flips
of the honest parties).

3. We say that π is perfectly Z-secure if it is Z-
reliable and perfectly Z-private.

3.4 Connectivity

Definition 2: Let G(V,E) be a directed graph, A,
B be nodes in G(V,E) and Z be an adversary struc-
ture on V \{A, B}.

• A, B are Z-separable in G, if there is a set
X ∈ Z such that all paths from A to B go
through at least one node in Z. We say that Z
separates A and B.

• A, B are (Z + 1)-connected if they are not
Z-separable in G.

Note, that if (A, B) ∈ E then A, B are
(Z +1)− connected for any Z on V \{A, B}. There
is also the following result.

Theorem 1: Let G = G(V,E) be a directed graph.
Let A, B be nodes in G and Z1, Z2 be adversary
structures on V \{A, B}. Then A, B are (Z1 +Z2+
1)− connected if, and only if: for all sets X1 ∈ Z1

there is a set SZ1
of paths between A and B such

that,

• the paths in SZ1
are free from nodes of X1,

• for every X2 ∈ Z2 there is at least one path in
SZ1

that is free from nodes of X2.

3.5 Secure Message Transmissions

The following results set constraints needed for
secure message transmissions in the given network.

Theorem 2: Let G = G(V,E) be a directed graph.
Let A, B be nodes in G and Z be an adversary struc-
ture on V \{A, B}. We suppose, that the adversary
is passive.

1. We have polynomial time (with regard to graph
size) Z-reliable message transmission from A
to B if, and only if, A, B are ({∅} + 1)-
connected in G.

2. We have polynomial time (with regard to graph
size) perfectly Z-secure message transmissions
from A to B if and only if, A, B, are (Z +
1)-connected in G.

Theorem 3: Let G = G(V,E) be a directed
graph. Let A, B be nodes in G and Z be an adver-
sary structure on V \{A, B}. We have Z-reliable
message transmission from A to B if, and only if,
A, B, are (2Z + 1)-connected in G.

Theorem 4: Let G = G(V,E) be a directed graph.
Let A, B be nodes in G and Z be an adversary struc-
ture on V \{A, B}. If there are no directed paths
from B to A, then we have perfectly Z-secure mes-
sage transmission from A to B if and only if, A and
B are (3Z + 1)-connected in G.

4 Conclusion

The goal of this survey is to give an introduction to
analysing network models. Another survey will be
presented to explain other results from the referred
article and other works in this area.
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